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1. Introduction

Abstract MicroRNAs (miRNAs) are a family of single-stranded RNA molecules about 22 nt in
length, which can regulate protein-coding gene expression in various organisms by post-transcrip-
tional repression of messenger. In this research, the potential miRNAs and their target genes were
analyzed and predicted by computational methods from the EST and GSS databases of eleven fish
species, 43 potential miRNAs were identified, they belong to 38 miRNA families, some miRNAs are
highly conserved in animal kingdom, the predicted target genes are involved in development, signal
transduction, response to environmental stress and pathogen invasion. Taken together, our data
suggest that there are a plentiful of miRNAs in these eleven fish species, these miRNAs may play
some important roles by regulating their target genes, and the data provide important information
for further functional studies.

© 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. Thisis an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

generated from the stem portion of single stranded stem-loop
precursors (pre-miRNAs), which is processed by ribonuclease

MicroRNAs (miRNAs) are a class of endogenous, evolution-
ary conserved, single strand non-coding RNAs with approxi-
mately 22 nucleotides (nts), which involved in the regulation
of gene expression by translational repression and mRNA
destabilization (Ambros, 2004; Ambros and Chen, 2007;
Kloosterman and Plasterk, 2006). Mature miRNAs are
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[11-like enzyme from primary miRNA (pri-miRNA) transcript.
Pre-miRNAs are exported into the cytoplasm where cleavage of
the loop by the RNase Dicer generates a duplex of two about 22
nt long mature miRNA (miRNA and miRNA-star) duplex.
And then mature miRNAs are incorporated into the RNA-
induced silencing complex (RISC) and guide RISC to comple-
mentary miRNA targets. Finally, the RISC inhibits translation
elongation or triggers the degradation of target mRNAs
(Bartel, 2005; Kim et al., 2009; Liu et al., 2008; Mallanna and
Rizzino, 2010). Due to miRNAs playing various regulatory
roles in gene regulation, several studies have indicated that they
take part in a wide variety of biological processes including
organ development, cell proliferation and death, apoptosis
and fat metabolism, cell differentiation, signal transduction,
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fat metabolism and adaptive immune responses as well as dis-
eases (Bartel, 2004; Belver et al., 2010; Ladomery et al., 2011;
Rogers and Chen, 2013; Sun and Lai, 2013).

Most of the known miRNAs are highly evolutionarily con-
served from species to species, ranging from insects to humans
in animal kingdom (Daido et al., 2014; Maher et al., 2006; Niwa
and Slack, 2007; Takane et al., 2010; Tanzer and Stadler, 2004).
Conservation among species became one of the most important
properties of miRNAs. So, this feature will facilitate us to per-
form the computational search for miRNAs based on the highly
conserved sequence in the mature miRNAs and long hairpin
structures in miRNA precursors (Mishra and Lobiyal, 2011;
Ren et al., 2012; Saetrom et al., 2006). There are several signif-
icant advantages of identifying miRNAs, because it is accurate,
fast, and inexpensive compared to the experimental method.
For this reason, computational approaches provide an ideal
way for identifying miRNAs in animals by using expressed
sequence tags (EST) and genome survey sequence (GSS) dat-
abases, especially in organisms in which genome sequences are
not available. Using this method, a large number of miRNAs
have been successfully identified in some plant and animal spe-
cies (Akter et al., 2014; Barozai, 2012b; Dong et al., 2012; Luo
and Zhang, 2009; Paul and Chakraborty, 2013; van der Burgt
et al., 2009; Yousef et al., 2009).

To date, over 28,645 miRNA genes have been deposited in
the public database, miRBase (Release 21, 2014, http://
www.mirbase.org); however, only 1637 miRNAs are in the
database, they are just a small portion of the miRNAs
described. Till now, little is known about experimental or com-
putational identification of miRNAs in the eleven fish species.
In this research, we carried out computational prediction to
identify miRNAs in these eleven fish species. The study will
make a substantial supplement to the known miRNA in fish
species and it also provides a foundation for further research
on miRNAs.

2. Materials and methods

2.1. Availability of databases

To search for potentially conserved miRNAs in the eleven fish
species miRNAs, a total of 6.893 previously known animal
miRNAs were retrieved from miRBase and defined as a refer-
ence set of miRNA sequences. To avoid the redundant or over-
lapping miRNAs, the repeated sequences of miRNAs within
the above animal species were removed and the remaining
sequences were used as query sequences for BLAST search.
The ESTs and GSSs sequences from the 11 studied species
were downloaded from the GenBank nucleotide databases of
National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/). There are 187 GSSs from
Mylopharyngodon piceus (mpi); 3.968 GSSs and 20.122 ESTs
from Ctenopharyngodon idellus (cid); 2.272 GSSs from
Hypophthalmichthys molitrix (hmo); 1.367 GSSs from Aristichthys
nobilis (ano); 5.006 GSSs and 4.200 from Pseudosciaena crocea
(per); 98.880 GSSs and 10.128 ESTs from Cynoglossus semilaevis
(cse); 425 GSSs from Channa argus (car); 1.266 GSSs and 5.361
ESTs from Siniperca chuatsi (sch); 248 GSSs and 3.385
ESTs from Acipenser sinensis (asi); 676 GSSs and 937 ESTs from
Monopterus albus (mal); 850 GSSs from Pelteobagrus fulvidraco
(pfu), respectively.

2.2. Computational identification of the conversed miRNAs

The alignment tool BLAST version 2.2.27 was used to identify
the potentially conserved miRNAs and was downloaded from
the NCBI website. BLASTN parameters were set as follows:
an expect value cut-off of 10; the window size 7; a low-complex-
ity sequence filter; number of descriptions and alignments was
1000. All BLAST results were saved and used for further anal-
ysis. Procedure of search for potential miRNAs in the 11 fish
species is shown in Fig. 1. The following five criteria were raised
to identify the potential miRNAs: (1) mature miRNAs were
allowed to have only 0-4 nucleotide mismatches in sequence
with all previously known animal mature miRNAs; (2) the
potential pre-miRNA could be folded into a typical stem-loop
hairpin secondary structure, such that one arm of the hairpin
contains the ~22 nt mature miRNA sequence; (3) there are no
loops in the miRNA/miRNA star duplex; (4) the predicted sec-
ondary structure of the miRNA pre cursor should have lower
minimal free energy (MFE) and minimal free energy index
(MFEI) than other types of RNA; (5) the predicted pre-miR-
NAs should have an A + U content of 30-80% by SVM (sup-
port vector machine) (Ding et al., 2010; Wu et al., 2011; Xu
et al., 2008). If one sequence met these criteria, we considered
it as a miRNA. Finally, some possible false sequences of pre-
miRNAs should be deleted by manual inspection.

2.3. Phylogenetic analysis of the identified miRNAs

Because most of animal mature miRNAs and their precursor
sequences are derived from the same gene families, they are
strongly conserved and have high sequence identity, even
between distantly related species. The mature and precursor
sequences of the identified 11 fish species miRNAs were
aligned and phylogenetically analyzed with the MEGAS.0 soft-
ware (Tamura et al., 2011). Evolutionary distances were calcu-
lated by the neighbor-joining (NJ) method following 1000
bootstrapped replicates.

2.4. Target prediction for identified miRNAs

The mRNA database of the 11 fish species downloaded from
NCBI database (http://www.ncbi.nlm.nih.gov/sites/
entrez?db =unigene) and their 3’-UTR sequences which >20
nt in length were extracted and used for target prediction.
Potential targets of the predicted miRNAs were identified
using RNAhybrid program (Rehmsmeier et al., 2004). The
parameters employed are described as follows: (1) P-value cut-
off of 0.05, target duplex free energy AG < —24 kcal/mol; (2)
no mismatches in the seed region (5 region of mature miRNA,
from second to eighth nt position); (3) only one G:U pairing in
the seed region; (4) the miRNA sequences and potential
mRNAs targets were no more than four gaps at positions 9—
21 from miRNA 5 end. Subsequently, miRNA-target duplexes
were checked manually.

