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Abstract

The wide diversity of computer architectures today requires a new approach to software 

development. OpenMM is a framework for molecular mechanics simulations, allowing a single 

program to run efficiently on a variety of hardware platforms.
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Introduction

Computer architectures today are in a period of rapid advancement and diversification. A 

decade ago, most programs were run on conventional, single core processors capable of 

executing one thread at a time. In the last ten years, those simple CPUs have been replaced 

by an array of multi-core CPUs,1 dedicated accelerators such as the Cell Broadband 

Engine,2 and so-called Graphics Processing Units that are actually capable of powerful, 

general purpose computation.3 This trend is likely to continue in the future. It is difficult to 

predict what architectures will be available as little as five years from now, or what 

programming models will be best suited to exploiting them.

This creates a dilemma for all programmers, but especially for those in science and 

engineering. On the one hand, their computing needs are often extreme, involving 

simulations or other types of calculations that can only be run on enormous supercomputing 

clusters. On the other hand, their resources for developing software are usually quite limited. 

Writing and optimizing all the necessary software for a single architecture is a challenge. 

Repeating the task for several widely differing architectures is completely out of the 

question.

In some ways, this situation is analogous to the early days of the computer industry when 

programs were written in each computer’s native machine language. Different processors 

had different instruction sets, so porting a program to a new computer required completely 

rewriting it. Compilers solved this problem by introducing an abstraction layer between the 

programmer and the hardware: programs could be written in terms of higher level 

instructions, and those could automatically be transformed into the machine language of any 

processor desired.
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This scheme works well as long as the processors involved are all fundamentally similar in 

their capabilities and operating models. When the processors differ too much, it ceases to 

work. For example, it is unreasonable to expect a single piece of source code to be compiled 

efficiently for both a single core CPU and a massively parallel GPU. These architectures 

require fundamentally different algorithms to perform the same calculation efficiently, and 

that is beyond the scope of any existing compiler.

What is really required is another abstraction layer to isolate the programmer from the 

hardware their code is running on; not just its instruction set, but its fundamental 

capabilities. One should be able to express the problem to solve using high level concepts 

appropriate to the problem at hand without needing to specify what particular algorithms to 

use. The abstraction layer should then automatically select an implementation of those 

concepts most appropriate to the currently available hardware. This approach has been used 

successfully in a number of cases, two of the most prominent examples being LAPACK4 for 

linear algebra and OpenGL5 for 3D graphics.

The Design of OpenMM

To address this goal within the specific domain of molecular simulation, we have developed 

OpenMM, a library for performing molecular mechanics on high performance computing 

architectures.6 It allows programmers to write their programs using a high level, hardware 

independent API. Those programs can then run without modification on any hardware that 

supports the API. In principle, that could be anything from a single CPU core at the low end, 

up to a large supercomputing cluster with multiple CPU cores and GPUs on each node.

To be successful, any abstraction layer of this sort must satisfy three basic requirements:

1. It must allow users to express their problem at an appropriate level of detail.

2. It must permit efficient implementations on all targeted hardware platforms.

3. It must incorporate modularity and extensibility as fundamental aspects of the API.

Let us consider each of these requirements in detail, and see how they are implemented in 

OpenMM.

Level of Abstraction

In any interface, it is critical to choose the right level of abstraction. The goal is to identify 

which aspects of the problem should be determined by the user, and which should be left to 

the library to determine. Too high a level of abstraction will make the library useless: there 

are certain aspects of the problem description that the user genuinely cares about, and if the 

interface does not allow them to precisely describe those aspects, they cannot use it. On the 

other hand, too low a level of abstraction restricts the library’s ability to implement the 

problem efficiently on a variety of hardware. If the user is required to specify 

implementation details that are not actually important to them, such as specific algorithms 

for performing calculations, there is no longer an option to automatically pick a different 

algorithm better suited to the available hardware.
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In molecular mechanics, the user typically wants to describe the problem to solve in terms of 

potential functions, constraints, time integrations, temperature coupling methods, etc. They 

should be able to specify those without having to describe, for example, what method to use 

for evaluating the potential function. To express it in a slightly different way, the user cares 

about equations, not algorithms. An ideal interface should allow the user to specify the 

mathematical system they want to model, while leaving the library free to numerically 

evaluate that system in an appropriate way.

Permitting Efficient Implementation

Even if the interface does not explicitly define how the calculations are to be implemented, 

it can easily restrict the range of implementations that are practical. Great care is needed to 

ensure that no feature of the API will unnecessarily restrict the hardware platforms it can be 

used on.

An example of this from OpenMM is in the mechanism for accessing state information. A 

molecular mechanics simulation involves various data about the current state of the system 

being simulated: the positions and velocities of atoms, the forces acting on them, etc. 

Traditionally, simulation codes have represented these values as arrays in memory. When a 

program needs to examine the position of an atom, for example, it simply looks at the 

appropriate array element. To a developer accustomed to using such a code, a natural and 

obvious API for accessing atom positions would be a routine that takes an atom index and 

returns “the current position of that atom”.

Unfortunately, that API would be impossible to implement efficiently on many 

architectures. When doing calculations on a GPU, for example, the atom positions are stored 

in device memory, and transferring them to host memory is a relatively expensive operation. 

The problem is even worse for a cluster, where atom positions are distributed between many 

different computers across a network. Any program that assumes it has fast, random access 

to atom positions at all times is guaranteed to run very slowly on these systems.

OpenMM addresses this by explicitly not giving direct access to state data. Instead, the user 

invokes a routine to create a State object, specifying in advance all information that should 

be stored in that object. This has two advantages. First, because OpenMM knows in advance 

the full set of information the user is going to request, it can efficiently collect that 

information with a few bulk operations. Second, the user is aware they are performing an 

expensive operation, and therefore will give careful thought to when and how they access 

state data. They are not misled by seemingly trivial API calls (e.g. “get the position of atom 

5”) that actually are expensive.

Modularity and Extensibility

If a library of this sort is to be successful, it must incorporate the division between interface 

and implementation as a fundamental aspect of its design. The author of a program should 

not need to specify what implementation to use. When the program is run, it should 

automatically select whatever implementation is most appropriate to the available hardware. 

At the same time, it should also allow the program to query the available implementations 
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and manually select which one to use. For example, the user of a program might sometimes 

want to perform calculations on the main CPU and other times on a GPU.

Equally important is extensibility. As new hardware becomes available, new 

implementations will be necessary. It is impossible to enumerate all possible 

implementations, and the interface must not attempt to do so. It must be designed to be 

extensible, so new implementations can be written independently of the main library and 

existing programs can use them without modification.

OpenMM accomplishes this by means of a plugin architecture. Each implementation (or 

“Platform”) is distributed as a dynamic library and installed simply by placing it in a 

particular directory. At runtime, all libraries in that directory are loaded and made available 

to the program.

It also provides extensibility of a different sort: plugins are able not only to implement new 

Platforms, but also to add new features to existing Platforms. It is important to understand 

that OpenMM is not merely a library for performing certain calculations; it is an 

architectural framework designed to unify an entire problem domain. While the library 

comes with particular features built in (e.g. particular potential functions and integration 

methods), it also permits other features to be added by plugins. The goal is to provide a 

framework within which nearly any molecular mechanics calculation can be implemented.

Architecture

We now consider how to create an architecture that meets these goals. OpenMM is based on 

a layered architecture, as shown in Figure 1. At the highest level is the public API, which 

developers program against when using OpenMM in their own applications. In any such 

library, the public API must express concepts in terms relevant to the problem domain (e.g. 

molecular mechanics) without reference to how those concepts are implemented. In the case 

of OpenMM, those concepts are particles, forces, time integration methods, etc. For 

example, a Force object specifies the mathematical form of an interaction between particles, 

but does not dictate a particular algorithm for computing it.

The public API is implemented through calls to a lower level API that serves as an interface 

between the platform-independent problem description and platform-dependent 

computational kernels. OpenMM represents this low level API as a set of abstract C++ 

classes, each defining a particular computation to be done. Note the very different roles 

played by these two interfaces: the public API is implemented by the core OpenMM library 

and is invoked by users; the low level API is implemented by plugins and is invoked by the 

core OpenMM library.

At the lowest level of the architecture are the actual implementations of the computational 

kernels. These may be written in any language and use any technology appropriate for the 

hardware they execute on. For example, they might use a technology such as CUDA or 

OpenCL to implement GPU calculations, Pthreads or OpenMP to implement parallel CPU 

calculations, MPI to distribute work across nodes in a cluster, etc.
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This leaves the critical task of selecting and invoking an implementation of the low level 

API. In the case of OpenMM, this means instantiating a concrete subclass of the abstract 

class defining each kernel. This task is coordinated by a Platform object, which acts as a 

factory for computational kernels. Each class of the public API queries the Platform to get a 

concrete instance of each kernel it requires, then uses that instance to perform its 

calculations. The choice of what implementation to use thus consists entirely of choosing 

which Platform to use. A program may also elect not to specify a Platform, in which case 

one is chosen automatically based on the available hardware.

