
OpenMM: A Hardware Independent Framework for Molecular
Simulations

Peter Eastman1 and Vijay S. Pande2

1Department of Bioengineering, Stanford University, Stanford, CA 94305

2Department of Chemistry, Stanford University, Stanford, CA 94305

Abstract

The wide diversity of computer architectures today requires a new approach to software

development. OpenMM is a framework for molecular mechanics simulations, allowing a single

program to run efficiently on a variety of hardware platforms.

Keywords

Molecular Simulation; Graphics Processing Unit; Abstraction Layer

Introduction

Computer architectures today are in a period of rapid advancement and diversification. A

decade ago, most programs were run on conventional, single core processors capable of

executing one thread at a time. In the last ten years, those simple CPUs have been replaced

by an array of multi-core CPUs,1 dedicated accelerators such as the Cell Broadband

Engine,2 and so-called Graphics Processing Units that are actually capable of powerful,

general purpose computation.3 This trend is likely to continue in the future. It is difficult to

predict what architectures will be available as little as five years from now, or what

programming models will be best suited to exploiting them.

This creates a dilemma for all programmers, but especially for those in science and

engineering. On the one hand, their computing needs are often extreme, involving

simulations or other types of calculations that can only be run on enormous supercomputing

clusters. On the other hand, their resources for developing software are usually quite limited.

Writing and optimizing all the necessary software for a single architecture is a challenge.

Repeating the task for several widely differing architectures is completely out of the

question.

In some ways, this situation is analogous to the early days of the computer industry when

programs were written in each computer’s native machine language. Different processors

had different instruction sets, so porting a program to a new computer required completely

rewriting it. Compilers solved this problem by introducing an abstraction layer between the

programmer and the hardware: programs could be written in terms of higher level

instructions, and those could automatically be transformed into the machine language of any

processor desired.

HHS Public Access
Author manuscript
Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Comput Sci Eng. 2015 July 1; 12(4): 34–39. doi:10.1109/MCSE.2010.27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This scheme works well as long as the processors involved are all fundamentally similar in

their capabilities and operating models. When the processors differ too much, it ceases to

work. For example, it is unreasonable to expect a single piece of source code to be compiled

efficiently for both a single core CPU and a massively parallel GPU. These architectures

require fundamentally different algorithms to perform the same calculation efficiently, and

that is beyond the scope of any existing compiler.

What is really required is another abstraction layer to isolate the programmer from the

hardware their code is running on; not just its instruction set, but its fundamental

capabilities. One should be able to express the problem to solve using high level concepts

appropriate to the problem at hand without needing to specify what particular algorithms to

use. The abstraction layer should then automatically select an implementation of those

concepts most appropriate to the currently available hardware. This approach has been used

successfully in a number of cases, two of the most prominent examples being LAPACK4 for

linear algebra and OpenGL5 for 3D graphics.

The Design of OpenMM

To address this goal within the specific domain of molecular simulation, we have developed

OpenMM, a library for performing molecular mechanics on high performance computing

architectures.6 It allows programmers to write their programs using a high level, hardware

independent API. Those programs can then run without modification on any hardware that

supports the API. In principle, that could be anything from a single CPU core at the low end,

up to a large supercomputing cluster with multiple CPU cores and GPUs on each node.

To be successful, any abstraction layer of this sort must satisfy three basic requirements:

1. It must allow users to express their problem at an appropriate level of detail.

2. It must permit efficient implementations on all targeted hardware platforms.

3. It must incorporate modularity and extensibility as fundamental aspects of the API.

Let us consider each of these requirements in detail, and see how they are implemented in

OpenMM.

Level of Abstraction

In any interface, it is critical to choose the right level of abstraction. The goal is to identify

which aspects of the problem should be determined by the user, and which should be left to

the library to determine. Too high a level of abstraction will make the library useless: there

are certain aspects of the problem description that the user genuinely cares about, and if the

interface does not allow them to precisely describe those aspects, they cannot use it. On the

other hand, too low a level of abstraction restricts the library’s ability to implement the

problem efficiently on a variety of hardware. If the user is required to specify

implementation details that are not actually important to them, such as specific algorithms

for performing calculations, there is no longer an option to automatically pick a different

algorithm better suited to the available hardware.

