Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Sep 27;91(20):9651–9654. doi: 10.1073/pnas.91.20.9651

P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products.

L T Phung 1, G Ajlani 1, R Haselkorn 1
PMCID: PMC44871  PMID: 7937823

Abstract

DNA encoding a P-type ATPase was cloned from the cyanobacterium Synechococcus 7942. The cloned ctaA gene encodes a 790-amino acid polypeptide related to the CopA Cu(2+)-uptake ATPase of Enterococcus hirae, to other known P-type ATPases, and to the candidate gene products for the human diseases of copper metabolism, Menkes disease and Wilson disease. Disruption of the single chromosomal gene in Synechococcus 7942 by insertion of an antibiotic-resistance cassette results in a mutant cell line with increased tolerance to Cu2+ compared with the wild type.

Full text

PDF
9654

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altendorf K., Siebers A., Epstein W. The KDP ATPase of Escherichia coli. Ann N Y Acad Sci. 1992 Nov 30;671:228–243. doi: 10.1111/j.1749-6632.1992.tb43799.x. [DOI] [PubMed] [Google Scholar]
  2. Bull P. C., Thomas G. R., Rommens J. M., Forbes J. R., Cox D. W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993 Dec;5(4):327–337. doi: 10.1038/ng1293-327. [DOI] [PubMed] [Google Scholar]
  3. Chelly J., Tümer Z., Tønnesen T., Petterson A., Ishikawa-Brush Y., Tommerup N., Horn N., Monaco A. P. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993 Jan;3(1):14–19. doi: 10.1038/ng0193-14. [DOI] [PubMed] [Google Scholar]
  4. Cozens A. L., Walker J. E. The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. J Mol Biol. 1987 Apr 5;194(3):359–383. doi: 10.1016/0022-2836(87)90667-x. [DOI] [PubMed] [Google Scholar]
  5. Eriksson P. O., Sahlman L. 1H NMR studies of the mercuric ion binding protein MerP: sequential assignment, secondary structure and global fold of oxidized MerP. J Biomol NMR. 1993 Nov;3(6):613–626. doi: 10.1007/BF00198367. [DOI] [PubMed] [Google Scholar]
  6. Feng D. F., Doolittle R. F. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 1990;183:375–387. doi: 10.1016/0076-6879(90)83025-5. [DOI] [PubMed] [Google Scholar]
  7. Fresneau C., Rivière M. E., Arrio B. Characterization of the plasmalemma ATPase from the cyanobacteria Synechococcus PCC 6311 and PCC 7942. Arch Biochem Biophys. 1993 Oct;306(1):254–260. doi: 10.1006/abbi.1993.1508. [DOI] [PubMed] [Google Scholar]
  8. Geisler M., Richter J., Schumann J. Molecular cloning of a P-type ATPase gene from the cyanobacterium Synechocystis sp. PCC 6803. Homology to eukaryotic Ca(2+)-ATPases. J Mol Biol. 1993 Dec 20;234(4):1284–1289. doi: 10.1006/jmbi.1993.1684. [DOI] [PubMed] [Google Scholar]
  9. Golden S. S., Nalty M. S., Cho D. S. Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. J Bacteriol. 1989 Jan;171(1):24–29. doi: 10.1128/jb.171.1.24-29.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hesse J. E., Wieczorek L., Altendorf K., Reicin A. S., Dorus E., Epstein W. Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4746–4750. doi: 10.1073/pnas.81.15.4746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  12. Kanamaru K., Kashiwagi S., Mizuno T. The cyanobacterium, Synechococcus sp. PCC7942, possesses two distinct genes encoding cation-transporting P-type ATPases. FEBS Lett. 1993 Sep 6;330(1):99–104. doi: 10.1016/0014-5793(93)80928-n. [DOI] [PubMed] [Google Scholar]
  13. Katz M. E., Wright C. L., Gartside T. S., Cheetham B. F., Doidge C. V., Moses E. K., Rood J. I. Genetic organization of the duplicated vap region of the Dichelobacter nodosus genome. J Bacteriol. 1994 May;176(9):2663–2669. doi: 10.1128/jb.176.9.2663-2669.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mercer J. F., Livingston J., Hall B., Paynter J. A., Begy C., Chandrasekharappa S., Lockhart P., Grimes A., Bhave M., Siemieniak D. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993 Jan;3(1):20–25. doi: 10.1038/ng0193-20. [DOI] [PubMed] [Google Scholar]
  15. Muramatsu S., Mizuno T. Nucleotide sequence of the fabE gene and flanking regions containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res. 1989 May 25;17(10):3982–3982. doi: 10.1093/nar/17.10.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nucifora G., Chu L., Misra T. K., Silver S. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci U S A. 1989 May;86(10):3544–3548. doi: 10.1073/pnas.86.10.3544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Odermatt A., Suter H., Krapf R., Solioz M. An ATPase operon involved in copper resistance by Enterococcus hirae. Ann N Y Acad Sci. 1992 Nov 30;671:484–486. doi: 10.1111/j.1749-6632.1992.tb43836.x. [DOI] [PubMed] [Google Scholar]
  18. Odermatt A., Suter H., Krapf R., Solioz M. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem. 1993 Jun 15;268(17):12775–12779. [PubMed] [Google Scholar]
  19. Sahlman L., Skärfstad E. G. Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem Biophys Res Commun. 1993 Oct 29;196(2):583–588. doi: 10.1006/bbrc.1993.2289. [DOI] [PubMed] [Google Scholar]
  20. Schaefer M. R., Golden S. S. Differential expression of members of a cyanobacterial psbA gene family in response to light. J Bacteriol. 1989 Jul;171(7):3973–3981. doi: 10.1128/jb.171.7.3973-3981.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta. 1988 Feb 24;947(1):1–28. doi: 10.1016/0304-4157(88)90017-2. [DOI] [PubMed] [Google Scholar]
  22. Silver S., Nucifora G., Phung L. T. Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences. Mol Microbiol. 1993 Oct;10(1):7–12. doi: 10.1111/j.1365-2958.1993.tb00898.x. [DOI] [PubMed] [Google Scholar]
  23. Verma S. K., Singh H. N. Evidence for energy-dependent copper efflux as a mechanism of Cu2+ resistance in the cyanobacterium Nostoc calcicola. FEMS Microbiol Lett. 1991 Dec 1;68(3):291–294. doi: 10.1016/0378-1097(91)90371-g. [DOI] [PubMed] [Google Scholar]
  24. Vulpe C., Levinson B., Whitney S., Packman S., Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993 Jan;3(1):7–13. doi: 10.1038/ng0193-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES