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Abstract

Many techniques have been proposed to segment organs from images, however the segmentation 

of diseased organs remains challenging and frequently requires lots of user interaction. The 

challenge consists of segmenting an organ while its appearance and its shape vary due to the 

presence of the disease in addition to individual variations. We propose a template registration 

technique that can be used to recover the complete segmentation of a diseased organ from a partial 

segmentation. The usual template registration method is modified in such a way that it is robust to 

missing parts. The proposed method is used to segment Mycobacterium tuberculosis infected 

lungs in CT images of experimentally infected mice. Using synthetic data, we evaluate and 

compare the performance of the proposed algorithm with the usual sum of squared difference cost 

function.
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1. Introduction

More than 125 years after its discovery, tuberculosis (TB) is still surging, causing 9.2 

million new cases and 1.7 million deaths each year [1]. New anti-TB drugs and vaccines are 

crucial to control TB. Their development requires a better understanding of the interactions 

between the host immune system and the bacteria. Unfortunately, traditional post-mortem 

tissue analysis techniques used in pre-clinical studies offer limited insight into host-bacteria 

interactions. On the other hand, longitudinal imaging studies provide a cost effective 

alternative to qualitatively follow the evolution of TB infection in the same experimentally 

infected animals while alive. The development of rigorous quantitative tools for rapid 

automated image analysis is needed to compare lesions across subjects and/or time points.

The first challenge for developing such tools consists of segmenting the lungs of the animal 

from Computerized Tomography (CT) images at all stages of infection. To do so, one not 

only needs to account for the evolution of the disease, but also for shape variations. These 

HHS Public Access
Author manuscript
Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 July 01.

Published in final edited form as:
Proc IEEE Int Symp Biomed Imaging. 2009 ; 2009: 718–721. doi:10.1109/ISBI.2009.5193148.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variations come from the position of the animal and various clinical factors. They are 

significant and cannot be easily controlled.

A common strategy for segmenting organs is to register a template image onto the target 

image which is to be segmented. The deformation that matches the template to the target is 

obtained by comparing intensity and/or image features. However, the presence of lesions in 

the diseased organ is an impediment to the success of such techniques. In some cases 

refinement procedure are used to correct the segmentation of the lungs [2]. More generally, 

robust matching algorithms have been proposed in which lesions are modeled as outliers and 

excluded from the matching cost. These techniques have been successfully applied in [3, 4] 

to detect multi-sclerosis lesions in brain MR images, as well as cancerous breast lesions in 

radiographic images. Another approach consists of modeling the lesion as an additional 

anatomical tissue, see e.g. [5], whose growth is assessed by template matching. One usually 

needs to place a seed in the template at the appropriate location to initialize the matching. 

This approach is particularly well suited to the analysis of cancerous lesions. However, 

because infectious diseases tend to affect an organ in multiple locations, the proper 

initialization of such method is problematic.

In this paper, we propose a new non-rigid registration method that allows one to match a 

template organ to a diseased organ, even in the presence of lesions. We use the proposed 

method to segment TB infected lungs. Using synthetic data, we show that we can recover 

almost 90% of the volume of the lungs, even when 50% of the lungs are infected. We prove 

that this performance could not be achieved with the usual sum of squared differences 

matching method.

2. Segmentation of Diseased Organs By Template Registration

2.1. Partial Segmentation

Obtaining a complete segmentation of a diseased organ is very challenging and time 

consuming. Instead, it is faster and much easier to obtain a partial segmentation. The 

registration method that we present relies on an initial partial segmentation of the diseased 

organ. We make the assumption that the segmentation contain only few errors, i.e. voxels 

that do not belong to the lungs. However, we tolerate that some parts of the diseased organ 

may be missing. In this work, the partial segmentation is provided by the user and is based 

on intensity thresholding and connected components. Most of the diseased parts of the organ 

are not included in this initial segmentation, see Figure 3(a).

2.2. Template Registration with Missing Parts

Most of the proposed methods for template registration rely on an energy minimization 

formulation. The template, denoted by x0, is deformed by ϕ, which is a smooth deformation 

from ℝ3 to ℝ3. The energy function

(1)
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is usually composed of two terms and a weighting factor, γ ∈ ℝ. The data term, , measures 

the similarity between the deformed template, x0 ○ ϕ−1, and the target, x, while the 

regularization term, ℛ, penalizes for non-smooth deformations. In our case, x0 is the binary 

image corresponding to the segmentation of the lungs of an uninfected mouse, while x is the 

binary image resulting from the partial segmentation described previously.

2.2.1. Modified Data Term—We use a simple statistical model for the segmentation 

problem in order to derive a likelihood function. This likelihood function is then used to 

infer a data term. We model the binary value x(s) at each voxel s as a random variable which 

follows a Bernoulli distribution. Indeed, if a voxel, u = ϕ−1(s), belongs to the template lungs 

(x0 ○ ϕ−1(s) = 1), then the corresponding voxel, s, in the target belongs to the lungs (x(s) = 

1) with probability 1 − δ. δ accounts for the missing parts in the initial segmentation, and 

ranges between 0 and 0.5. If, on the contrary, a voxel, u = ϕ−1(s), does not belong to the 

template lungs (x0 ○ ϕ−1(s) = 0), then s belongs to the lungs with probability ε. Assuming 

that our initial segmentation contains few errors, we set ε to a small value, ∼ 10−4. In 

summary:

(2)

For simplicity, we assume that the collection of random variables, x(s), when s ranges across 

the set of voxels, are independent conditional on ϕ. With u=ϕ−1(s), the log-likelihood is

(3)

Keeping only the terms that depend on ϕ and using the fact that, since x0 and x are binary, 

 and x(s) = x2(s), we obtain:

(4)

Henceforth, as suggested in [6], we use the negative log likelihood (4) as data term in the 

energy function (1):

(5)

The data term is a weighted sum of the usual sum of squared differences (SSD) and of a 

corrective term which is the volume of the deformed template. This corrective term allows 

for a certain amount of mismatch between the template and the target so that the missing 

parts may be recovered. In other words, there is a penalty for shrinking the template.
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2.2.2. Regularization Term—The algorithm we use is a variant of the one described in 

[7], adapted to the proposed data attachment term. Letting L be a symmetric operator acting 

on vector fields (here, L = (Δ2 + αId)3 for some constant α), we define a Hilbert space V 

with norm , and generate diffeomorphisms ϕ according to the evolution 

equation:

(6)

with t ∈ [0; 1]. This equation is called the EPDiff equation [8, 9]. It has a unique solution 

specified by the initial conditions ϕ0 = identity and v0 = w, where w is a vector field. 

Denoting this solution by , the registration algorithm minimizes

(7)

Details on the minimization algorithm can be found in [7] when λseg = 0, the general case 

coming as a straightforward modification.

2.3. Choice of the Model Parameters

The matching algorithm depends on the choice of 3 parameters: ε, δ, and γ. As previously 

mentioned, δ and ε respectively represents the proportion of missing parts and the 

segmentation error in the incomplete target volume. Assuming that all the mice used in a 

study have comparable lung volume, we roughly estimate the proportion of missing data by 

computing the ratio of the volume of the incomplete target volume over the volume of the 

template. We determine the value of γ when ε = δ, i.e. when λseg = 0, which corresponds to 

the case with no missing parts. In that case, the proposed algorithm boils down to the 

classical SSD registration algorithm. We experimentally determine that λ = λ0 = 0.3 gives 

satisfying matching results in the case of complete volume. Given ε and δ,

(8)

3. Experiments

3.1. Image Data and Generation of Synthetic Data

In order to follow the evolution of M. tuberculosis infection, a group of genetically identical 

mice is experimentally infected and imaged at different time points. 14 days after initial 

infection, the mice are treated with a daily dose of antibiotics. 3D CT images are acquired 

after 14, 28, 56 and 84 days of treatment at an isotropic resolution of 0.17 mm. A group of 

uninfected mice is also imaged at each time point.