Eastman and Pande Page 2

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In molecular mechanics, the user typically wants to describe the problem to solve in terms of

potential functions, constraints, time integrations, temperature coupling methods, etc. They

should be able to specify those without having to describe, for example, what method to use

for evaluating the potential function. To express it in a slightly different way, the user cares

about equations, not algorithms. An ideal interface should allow the user to specify the

mathematical system they want to model, while leaving the library free to numerically

evaluate that system in an appropriate way.

Permitting Efficient Implementation

Even if the interface does not explicitly define how the calculations are to be implemented,

it can easily restrict the range of implementations that are practical. Great care is needed to

ensure that no feature of the API will unnecessarily restrict the hardware platforms it can be

used on.

An example of this from OpenMM is in the mechanism for accessing state information. A

molecular mechanics simulation involves various data about the current state of the system

being simulated: the positions and velocities of atoms, the forces acting on them, etc.

Traditionally, simulation codes have represented these values as arrays in memory. When a

program needs to examine the position of an atom, for example, it simply looks at the

appropriate array element. To a developer accustomed to using such a code, a natural and

obvious API for accessing atom positions would be a routine that takes an atom index and

returns “the current position of that atom”.

Unfortunately, that API would be impossible to implement efficiently on many

architectures. When doing calculations on a GPU, for example, the atom positions are stored

in device memory, and transferring them to host memory is a relatively expensive operation.

The problem is even worse for a cluster, where atom positions are distributed between many

different computers across a network. Any program that assumes it has fast, random access

to atom positions at all times is guaranteed to run very slowly on these systems.

OpenMM addresses this by explicitly not giving direct access to state data. Instead, the user

invokes a routine to create a State object, specifying in advance all information that should

be stored in that object. This has two advantages. First, because OpenMM knows in advance

the full set of information the user is going to request, it can efficiently collect that

information with a few bulk operations. Second, the user is aware they are performing an

expensive operation, and therefore will give careful thought to when and how they access

state data. They are not misled by seemingly trivial API calls (e.g. “get the position of atom

5”) that actually are expensive.

Modularity and Extensibility

If a library of this sort is to be successful, it must incorporate the division between interface

and implementation as a fundamental aspect of its design. The author of a program should

not need to specify what implementation to use. When the program is run, it should

automatically select whatever implementation is most appropriate to the available hardware.

At the same time, it should also allow the program to query the available implementations

Eastman and Pande Page 3

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and manually select which one to use. For example, the user of a program might sometimes

want to perform calculations on the main CPU and other times on a GPU.

Equally important is extensibility. As new hardware becomes available, new

implementations will be necessary. It is impossible to enumerate all possible

implementations, and the interface must not attempt to do so. It must be designed to be

extensible, so new implementations can be written independently of the main library and

existing programs can use them without modification.

OpenMM accomplishes this by means of a plugin architecture. Each implementation (or

“Platform”) is distributed as a dynamic library and installed simply by placing it in a

particular directory. At runtime, all libraries in that directory are loaded and made available

to the program.

It also provides extensibility of a different sort: plugins are able not only to implement new

Platforms, but also to add new features to existing Platforms. It is important to understand

that OpenMM is not merely a library for performing certain calculations; it is an

architectural framework designed to unify an entire problem domain. While the library

comes with particular features built in (e.g. particular potential functions and integration

methods), it also permits other features to be added by plugins. The goal is to provide a

framework within which nearly any molecular mechanics calculation can be implemented.

Architecture

We now consider how to create an architecture that meets these goals. OpenMM is based on

a layered architecture, as shown in Figure 1. At the highest level is the public API, which

developers program against when using OpenMM in their own applications. In any such

library, the public API must express concepts in terms relevant to the problem domain (e.g.

molecular mechanics) without reference to how those concepts are implemented. In the case

of OpenMM, those concepts are particles, forces, time integration methods, etc. For

example, a Force object specifies the mathematical form of an interaction between particles,

but does not dictate a particular algorithm for computing it.

The public API is implemented through calls to a lower level API that serves as an interface

between the platform-independent problem description and platform-dependent

computational kernels. OpenMM represents this low level API as a set of abstract C++

classes, each defining a particular computation to be done. Note the very different roles

played by these two interfaces: the public API is implemented by the core OpenMM library

and is invoked by users; the low level API is implemented by plugins and is invoked by the

core OpenMM library.

At the lowest level of the architecture are the actual implementations of the computational

kernels. These may be written in any language and use any technology appropriate for the

hardware they execute on. For example, they might use a technology such as CUDA or

OpenCL to implement GPU calculations, Pthreads or OpenMP to implement parallel CPU

calculations, MPI to distribute work across nodes in a cluster, etc.