Actually, the arrangement is slightly more complicated. A Platform does not create kernels 

directly, but instead delegates the task to one or more KernelFactory objects. That is how a 

plugin can add new features to an existing Platform: it defines a computational kernel, 

creates a KernelFactory that can create instances of the kernel, and adds the factory to the 

Platform. When the Platform is later asked to create an instance of that kernel, it uses the 

new KernelFactory to do so.

How This Architecture Works in Practice

We now consider a concrete example of how this architecture works in practice: the 

computation of nonbonded interactions between atoms in a molecular system. This accounts 

for the bulk of the processing time in most simulations, so it is very important that it be well 

optimized.

In conventional codes designed to run on CPUs, there are well established techniques for 

doing this efficiently.7 One begins by building a neighbor list that explicitly enumerates 

every pair of atoms that are close enough to interact with each other. By using voxel based 

methods, this can be done in O(N) time. One then loops over all atom pairs in the neighbor 

list and computes the interaction between them. OpenMM’s reference Platform, which is 

written to run on a single CPU thread, works in exactly this way.

Unfortunately, neighbor lists are very inefficient on a GPU due to the need for indirect 

memory access. For each neighbor list entry, one must load information about the two atoms 

involved (position, charge, etc.). The indices of the atoms processed by successive threads 

need not follow any pattern, so the memory access cannot be coalesced.

We therefore have developed an alternate method better suited to running on a GPU.8 We 

divide the full set of atoms into blocks of 32. The set of N2 interactions then divides into 

(N/32)2 tiles as shown in Figure 2, each involving the interactions between two blocks of 

atoms. To process a tile, we load the data for the 64 atoms involved into shared memory, 

compute all 1024 interactions between them, and finally write out the resulting forces and 

energies to global memory. In place of a conventional neighbor list, we use a list of which 

tiles contain interactions: effectively, a neighbor list specifying which blocks of 32 atoms 

interact. Other researchers have also developed algorithms for computing nonbonded 

interactions on GPUs.9–11

Our method was designed for use on Nvidia GPUs, and the size of each block (32 atoms) 

was chosen to match the SIMD width of those processors. Adapting it to other types of 
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processors, even other GPUs, requires modifications to the algorithm. For example, some 

AMD GPUs have a SIMD width of 64, so threads must be distributed between tiles in a 

different way to obtain maximum efficiency.

We therefore need several fundamentally different algorithms to efficiently implement the 

same calculation on different hardware. Significantly, however, the choice of algorithm 

depends only on the hardware, not on the precise form of the force being calculated. Many 

different mathematical forms are used to represent nonbonded interactions in molecular 

simulations, differing in how they model van der Waals interactions, smoothing of cutoffs, 

solvent screening effects, etc. These are important differences that scientists genuinely care 

about when running simulations. Ideally, programmers should be able to choose the 

functional forms of the interactions and still have them calculated using the most efficient 

algorithm for the available hardware. The user should specify the equations to use, and the 

library should determine how best to evaluate those equations.

OpenMM accomplishes this goal through its CustomNonbondedForce class. This class 

allows the user to specify an arbitrary mathematical function for the pairwise energy 

between atoms. That function may depend on an arbitrary set of atomic parameters and 

tabulated functions, as well as a variety of standard mathematical functions. For example, 

the following lines of code create a CustomNonbondedForce to calculate a Lennard-Jones 

12-6 interaction:

CustomNonbondedForce nb("4*epsilon*((sigma/r)^12-(sigma/r)^6);"

    "sigma=0.5*(sigma1*sigma2); epsilon=sqrt(epsilon1*epsilon2)");

nb.addPerParticleParameter("sigma");

nb.addPerParticleParameter("epsilon");

The first line specifies the energy of the interaction as a function of the distance r:

where the parameters from two interacting atoms are merged using Lorentz-Bertelot 

combining rules: the arithmetic mean of the sigmas and the geometric mean of the epsilons. 

The next two lines specify that the parameters “sigma” and “epsilon” should be associated 

with each atom.

OpenMM now has the task of implementing this efficiently on a variety of hardware 

platforms. It begins by parsing the user-specified expressions and analytically differentiating 

the energy to determine an expression for the force. Each expression is then converted to a 

sequence of instructions. To evaluate an expression, the reference and CUDA 

implementations loop over the instructions and perform each one, effectively acting as an 

interpreter for an internal language.

For the OpenCL based implementation, a better solution is possible. Because OpenCL 

allows programs to be compiled from source code at run time,12 it is possible to synthesize a 
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kernel with the user-defined mathematical expression inserted into the appropriate 

hardware-specific algorithm. That kernel is then compiled down to the device’s machine 

code, eliminating the cost of interpreting the expression and yielding nearly as fast 

performance as if the entire kernel had been written by hand.