3. Results and discussion

3.1. Identification of putative miRNAs from 11 fish species

In the present study, a strategy based on homology searching
and secondary structure evaluation was employed to screen for
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Figure 1

potential miRNAs in 11 fish species. After the redundant
sequences of the same genes were removed, and then the pro-
tein-coding sequences were also removed, a total of 43 poten-
tial miRNAs were identified. The 43 identified potential
miRNAs represent 38 miRNA families in these 11 fish species.
Among the 43 predicted miRNAs, 16 miRNAs were identified
from the ESTs and 26 miRNAs from the GSSs. Among these,
four miRNAs were identified in mpi, five miRNAs were
identified in cid, two miRNAs were identified in /mo, three
miRNAs were identified in ano, four miRNAs were identified
in pfu, five miRNAs were identified in mal, one miRNA were
identified in sch, two miRNAs were identified in car, five miR-
NAs were identified in cse, eight miRNAs were identified in
per, and the rest four miRNAs were identified in asi, respec-
tively (Table 1).

All of the precursors for those mature miRNAs fold into
the typical secondary structure of miRNAs and they are pos-
tulated to be important validation parameters for the miRNA
genes predicted (Fig. 1S). The length of the precursors vary
from 64 nt to 188 nt with an average of 108 nt. Mature miRNA
sequences have been reported to be evenly located on the two
arms of the stem-loop hairpin structures of potential pre-miR-
NAs (Gorodkin et al., 2006). These 43 identified fish species
miRNAs also have a similar situation, of which 24 (55.81%)
were found to be located on the 5'-arms of the stem-loop hair-
pin structures, while the other 19 (44.19%) were located on the
3’-arms (Table 1 and Fig. 1S). The A + U contents of these
predicted fish species pre-miRNA sequences ranged from
30.53% to 76.37%, with an average of 52.90%, which closely
matched the results of previous studies (Ambros et al., 2003;
Keshavan et al., 2010; Neutelings et al., 2012).

Procedure for prediction of the potential miRNAs from 11 fish species.

MFE values are important for evaluating the stability of
RNA secondary structures. In general, the lower the MFE,
the more stable the secondary structure of an RNA sequence.
The MFE values of the identified 11 fish species miRNA pre-
cursors varied broadly from —77.90 kcal/mol to —12.80 kcal/
mol, with an average of —35.07 kcal/mol. The MFEI of each
potential miRNA precursor was calculated for the precise dis-
crimination of the miRNA from other types of small RNAs.
Since other RNAs such as mRNA, rRNA, tRNA may also
form similar hairpin structures, we used the minimal fold
energy index (MFEI) to distinguish other RNAs or RNA frag-
ments. In the present prediction, the newly identified pre-miR-
NAs from 11 fish species have MFEI values ranging from 0.58
to 0.91, with an average of about 0.71 (Table 1). These values
were significantly higher compared to those reported for
tRNAs (0.64), rRNAs (0.59), and mRNAs (0.62-0.66), indi-
cating that newly predicted potential fish species miRNAs
are probably true miRNAs than any other type of RNA
molecules.

3.2. Phylogenetic analysis of the identified miRN As

Mature miRNA sequences, along with their corresponding
precursor sequences, are highly conserved among distantly
related animal species (Chen et al., 2012; Lee et al., 2007). This
phenomenon provides opportunities for the investigation of
evolutionary relationships of miRNAs belonging to the same
families in different animal species. In this study, a comparison
of the precursor sequences of the predicted two miRNAs fam-
ilies (miR-147 and miR-203) with other members in the same
family showed that most members could be found to have a



Table 1 43 newly identified miRNAs in 11 fish species.

miRNAs name Source miRNA homologous  Gene source Predicted mature sequence (5'-3") Loc Strand LP(nt) A+ U (%) MFE MFEI
mpi-miR-3245 bmo-miR-3245 DQ026435(GSS) UAGUCACUUGGGAGAGGCUAAUC 3 Minus 130 58.46 —33.80 0.63
mpi-miR-4054 cin-mir-4054 AY704462(GSS) UAUCAUUGAUGUCCUAUGGC 5 Minus 64 65.62 —12.80  0.58
mpi-miR-6835-3p  hsa-miR-6835-3p GQ406278(GSS) GUUGAACCUUUUCUGUCUCCCAU 3 Minus 117 65.81 -29.80 0.73
mpi-miR-222 hsa-miR-222-5p GU217957(GSS) UUCAGUAGCCAGUGUACUCUAC 3 Plus 132 52.27 —39.80  0.65
cid-miR-2437 bta-miR-2437 GT223130(EST) UGUGGUUUUUUGUUUUCGUAU 5 Minus 113 61.94 —25.70  0.62
cid-miR-5192 hsa-miR-5192 GT224283(EST) GGAGAGUGGAUUCCAGAUAUC 5 Minus 93 54.83 —26.90 0.64
cid-miR-3198 hsa-miR-3198 GT223053(EST) UUGGAUUCCUGGGGAAUGGAGA 5 Plus 82 43.90 —31.40 0.61
cid-miR-223 bta-miR-223 GR942893(EST) UGUCAGUUUGUCAAAUACCCCA 5 Plus 77 46.75 —25.80  0.63
cid-miR-1814b bta-miR-1814b GR946702(EST) GGUUUGUUUAGUUUUGUUUG 3 Plus 107 72.89 —23.70  0.82
hmo-miR-2192 dre-miR-2192 JX499811(GSS) AAAGUGAAAGGUGACUGAGGC 3 Minus 79 55.69 —28.40  0.67
hmo-miR-2293 bta-miR-2293 DQ136011(GSS) UGACUUUUGUUGUUUUGUAU 5 Plus 143 69.93 —34.10  0.79
ano-miR-2800 bmo-miR-2800 HMO012521(GSS) AGAAUAUUGUGUCUUGCAAGCCA 5 Minus 134 64.17 —31.90 0.68
ano-miR-2293 bta-miR-2293 DQ136011(GSS) GACUUUUGUUGUUUUGUAUG 5 Plus 143 60.13 -36.10  0.63
ano-miR-1603 bta-miR-1603 KC191355(GSS) GGUGUUUGUUUUGUGUUUUU 5 Plus 96 66.66 —20.00  0.63
pfu-miR-29 cin-miR-29 DY450843(EST) ACCCUCUCCUUUUGGUUUGC 3 Minus 95 53.68 —26.80  0.78
pfu-miR-2304 bta-miR-2304 EU439604(GSS) AUGUGUGUGGUUGUGUGUGU 3 Minus 171 45.61 —57.60  0.62
pfu-miR-297 hsa-miR-297 FI851155(GSS) GUGUGUGUGUGCAUGUGCAUG 5 Plus 188 45.21 -77.90  0.77
pfu-miR-669 bta-miR-669 FJ851155(GSS) UGUGCGUGUGUGCAUGUGCGUG 5 Plus 147 46.25 -57.20 0.73
mal-miR-4040-3p  cin-miR-4040-3p GW584894(EST) CAACCAGAUCAGAAAGACCU 3 Plus 73 50.68 —21.00  0.58
mal-miR-4709 hsa-miR-4709 AY363652(GSS) AUGAAGAGGAGGUGCUCAUGUCA 5 Minus 103 46.60 —37.60  0.69
mal-miR-297 hsa-miR-297 DQ987572(GSS) AUGUAUGUGUGCAUGUGAAGG 5 Minus 142 48.59 —47.20  0.65
mal-miR-42 cel-miR-42 NC003192(GSS) AGUGGUGUUUGCUUUUUCUGCGGCU 3 Minus 166 52.40 —49.70  0.64
mal-miR-4194-3p  cin-miR-4194-3p DQ987581(GSS) AUAUAUAUAUGUGUGUGG 3 Minus 72 59.72 —16.70  0.58
sch-miR-2437 bta-miR-2437 EU659698(GSS) UCucuuUUUuUuUuUGUUUUCCUUU 5 Plus 104 56.73 —28.80  0.64
car-miR-4433b-3p  hsa-miR-4433b-3p KC823604(GSS) UAGGAGUGGGGGGUGGGCGGU 3 Minus 117 47.00 —39.60  0.65
car-miR-125b dre-miR-125b HQ404190(GSS) UCCCUGAGACCCUAACUUGUGA 5 Minus 82 46.34 -39.60 0.91
cse-miR-2191 dre-miR-2191 EU907211(GSS) UCACACCUACAAUCCCCCCCC 3 Plus 127 48.03 —43.60  0.67
cse-miR-2316 bta-miR-2316 EF683116(GSS) ACGUGGGCCUGGACUGCGGCGAG 5 Plus 141 37.17 —5490  0.63
cse-miR-203b-3p dre-miR-203b-3p GQ426771(GSS) GUGAAAUGUUCAGGACCACUGA 3 Plus 97 53.60 —38.40 0.86
cse-miR-190a-3p hsa-miR-190a-3p JQO003879(GSS) AUUUAUAUCAAACAUAUUCAU 3 Plus 127 76.37 —23.40 0.80
cse-miR-2444 bta-miR-2444 JQ003879(GSS) UUuUGUGUUGUUUUUUGUUUU 5 Minus 154 75.32 -30.30  0.79
per-miR-431-3p hsa-miR-431-3p GO651700(EST) CAGGUCGUCUUGCAGGGGAUCA 3 Minus 110 43.63 —38.10 0.62
per-miR-6837 hsa-miR-6837 GO652159(EST) UGCUCACUGUGACUCUGCUGGAA 5 Minus 89 43.80 -37.60  0.75
per-miR-147 bta-miR-147 CX348533(EST) GUGUGCGGAAAUGCUUCUGCUC 3 Plus 87 50.57 —34.50 0.81
per-miR-34 cel-miR-34 CX348881(EST) UGCUAGUGUGGUUAGCUGGUGA 3 Plus 69 40.57 -33.20 0.76
per-miR-4695-5p hsa-miR-4695-5p GO652832(EST) GAGGAUGAGGAGGAGGUGGAGG 5 Minus 81 44.44 -36.90 0.83
per-miR-2444 bta-miR-2444 CX348588(EST) UuuGUUUUGUUUUUUGUUUU 3 Minus 73 61.64 -21.90 0.79
per-miR-297 hsa-miR-297 CX348877(EST) GUGUGUGUGUGCAUGUGCAUU 3 Minus 85 48.23 -30.70  0.71
per-miR-2415 bta-miR-2415 ASJTX01000025(GSS) CCAGGCCUGCUGGACCGAAGC 5 Plus 94 30.53 —4520  0.69
asi-miR-965-5p bmo-miR-965-5p EV824426(EST) AGGGAGAAGCUAUAGCGAAAAUGU 5 Plus 125 56.80 —42.30  0.79
asi-miR-2304 bta-miR-2304 ES698401(EST) GUGUGUGUGGUUGUGUGUGU 5 Plus 65 47.69 —26.40  0.78
asi-miR-374a hsa-miR-374a KC984851(GSS) CUUAUCAGAUUGUAUGCAGUGU 5 Plus 77 57.14 —22.30  0.68
asi-miR-86 cel-miR-86 JN099311(GSS) GUGGGCUCAGAUUCGCCGGUUG 5 Minus 98 35.71 —47.10  0.75

