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Abstract

Species have evolved diverse social behavior and mating strategies in response to selective forces 

in their environments. While promiscuity is the predominant mating strategy across most 

vertebrate taxa, convergent evolution of monogamous mating systems has occurred multiple times 

across distant lineages. Monogamous behavior is thought to be facilitated by a neurobiological 

capacity to form and maintain selective social attachments, or pair bonds, with a mating partner. 

The neural mechanisms of pair bonding behavior have been investigated most rigorously in 

Microtine rodents, which exhibit diverse social organizations. These studies have highlighted 

mesolimbic dopamine pathways, social neuropeptides (oxytocin and vasopressin), and other 

neural systems as integral factors in the formation, maintenance, and expression of pair bonds.

Introduction

The relationships we form with family, friends, and romantic partners are integral to the 

organization and function of human society. Though complex, these bonds comprise 

component processes that can be investigated across species. One excellent opportunity for 

investigating the neurobiological basis of social attachments is the independent evolution of 

pair bonding behavior across taxa. While sexual promiscuity is the dominant mating strategy 

in animals (exhibited by 95–97% of mammals), socially monogamous mating strategies 

have evolved in diverse lineages, including invertebrates, fishes, amphibians, reptiles, birds, 

and mammals. These systems are characterized by enduring, often lifelong, selective social 

attachments between mating partners, although not always sexual exclusivity. The 

underlying neurobiology of these pair bonds is the subject of this review.

Investigating pair bonding

The most powerful opportunities for investigating the biology of behavior are rooted in: 

firstly, phylogenetically distant species exhibiting convergent behavior, secondly, closely 

related species exhibiting strikingly divergent behavior, and thirdly, individual species 

exhibiting high levels of intraspecific variation in behavior. Within these contexts, 
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comparative approaches can accelerate the identification of neurobiological, genetic, 

developmental, and evolutionary factors underlying the behavior in question [1]. Much of 

our understanding of the neurobiology of pair bonding has come from comparative 

approaches in all three contexts, particularly through investigations of the prairie vole, 

Microtus ochrogaster. The neurobiology of pair bonding in prairie voles will be a primary, 

but not exclusive, focus of this review.

The genus Microtus comprises many species with diverse social organizations. Prairie voles 

exhibit socially monogamous behavior as well as bi-parental care of offspring, selective 

aggression toward opposite-sex strangers, and depressive-like behavior following partner 

loss [2•,3]. Prairie voles also exhibit a high degree of intraspecific variation in these 

behaviors; for example, both males and females can exhibit promiscuous ‘wandering’ 

phenotypes.

Interrogation of pair bonding in the laboratory was initiated through a series of experiments 

using the partner preference test, in which a subject can freely spend its time with its 

familiar mating partner, a novel sexually receptive individual, or in isolation in a ‘neutral’ 

zone [4]. These experiments demonstrated that after just 24 hours of co-habitation with a 

mate, prairie voles — unlike promiscuous montane or meadow voles — preferentially 

affiliate with their partner. These ‘partner preferences’ became a laboratory metric for pair 

bond formation, and neurobiological manipulations within this paradigm have identified 

unique molecular features of the prairie vole brain mediating selective social attachment.

Social neuropeptides in pair bonding

The social neuropeptides oxytocin (OT) and vasopressin (AVP) have deeply conserved roles 

in regulating sociosexual behavior across invertebrate and vertebrate taxa, including humans 

[5]. In mammals, the neuroanatomical organization of OT-producing and AVP-producing 

neurons and their axonal projections throughout the brain are largely conserved, while the 

distributions of their target receptors — oxytocin receptor (OTR) and arginine-vasopressin 

receptor 1a (AVPR1a) — vary greatly both within and across species [6,7]. Evolutionary 

plasticity in these systems is thought to have contributed to the diverse sociality observed in 

nature [7–9].

OTR and AVPR1a distribution in the prairie vole brain differs substantially from closely-

related promiscuous species, with differences concentrated in specific mesolimbic reward 

areas including the prefrontal cortex (PFC), nucleus accumbens (NAcc), ventral pallidum 

(VP), and lateral septum (LS) [10]. In prairie voles, blockade of OTR or AVPR1a in these 

areas during co-habitation — specifically OTR blockade in the NAcc or PFC or AVPR1a 

blockade in the LS or VP — prevents pair bonding [10].

Comparative analyses of four Microtine species found that monogamous prairie and pine 

voles exhibit higher AVPR1a expression in the VP compared to promiscuous montane and 

meadow voles, suggesting that increased AVPR1a expression in the VP may be a 

mechanism contributing to the evolution of pair bonding across Microtines [10]. In support 

of this hypothesis, overexpression of AVPR1a in the VP of promiscuous meadow voles 

induces pair bonding, and RNA knockdown of AVPR1a in the VP of prairie voles inhibits 
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pair bonding[11•]. However, both monogamous and non-monogamous deer mice have high 

AVPR1a expression in the VP[12], suggesting that multiple mechanisms contribute to the 

evolution of monogamous mating strategies across rodents; yet the possibility that high 

AVPR1a expression in the VP is a necessary feature for the evolution of monogamy requires 

further comparative investigation.

Like prairie voles, monogamous marmosets have elevated OTR density in the NAcc, while 

monogamous coppery titi monkeys have elevated AVPR1a in this area [13,14••]. Analyses 

of human tissue have used ligands promiscuous for both OTR and AVPR1a [15], but have 

reported high densities in the VP [16]. It will be important to re-analyze human tissue using 

more sensitive and selective techniques; however, to the best of our knowledge, every 

socially monogamous species examined to date has exhibited high OTR and/or AVPR1a 

expression in the NAcc-VP circuit; these data encourage further research on 

neuropeptidergic regulation of this circuit in the evolution of social bonding.

OT and AVP modulate bonding behavior in diverse lineages [17]. Blockade of OTR and 

AVPR1a homologs in monogamous cichlid fishes reduces affiliative behavior during bond 

formation [18], and exogenous OT delivery promotes affiliative behavior toward conspecific 

and human partners in dogs [19]. The OTR homolog mediates pair bonding behavior in 

monogamous zebra finches[20,21•,22]. OT and AVP regulate pair bonding behavior in 

marmosets and coppery titi monkeys, respectively[23–25]. Humans display a range of pair 

bonding behavior, and OXTR and AVPR1A gene variants are associated with relationship 

status [26,27]; plasma OT levels predict future success rates in romantic relationships [28]; 

and in romantically attached men, intranasal OT increases NAcc activity while viewing a 

partner’s face and increases preferred interpersonal distance from unfamiliar females[29••,

30].

Mesolimbic dopamine system in pair bond formation

All nervous systems face the challenge of filtering, converting, and updating a continuous 

barrage of multimodal sensory information into learned associations that guide adaptive 

behavior [8]. In vertebrates, the mesolimbic reward system — comprising in part 

connections between the ventral tegmental area (VTA), PFC, NAcc, VP, and LS — is an 

evolutionarily conserved neural system that facilitates this process by generating motivation 

to seek reward and avoid aversion, and by assigning salience to cues associated with these 

outcomes. The action of dopamine (DA) within this system is critical for these functions 

[31].

The mesolimbic DA system is essential for pair bonding. Partner preference formation is 

facilitated by mating, which increases DA release and turnover in the NAcc[10]. DA action 

at one of its target receptors, D2R, in the NAcc is necessary for bond formation [10]. After 

bonding, a second DA receptor, D1R, is upregulated in the NAcc and is critical for bond 

maintenance by mediating aggression toward opposite-sex strangers [32].

Increased D1R:D2R signaling ratio in the ventral striatum has also been implicated in drug 

addiction and abuse[33]. In mice, repeated administration of cocaine increases the ratio of 

D1R:D2R expression in the NAcc, and this reorganization mediates subsequent behavioral 

Johnson and Young Page 3

Curr Opin Behav Sci. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plasticity. As mentioned, in prairie voles, pair bonding increases the ratio of D1R:D2R 

expression in the NAcc, and this reorganization mediates subsequent behavioral plasticity 

[32]. These data have contributed to the hypothesis that pair bonds represent social 

addictions between mating partners, mediated in part by organization and plasticity of 

mesolimbic DA pathways [33]. Studies in the zebra finch and coppery titi monkey have also 

reported reorganization in mesolimbic reward areas following bond formation, suggesting 

that neural plasticity in these pathways may be an evolutionarily conserved feature of pair 

bonding across species [34,35].