Eastman and Pande Page 4

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This leaves the critical task of selecting and invoking an implementation of the low level

API. In the case of OpenMM, this means instantiating a concrete subclass of the abstract

class defining each kernel. This task is coordinated by a Platform object, which acts as a

factory for computational kernels. Each class of the public API queries the Platform to get a

concrete instance of each kernel it requires, then uses that instance to perform its

calculations. The choice of what implementation to use thus consists entirely of choosing

which Platform to use. A program may also elect not to specify a Platform, in which case

one is chosen automatically based on the available hardware.

Actually, the arrangement is slightly more complicated. A Platform does not create kernels

directly, but instead delegates the task to one or more KernelFactory objects. That is how a

plugin can add new features to an existing Platform: it defines a computational kernel,

creates a KernelFactory that can create instances of the kernel, and adds the factory to the

Platform. When the Platform is later asked to create an instance of that kernel, it uses the

new KernelFactory to do so.

How This Architecture Works in Practice

We now consider a concrete example of how this architecture works in practice: the

computation of nonbonded interactions between atoms in a molecular system. This accounts

for the bulk of the processing time in most simulations, so it is very important that it be well

optimized.

In conventional codes designed to run on CPUs, there are well established techniques for

doing this efficiently.7 One begins by building a neighbor list that explicitly enumerates

every pair of atoms that are close enough to interact with each other. By using voxel based

methods, this can be done in O(N) time. One then loops over all atom pairs in the neighbor

list and computes the interaction between them. OpenMM’s reference Platform, which is

written to run on a single CPU thread, works in exactly this way.

Unfortunately, neighbor lists are very inefficient on a GPU due to the need for indirect

memory access. For each neighbor list entry, one must load information about the two atoms

involved (position, charge, etc.). The indices of the atoms processed by successive threads

need not follow any pattern, so the memory access cannot be coalesced.

We therefore have developed an alternate method better suited to running on a GPU.8 We

divide the full set of atoms into blocks of 32. The set of N2 interactions then divides into

(N/32)2 tiles as shown in Figure 2, each involving the interactions between two blocks of

atoms. To process a tile, we load the data for the 64 atoms involved into shared memory,

compute all 1024 interactions between them, and finally write out the resulting forces and

energies to global memory. In place of a conventional neighbor list, we use a list of which

tiles contain interactions: effectively, a neighbor list specifying which blocks of 32 atoms

interact. Other researchers have also developed algorithms for computing nonbonded

interactions on GPUs.9–11

Our method was designed for use on Nvidia GPUs, and the size of each block (32 atoms)

was chosen to match the SIMD width of those processors. Adapting it to other types of

Eastman and Pande Page 5

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

processors, even other GPUs, requires modifications to the algorithm. For example, some

AMD GPUs have a SIMD width of 64, so threads must be distributed between tiles in a

different way to obtain maximum efficiency.

We therefore need several fundamentally different algorithms to efficiently implement the

same calculation on different hardware. Significantly, however, the choice of algorithm

depends only on the hardware, not on the precise form of the force being calculated. Many

different mathematical forms are used to represent nonbonded interactions in molecular

simulations, differing in how they model van der Waals interactions, smoothing of cutoffs,

solvent screening effects, etc. These are important differences that scientists genuinely care

about when running simulations. Ideally, programmers should be able to choose the

functional forms of the interactions and still have them calculated using the most efficient

algorithm for the available hardware. The user should specify the equations to use, and the

library should determine how best to evaluate those equations.

OpenMM accomplishes this goal through its CustomNonbondedForce class. This class

allows the user to specify an arbitrary mathematical function for the pairwise energy

between atoms. That function may depend on an arbitrary set of atomic parameters and

tabulated functions, as well as a variety of standard mathematical functions. For example,

the following lines of code create a CustomNonbondedForce to calculate a Lennard-Jones

12-6 interaction:

CustomNonbondedForce nb("4*epsilon*((sigma/r)^12-(sigma/r)^6);"

 "sigma=0.5*(sigma1*sigma2); epsilon=sqrt(epsilon1*epsilon2)");

nb.addPerParticleParameter("sigma");

nb.addPerParticleParameter("epsilon");

The first line specifies the energy of the interaction as a function of the distance r:

where the parameters from two interacting atoms are merged using Lorentz-Bertelot

combining rules: the arithmetic mean of the sigmas and the geometric mean of the epsilons.