Two complete lungs are manually segmented from the CT scans of two uninfected mice. 

Since the lungs appear at a lower intensity than the surrounding tissue, the segmentation is 

Vidal et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



easily obtained by intensity thresholding. We model the TB lesions by randomly creating 

spherical holes in one of the lung volumes. At each voxel, we sample a Bernoulli 

distribution with low success probability and assign a sphere center in case of success. All 

the voxels located at less than a given distance r from a sphere center are excluded from the 

lung segmentation. Depending on the strain of the mouse, the size of the lesions may vary. 

We therefore generate two types of synthetic data with either large (r = 5) or small (r = 3) 

lesions, see Figure 1. The amount of missing data is controlled and varies between 0 and 

50%. In order to recover the complete lung volume, the template is first registered onto the 

target with an affine registration. It is used as a starting point for the proposed algorithm. 

The segmentation is given by the deformed template registered onto the target.

3.2. Results

We use the Dice coefficient to assess the performance of the segmentation algorithm. We 

denote by DT the deformed template and T the complete target, i.e. the complete lung 

volume. The target is partitioned into the lesions, denoted by L, and TL the incomplete 

segmentation of the diseased lungs. We denote by | · | the volume, and by ⨪ the 

complement. We write the segmentation error:

(9)

These 3 terms respectively correspond to the deformed template overgrowth, the missed 

lesions, and the missed target.

Figures 2(a) and 2(b) present the segmentation error between the ground truth and the 

recovered segmentation in the simulation experiments. We compare the 3 components of the 

error for different types of lesions and different amount of missing data, after affine 

registration and after classical non-rigid registration (i.e. λseg=0) and with the proposed 

algorithm. Recall that λseg controls the tolerance to missing parts, and that when λseg = 0, the 

data term boils down to the classical sum of squared differences. Even when there is no 

missing data, affine registration is not enough to capture the shape variation, while non-rigid 

registration reduces the segmentation error to ∼ 10%. Even with 50% of lesions, the 

proposed algorithm recovers almost 90% of the complete volume, against 80% only with 

usual SSD matching. Figure 2(c) illustrates the performance of the proposed algorithm at 

segmenting the complete lung volume depending on the parameter λseg. We compare the 

segmentation results for 8 volumes with 50% of small lesions, when λseg = 0 or 0.1274 and 

show that adding the corrective term significantly improves the segmentation (paired 

Wilcoxon test p-value=0.007). Note that at the optimal value of λseg, the 3 components of 

the segmentation error are balanced.

3.3. Segmentation of M. Tuberculosis Infected Lungs

We apply the proposed segmentation method to M. tuberculosis infected lungs, using a user-

specified partial segmentation of the diseased lungs obtained by intensity thresholding. 

Because infected parts have higher intensity, they are usually missing in the partial 
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segmentation. Figure 3(a) presents an incomplete segmentation of the lungs. We use the 

lungs of an uninfected mouse as template. The matching is initialized by the affine 

registration of the template onto the incomplete target. Figure 3(b) illustrates an example of 

segmented lungs and shows that most of the missing parts have been recovered.

4. Conclusion

We have shown that the proposed method can be used to obtain a segmentation of diseased 

organs at various stages of infection and outperforms classical SSD registration. This 

technique is generic and therefore is applicable to other organs, pathologies and/or species.
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Fig 1. 
Axial view of the lungs with synthetic lesions and the recovered complete lung volume. 

Left: Small lesions Right: Large lesions.
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Fig 2. 
Left and Middle Segmentation error for different amounts and types of lesions after 

template registration. A25, for example, corresponds to 25%; of lesions and template 

matching by Affine registration. NR stands for Non-Rigid registration, MP stands for non-

rigid matching with Missing Parts. Right: Residual segmentation error in the case of MP50 
with small lesions for different values of λseg.
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Fig 3. 
Top: Axial view of the CT image overlaid with the user-specified segmentation and 3D 

rendering of the partial segmentation, Bottom: Axial view of the CT image overlaid with 

the complete segmentation and 3D rendering of the complete lungs.
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