Component processes and other systems in pair bond formation

Numerous component processes contribute to pair bonding. Initial social interaction depends 

on tolerance of social proximity, social approach, and inhibition of avoidance/rejection 

behavior. As partners interact, affiliative behavior, social recognition, and reward systems 

contribute to formation of the bond. After bonding, social buffering, mate guarding, negative 

affect during separation, and sociospatial memory facilitate bond maintenance.

Microtine species vary in social tolerance and affiliation, perhaps in part due to differences 

in mesolimbic D1R organization. In prairie voles, which have low baseline levels of NAcc 

D1R, bond-induced upregulation of NAcc D1R mediates a drastic shift in behavior toward 

opposite-sex strangers (from affiliation to avoidance/rejection), and selective NAcc D1R 

activation during co-habitation inhibits bonding [10]. In meadow voles, which have higher 

baseline NAcc D1R densities and are less affiliative, selective NAcc D1R blockade 

increases affiliative behavior[10]. In zebra finches, activation of mesolimbic DA systems 

correlates with approach, avoidance, and affiliative behavior during male–female social 

interaction [36], suggesting that mesolimbic DA pathways may modulate social tolerance 

and affiliation across species.

Pair bonding also depends on social recognition, a neural process that, in mice, is olfactory 

based and dependent on OT and AVP signaling. OTRs are distributed through olfactory 

processing nuclei in rodents, while in primates — in which audition and vision are more 

dominant sensory modalities — OTRs are expressed in areas critical for visual and auditory 

attention and processing, suggesting that OT signaling may modulate aspects of sensory 

processing across species, though the particular modalities may vary [13,14••,37]. Consistent 

with this hypothesis, human polymorphisms in OXTR predict ability to recognize faces, 

suggesting that OT’s role in social recognition may be conserved between rodents and 

humans, across sensory modalities [38••].

Additional neural systems mediate additional components of bond formation and 

maintenance. Opioid signaling is important during reward learning and regulates formation 

and maintenance of pair bonds in prairie voles, perhaps by mediating positive hedonics 

during formation and negative hedonics during maintenance [39•,40]. The corticotrophin 

releasing factor (CRF) system mediates pair bond formation and depressive-like behavior 

following partner separation/loss [3,41]. Social buffering facilitates bond maintenance; in 

prairie voles, following a stressful experience, OT release in the presence of the partner 

reduces stress hormone levels and anxiety-like behavior [42•]. In nature, bond maintenance 
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depends on accurate recall of the partner’s geographical territory. Recent field studies have 

shown that OTR and AVPR1a binding densities in spatial navigation/memory areas predict 

space use, mating strategy (‘resident’ or ‘wanderer’), and reproductive success in prairie 

voles, possibly by facilitating integration of social information (e.g. territories of partner, 

reproductive competitors, and/or reproductive opportunities) into spatial maps [43,44,45•].

Other forms of selective social attachment (e.g. maternal bonds) require many of the same 

neural substrates and component processes — notably OT, DA, CRF, opioids and social 

recognition — as selective bonds between mates[17]. In fact, it is hypothesized that 

mammalian pair bonding may evolve by recruiting evolutionarily ancient maternal bonding 

systems during sociosexual interaction to produce a selective bond with the mating partner 

[46,47].