The next two lines specify that the parameters “sigma” and “epsilon” should be associated

with each atom.

OpenMM now has the task of implementing this efficiently on a variety of hardware

platforms. It begins by parsing the user-specified expressions and analytically differentiating

the energy to determine an expression for the force. Each expression is then converted to a

sequence of instructions. To evaluate an expression, the reference and CUDA

implementations loop over the instructions and perform each one, effectively acting as an

interpreter for an internal language.

For the OpenCL based implementation, a better solution is possible. Because OpenCL

allows programs to be compiled from source code at run time,12 it is possible to synthesize a

Eastman and Pande Page 6

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

kernel with the user-defined mathematical expression inserted into the appropriate

hardware-specific algorithm. That kernel is then compiled down to the device’s machine

code, eliminating the cost of interpreting the expression and yielding nearly as fast

performance as if the entire kernel had been written by hand.

We stress that this approach allows for a great deal of flexibility in our code, permitting the

powerful combination of rapid development (i.e. one can change the key underlying

equations for interactions between particles easily) and yet still retaining rapid execution

(since the underlying optimizations, especially with OpenCL, allows for minimal overhead).

This opens the door to new uses of our code, especially in terms of the rapid development of

novel methods for simulating particle interactions, such as novel implicit solvent models for

molecular simulation.

Features and Performance

We have implemented Force classes corresponding to all the most widely used energy terms

in molecular simulations: a variety of bonded forces, Lennard-Jones and Coulomb forces for

nonbonded interactions, Ewald summation and Particle Mesh Ewald for long range

Coulomb forces, and a Generalized Born implicit solvent model. OpenMM also includes

several methods of time integration and the ability to enforce distance constraints. These

features are implemented in three different Platforms: a reference Platform written in C++, a

CUDA based Platform for Nvidia GPUs, and an OpenCL based Platform for a variety of

GPUs and CPUs.

We have previously published benchmarks for the CUDA implementation when simulating

a variety of proteins.6, 8 Speeds range from 5 ns/day when simulating a 318 residue protein

in explicit solvent (73,886 atoms total) up to 576 ns/day when simulating a 33 residue

protein in implicit solvent (544 atoms total). We also compared it to the single CPU core

performance of several widely used molecular dynamics packages when simulating an 80

residue protein in explicit solvent. It was found to be 6.4 times faster than Gromacs, 28

times faster than NAMD, and 59 times faster than AMBER. (GPU calculations were run on

an Nvidia GTX280, and CPU calculations were run on a 3.0 GHz Intel Core 2 Duo.)

The newest feature of OpenMM is custom forces that let the user specify an arbitrary

algebraic expression for the form of their force. In addition to the CustomNonbondedForce

described above, there is also a CustomBondForce for bonded interactions,

CustomExternalForce for forces applied independently to each atom, and CustomGBForce

which supports a wide range of implicit solvent models. These are most useful with the

OpenCL platform, since it allows them to be used with very little performance penalty. In

preliminary testing, we have found that Coulomb and Lennard-Jones forces implemented

with CustomNonbondedForce are only about 4% slower than the standard, hand coded

implementations. This means that a scientist with no GPU programming experience can still

implement arbitrary functional forms for their nonbonded interactions, and get nearly as

good performance as hand tuned GPU code.

Eastman and Pande Page 7

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Conclusions

Rapid, ongoing changes to computer architecture require a new approach to software

development. Fundamentally different algorithms are required to perform the same

calculation on a multi-core CPU, a GPU, a Cell processor, and a CPU cluster. The

processors available five years from now will likely require still different algorithms to get

optimal performance. A program written specifically for one architecture will quickly

become out of date and be difficult to adapt to new hardware.

This problem can be solved by introducing a domain specific abstraction layer. Although

this idea is not new, it has not been widely applied in scientific computing. The rapid

evolution in hardware is making it increasingly important, and it is likely to remain so for

the foreseeable future. Traditional approaches to development that mix the definition of the

scientific problem to solve with algorithmic details of how to solve it are very difficult to

maintain and support across a wide range of hardware architectures.

Introducing an abstraction layer results in a clean separation between the hardware specific

and hardware independent aspects of the program. As hardware changes, new versions of

the computational kernels can be written and distributed as plugins. Any program that uses

the public interface will then work on the new hardware and make optimal use of it with no

need for modification of any sort.