Abbreviations: NM = number of mismatches; LP, Length of precursor; Loc = location; MFE, minimal folding free energy (kcal/mol); MFEI minimal folding free energy index. The shaded letters
indicate nucleotide mismatches.
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high degree of sequence similarity with others (Fig. 2). These
two miRNA precursor families were further considered for
phylogenetic analyses, respectively. The results revealed that
per-miR-147 and hhi-miR-147 were clustered into 1 group
indicating that these two families are possibly highly conserved
in marine fishes, and which have evolutionary relatedness

A
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(Fig. 3A). Similarly, the phylogenetic trees for the miR-203
family revealed that predicted miR-203b-3p grouped with the
closely related species miR-203b and miR-203b (Fig. 3B).

In addition, in these newly identified miRNAs, miR-2444
was found in two fish species, cse and pcr; miR-2293 was found
in hmo and ano; miR-297 was found in pfu, mal and pcr;

*k hhkkk kk
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Figure 2 Sequence alignment of pre-miRNAs in each miRNA family. Alignments of known animal miRNAs and their newly annotated
homologs are presented as follows: (A) miR147; (B) miR203. The names of the miRNAs identified in this study are underlined. Asterisks
indicate conserved region in mature sequences.
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Figure 3
(B) miR-203.

miR-2304 was found in pfu and asi, respectively; which are pre-
sumably considered to be evolutionarily conserved regulators
of gene expression. Our current findings indicate that the miR-
NAs from these lower vertebrates lineages were complex, and
more data are urgently required to better understand their
evolution.

3.3. Prediction of potential targets of identified miRN A

Target identification is essential for understanding the biologi-
cal functions of miRNAs. Using a combination of BLAST and
RNA-hybrid online software, a total of 42 putative target genes
were identified in eleven fish species, and these targets belong to
a variety of gene families that partake in various biological and
physiological functions (Table 2). Studies’ estimate has stated
that miRNAs have approximately 100 target sites within the
protein-coding genes (Brennecke et al., 2005). Additionally,
miRNAs are thought to target more than 30% of protein-cod-
ing genes in humans and this number is expected to rise as more
miRNAs are discovered (Lewis et al., 2005). So, some miRNAs,
more than one potential target gene were predicted in our
research. Among 43 identified miRNAs, nine failed to predict
their target genes, which are mpi-miR-6835-3p, cid-miR-5192,
pfu-miR-29, pfu-miR-2304, pfu-miR-297, mal-miR-4709,

ptr-mir-203
cfa-mir-203

mml-mir-203

ppy-mir-203

hsa-mir-203a
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mmu-mir-203
oha-mir-203

mdo-mir-203
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98
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0.05

Phylogenetic tree for the newly identified miRNA showing homology. Identified fish miRNA is shown in red box. (A) miR-147,;

car-miR-4433b-3p, pcr-miR-297 and asi-miR-2304. The
situation may result from these factors: (a) the lack of genomic
information in related fish species and their targets cannot be
predicted; (b) the target gene prediction program was struck
and probably some miRNA targets were missed.

These predicted targets are found to be involved in
immune-related, signaling, transcription factors, metabolism,
transportation, growth and development, responses to diseases
and environmental stresses and others proteins (Table 2). For
example, mpi-miR-4054 targets the zinc finger and BTB
domain containing 22 protein transcription factors, which
may play a role in gene regulation of fish growth and develop-
ment. Pcr-miR395 targets the ATP synthase, which may
involve in oxidative phosphorylation, oxidation-reduction/
redox reactions in fish organism. Several miRNAs can target
genes involved in signal transduction, especially hormone sig-
naling pathways. The growth hormone protein which are
thought to regulate transcription in response to auxin, contain
potential pcr-miR-4695-5p binding sites. In addition, some
targets of miRNAs are involved in metabolism, development,
responses to diseases and environmental stress, such as
cid-miR-2437 targets metallothionein, sch-miR-2437 targets
nucleocapsid protein, pfu-miR-669 targets ribosomal pro-
tein L15, mal-miR-4194-3p targets MHC class II antigen,
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Table 2 List of potential targets of our identified miRNAs in 11 fish species.

miRNA Targeted protein Target function Genes ID
mpi-miR-3245 Mitochondrial antiviral signaling protein Signal transduction 521311590
mpi-miR-4054 Zinc finger and BTB domain containing 22 protein Transcription factor 319429530

Glycosyltransferase Metabolism 319429441
mpi-miR-222 Beta-actin protein Development 31323261
cid-miR-2437 Metallothionein Metabolism 459463736
cid-miR-3198 Trypsinogen Development 241911727
cid-miR-223 Nonspecific cytotoxic cell receptor protein Transcription factor 327344086

Toll-like receptor 21 Signal transduction 506956260
cid-miR-1814b Cytosolic malate dehydrogenase Metabolism 186908741
hmo-miR-2192 Glucose phosphate isomerase Metabolism 337255732

Copper/zinc superoxide dismutase Metabolism 300087118
hmo-miR-2293 Lipoprotein lipase Metabolism 253317430

Putative interleukin-8 like protein Immunoregulation 205278402
ano-miR-2800 Glutathione reductase-like protein Metabolism 239950053
ano-miR-2293 Parvalbumin Metabolism 204324084
ano-miR-1603 Transmembrane protein 120B Signal transduction 226358576
pfu-miR-669 Ribosomal protein L15 Development 254908960
mal-miR-4040-3p Glutamate dehydrogenase Metabolism 371491860
mal-miR-297 Insulin-like growth factor 1 receptor Transcription factor 663440153
mal-miR-42 Na+ /K +-ATPase Signal transduction 540352503
mal-miR-4194-3p MHC class II antigen Immunoregulation 51256194
sch-miR-2437 Nucleocapsid protein Environmental stress response 4443086

RNA-dependent RNA polymerase Development 4443091
car-miR-125b NADH dehydrogenase Metabolism 10251172
cse-miR-2191 Interleukin enhancer binding factor 2 Transcription factor 103394462
cse-miR-2316 Transfer RNA glutamic acid Metabolism 103352779
cse-miR-203b-3p Interferon regulatory factor 1 Immunoregulation 103394766
cse-miR-190a-3p (Asp-Glu-Ala-Asp) box polypeptide Metabolism 103389588

IKAROS family zinc finger 1 Transcription factor 103387497
cse-miR-2444 Growth hormone receptor Transcription factor 103397680
per-miR-431-3p G-lysozyme Environmental stress response 150034872

Immunoglobulin IgL light chain precursor protein Immunoregulation 113197015
per-miR-6837 NADH dehydrogenase Metabolism 7095387
per-miR-147 ATP synthase Development 709538
per-miR-34 Tumor necrosis factor alpha protein Environmental stress response 121044680
per-miR-4695-5p Growth hormone Signal transduction 11231167
per-miR-2444 Proteasome activator Transcription factor 95105543

Interferon-inducible protein 56 Immunoregulation 164422176
per-miR-2415 Growth differentiation factor-8 Development 74099690
asi-miR-965-5p Cytochrome Metabolism 7804435
asi-miR-374a Nanosl Transcription factor 401709452
asi-miR-86 Neuroendocrine protein (7B2) Signal transduction 315506996

respectively. Similar findings were reported by many groups in
different animal species (Barozai, 2012a; Carrington and
Ambros, 2003; Gong et al., 2010; Jagadeeswaran et al.,
2010). Future experimental validation will determine how
many of these predicted targets are genuinely targeted by miR-
NAs in these eleven fish species.

4. Conclusions

In this report, a bioinformatics pipeline was applied to dis-
cover the existence of miRNAs in eleven fish species from
EST and GSS sequences, all miRNAs are not reported before.
By using the sequences of the known animal miRNAs, we
identified 43 new miRNAs with high confidence belonging to
38 miRNA families. A total of 42 potential targets are also
identified. These findings of miRNA will be helpful to under-
stand the gene regulation concept in these fish species.

Moreover, it shows an easy approach for the prediction and
analysis of miRNAs to those species whose genomes are not
available.
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