Experience and pair bonding

In prairie voles, like humans, early life social environment can impact adult pair bonding 

[48], a phenomenon that may be mediated by neuroplastic changes in systems critical for 

bonding. Consistent with this idea, early life stimulation of the melanocortin receptor 

(MCR) system, which interacts with neuropeptide and reward systems, facilitates pair bond 

formation in adulthood [49]. In contrast, selective D1R activation in neonates impairs adult 

bonding [50]. Intriguingly, chronic neonatal administration of intranasal OT at some doses 

was found to impair bonding in adult male prairie voles [51]; however, enhancing NAcc 

OTR expression in pre-pubertal females facilitates adult bonding [52], and early life paternal 

deprivation (a manipulation which likely reduces OT signaling) impairs bonding in adult 

prairie and mandarin voles [48,53]. These data encourage further research on the role of 

early-life experience and OT signaling in adult social function. Interestingly, blocking 

histone deacetylation during co-habitation increases NAcc OTR and AVPR1a expression 

and facilitates pair bonding in prairie voles, suggesting that epigenetic modification is one 

mechanism by which experience can shape the neural systems modulating bonding behavior 

[54].

As in humans, drugs of abuse impair the ability to form social attachments in prairie voles, 

presumably due to plastic changes in underlying neural circuits. In prairie voles, 

amphetamine-induced upregulation of D1R inhibits bonding; and after bonding, D1R is 

upregulated and mediates a decrease in the reward value of amphetamines (intriguingly, a 

phenomenon that is reversed by OT treatment) [55–57]. Interestingly, voluntary alcohol 

consumption inhibits bonding in male but not female prairie voles, and social facilitation 

and inhibition of alcohol consumption occurs in same-sex but not male-female pairs [58,59].

Conclusions and future directions: toward a network model of the pair 

bond

Common neural circuits, neuromodulators, receptors, and neuroplastic changes regulate 

selective social attachment across species. In prairie voles, it is hypothesized that unique 

organization of OTR, AVPR1a, and D1R/D2R in the forebrain facilitates unique encoding 

of partner-associated cues during sociosexual interaction. Our current model (as illustrated 
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in Figure 1) is that during mating, DA release modulates reward learning and salience of 

partner-associated cues, while OT and AVP release facilitate the transmission and neural 

encoding of the partner’s sensory signature through olfactory processing circuits, into the 

amygdala, and ultimately into the NAcc-VP circuit where it is integrated with the reward of 

mating, mediated in part by D2R and μ-opioid receptor activation. These circuits are 

simultaneously modulated by higher order behavior-outcome and sensory cue-outcome 

circuits in the PFC and orbitofrontal cortex, respectively. After bond formation, upregulation 

of D1R in the NAcc biases these circuits toward encoding unfamiliar olfactory signatures as 

aversive and triggering avoidance/rejection behavior; OT release in the presence of the 

partner functions as a social buffer; and CRF-mediated negative affect during separation 

encourages reunion.

With this basic framework in place, future studies should aim to identify the neuronal 

phenotypes mediating these component processes, their connectivity within social 

information processing networks, and precisely how various neurotransmitters modulate 

network function as a whole. Comparative genetic, neural, and behavioral analyses across 

species; optogenetic and electrophysiological interrogations of precise neural circuits in 

animal models; and functional brain imaging studies in humans will likely provide important 

insights into the neurobiological regulation of selective social attachment and bonding in the 

coming years.
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Figure 1. 
Neurobiological systems mediating pair bonding behavior. This schematic illustrates a 

neural network model of pair bond formation and maintenance based on studies in prairie 

voles. The model highlights key axonal projections, neuromodulators, and receptor 

populations involved in pair bonding. Maroon arrows illustrate key points of entry for 

incoming sociosensory cues. Gray arrows represent axonal projections transmitting social 

information across brain areas during bonding. The black arrow represents axonal 

projections to downstream motor nuclei leading to behavior. As indicated in the figure 

legend, colored projections with closed white triangles indicate neuromodulatory projections 

(dopamine-green; oxytocin-pink; vasopressin-blue) that modulate transmission and encoding 

of social information during bonding. Receptor populations that have been implicated in 

either formation or maintenance of pair bonds in prairie voles are indicated by solid colors 

within brain areas. Important neural loci are indicated with abbreviated labels (BLA, 

basolateral amygdala; CPu, caudate putamen; latOFC, lateral orbitofrontal cortex; LS, lateral 
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septum; MeA, medial amygdala; mPFC, medial prefrontal cortex; NAcc, nucleus 

accumbens; PVN, paraventricular nucleus of the hypothalamus; VP, ventral pallidum; VTA, 

ventral tegmental area).
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