To be successful, any such abstraction layer will necessarily be domain specific, and the

design must be based on a thorough understanding of the problem domain. On the one hand,

it must give users full control over all aspects of the calculation that are scientifically

relevant. On the other hand, it must hide as many details as possible, so those details can be

optimized automatically for specific hardware. In the case of OpenMM, this means giving

users complete freedom to choose the mathematical form of the forces acting on their

system, while not exposing any details of how those forces are to be calculated. By doing so,

it can simultaneously satisfy three goals that often conflict with each other: enabling rapid

development of applications, allowing a high level of flexibility, and providing very high

performance on a variety of hardware platforms.

Acknowledgements

The development of OpenMM was supported by Simbios via the NIH Roadmap for Medical Research Grant U54
GM072970. It is available at http://simtk.org/home/openmm.

References

1. Intel Intel Xeon Processor 5000 Sequence. http://www.intel.com/p/en_US/products/server/
processor/xeon5000.

2. Kahle JA, Day MN, Hofstee HP, Johns CR, Maeurer TR, Shippy D. Introduction to the Cell
Multiprocessor. IBM Journal of Research and Development. 2005; 49:589–604.

3. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell TJ. A Survey of
General-Purpose Computation on Graphics Hardware. Computer Graphics Forum. 2007; 26:80–
113.

Eastman and Pande Page 8

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://simtk.org/home/openmm
http://www.intel.com/p/en_US/products/server/processor/xeon5000
http://www.intel.com/p/en_US/products/server/processor/xeon5000

4. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.;
Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D. LAPACK Users' Guide. Third ed..
Philadelphia, PA: Society for Industrial and Applied Mathematics; 1999.

5. Segal M, Akeley K. The OpenGL Graphics System: A Specification. 1992

6. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, LeGrand S, Beberg AL, Ensign DL, Bruns
CM, Pande VS. Accelerating molecular dynamic simulation on graphics processing units. J. Comp.
Chem. 2009; 30:864–872. [PubMed: 19191337]

7. Allen, MP.; Tildesley, DJ. Computer Simulation of Liquids. Oxford: Clarendon Press; 1987.

8. Eastman P, Pande VS. Efficient Nonbonded Interactions for Molecular Dynamics on a Graphics
Processing Unit. J. Comp. Chem. In press.

9. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating molecular
modeling applications with graphics processors. J. Comp. Chem. 2007; 28:2618–2640. [PubMed:
17894371]

10. Anderson JA, Lorenz CD, Travesset A. General Purpose Molecular Dynamics Simulations Fully
Implemented on Graphics Processing Units. J. Comp. Phys. 2008; 227:5342–5359.

11. van Meel JA, Arnold A, Frenkel D, Portegies Zwart SF, Belleman RG. Harvesting graphics power
for MD simulations. Molecular Simulation. 2008; 34:259–266.

12. Aaftab M. The OpenCL Specification 1.0. In Khronos Group. 2008

Biographies

Peter Eastman, Clark Center, Stanford University, Stanford, CA 94305,

peastmanstanford.edu

Peter Eastman is a software engineer in the Bioengineering Department at Stanford

University. His work focuses on the physical simulation of biological systems, particularly

the development of novel algorithms for high performance computing architectures. He has

a Ph.D. in Applied Physics from Stanford University.

Vijay Pande, Clark Center, Stanford University, Stanford, CA 94305, pandestanford.edu

Prof. Pande is currently an Associate Professor of Chemistry and (by courtesy) of Structural

Biology and of Computer Science at Stanford University. Prof. Pande received a BA in

Physics from Princeton University in 1992 and PhD in physics from MIT in 1995. Prof.

Pande’s current research centers on the development and application of novel grid

computing simulation techniques to address problems in chemical biology. In particular, he

has pioneered novel distributed computing methodology to break fundamental barriers in the

simulation of kinetics and thermodynamics of proteins and nucleic acids.

Eastman and Pande Page 9

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
The architecture of OpenMM.

Eastman and Pande Page 10

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Atoms are divided into blocks of 32, which divides the full set of N2 interactions into (N/

32)2 tiles, each containing 322 interactions. Tiles below the diagonal do not need to be

calculated, since they can be determined from symmetry.

Eastman and Pande Page 11

Comput Sci Eng. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