We stress that this approach allows for a great deal of flexibility in our code, permitting the 

powerful combination of rapid development (i.e. one can change the key underlying 

equations for interactions between particles easily) and yet still retaining rapid execution 

(since the underlying optimizations, especially with OpenCL, allows for minimal overhead). 

This opens the door to new uses of our code, especially in terms of the rapid development of 

novel methods for simulating particle interactions, such as novel implicit solvent models for 

molecular simulation.

Features and Performance

We have implemented Force classes corresponding to all the most widely used energy terms 

in molecular simulations: a variety of bonded forces, Lennard-Jones and Coulomb forces for 

nonbonded interactions, Ewald summation and Particle Mesh Ewald for long range 

Coulomb forces, and a Generalized Born implicit solvent model. OpenMM also includes 

several methods of time integration and the ability to enforce distance constraints. These 

features are implemented in three different Platforms: a reference Platform written in C++, a 

CUDA based Platform for Nvidia GPUs, and an OpenCL based Platform for a variety of 

GPUs and CPUs.

We have previously published benchmarks for the CUDA implementation when simulating 

a variety of proteins.6, 8 Speeds range from 5 ns/day when simulating a 318 residue protein 

in explicit solvent (73,886 atoms total) up to 576 ns/day when simulating a 33 residue 

protein in implicit solvent (544 atoms total). We also compared it to the single CPU core 

performance of several widely used molecular dynamics packages when simulating an 80 

residue protein in explicit solvent. It was found to be 6.4 times faster than Gromacs, 28 

times faster than NAMD, and 59 times faster than AMBER. (GPU calculations were run on 

an Nvidia GTX280, and CPU calculations were run on a 3.0 GHz Intel Core 2 Duo.)

The newest feature of OpenMM is custom forces that let the user specify an arbitrary 

algebraic expression for the form of their force. In addition to the CustomNonbondedForce 

described above, there is also a CustomBondForce for bonded interactions, 

CustomExternalForce for forces applied independently to each atom, and CustomGBForce 

which supports a wide range of implicit solvent models. These are most useful with the 

OpenCL platform, since it allows them to be used with very little performance penalty. In 

preliminary testing, we have found that Coulomb and Lennard-Jones forces implemented 

with CustomNonbondedForce are only about 4% slower than the standard, hand coded 

implementations. This means that a scientist with no GPU programming experience can still 

implement arbitrary functional forms for their nonbonded interactions, and get nearly as 

good performance as hand tuned GPU code.
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Conclusions

Rapid, ongoing changes to computer architecture require a new approach to software 

development. Fundamentally different algorithms are required to perform the same 

calculation on a multi-core CPU, a GPU, a Cell processor, and a CPU cluster. The 

processors available five years from now will likely require still different algorithms to get 

optimal performance. A program written specifically for one architecture will quickly 

become out of date and be difficult to adapt to new hardware.

This problem can be solved by introducing a domain specific abstraction layer. Although 

this idea is not new, it has not been widely applied in scientific computing. The rapid 

evolution in hardware is making it increasingly important, and it is likely to remain so for 

the foreseeable future. Traditional approaches to development that mix the definition of the 

scientific problem to solve with algorithmic details of how to solve it are very difficult to 

maintain and support across a wide range of hardware architectures.

Introducing an abstraction layer results in a clean separation between the hardware specific 

and hardware independent aspects of the program. As hardware changes, new versions of 

the computational kernels can be written and distributed as plugins. Any program that uses 

the public interface will then work on the new hardware and make optimal use of it with no 

need for modification of any sort.

To be successful, any such abstraction layer will necessarily be domain specific, and the 

design must be based on a thorough understanding of the problem domain. On the one hand, 

it must give users full control over all aspects of the calculation that are scientifically 

relevant. On the other hand, it must hide as many details as possible, so those details can be 

optimized automatically for specific hardware. In the case of OpenMM, this means giving 

users complete freedom to choose the mathematical form of the forces acting on their 

system, while not exposing any details of how those forces are to be calculated. By doing so, 

it can simultaneously satisfy three goals that often conflict with each other: enabling rapid 

development of applications, allowing a high level of flexibility, and providing very high 

performance on a variety of hardware platforms.
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Figure 1. 
The architecture of OpenMM.
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Figure 2. 
Atoms are divided into blocks of 32, which divides the full set of N2 interactions into (N/

32)2 tiles, each containing 322 interactions. Tiles below the diagonal do not need to be 

calculated, since they can be determined from symmetry.
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