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Abstract

Obstructive sleep apnea (OSA) is a common sleep disorder that causes pauses of breathing due to 

repetitive obstruction of the upper airways of the respiratory system. The effect of this 

phenomenon can be observed in other physiological signals like the heart rate variability, oxygen 

saturation, and the respiratory effort signals. In this study, features from these signals were 

extracted from 50 control and 50 OSA patients from the Sleep Heart Health Study database and 

implemented for minute and subject classifications. A support vector machine (SVM) classifier 

was used with linear and second-order polynomial kernels. For the minute classification, the 

respiratory features had the highest sensitivity while the oxygen saturation gave the highest 

specificity. The polynomial kernel always had better performance and the highest accuracy of 

82.4% (Sen: 69.9%, Spec: 91.4%) was achieved using the combined-feature classifier. For subject 

classification, the polynomial kernel had a clear improvement in the oxygen saturation accuracy as 

the highest accuracy of 95% was achieved by both the oxygen saturation (Sen: 100%, Spec: 

90.2%) and the combined-feature (Sen: 91.8%, Spec: 98.0%). Further analysis of the SVM with 

other kernel types might be useful for optimizing the classifier with the appropriate features for an 

OSA automated detection algorithm.
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I. Introduction

Sleep apnea is a common sleep disorder that causes pauses of breathing during sleep. A 

sleep apnea episode is defined as the cessation or near cessation of airflow for 10 s or more 

in an adult. In obstructive sleep apnea syndrome (OSAS), the pause of breathing is due to 
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the obstruction of the upper airways of the respiratory system. It affects around 4% of men 

and 2% of women of the general population [1]. Sleep studies (polysomnography) are the 

traditional methods for assessment of breathing disorders during sleep. Polysomnography 

has recordings of around 16 signals, including ECG, EEG, respiratory effort, and airflow 

that are collected over a whole night. This method is expensive, time consuming, and it is 

challenging for subjects to be connected to all these instruments in sleep laboratories for 

whole nights. Portable polysomnography devices with fewer signals are also available. 

Several other methods have been proposed for diagnosing or screening sleep apnea. Time 

and frequency analysis of heart rate variability (HRV), ECG-derived respiration, 

photoplethysmography, and other signals were proposed for minute-by-minute apnea 

classification algorithms for the whole night of sleep [2]–[5].

In this study, we evaluate features from the magnitude and phase of the thoracic and 

abdominal respiratory effort signals for OSA detection. This is based on the physiological 

fact that during normal breathing the abdominal and thoracic efforts happen simultaneously. 

This makes the two signals approximately in common phase. In OSAS, as the airway 

becomes obstructed, the phase difference between the abdominal and thoracic movement 

increases, and at total obstruction, these two signals get into counterphase in a situation 

called paradoxical breathing. This is due to the fact that, during an obstructive apnea, the air 

volume in the lung remains constant but the motion of the diaphragm continues. Then, 

during an obstructed inhalation attempt, the abdomen grows in circumference while the 

thorax reduces in circumference. Therefore, the grade of airway obstruction and hence the 

seriousness of the corresponding episode of OSA can be characterized by the phase 

difference between the abdominal and the thoracic excursion signals. The magnitudes of 

both respiratory efforts drop to very low values in OSA and central sleep apnea compared to 

normal breathing. Várady et al. showed that phase difference between the thoracic and 

abdominal respiratory signals has 80–90% accuracy in classifying selected 1-min segments 

from OSA and control subjects [6]. Cross correlation between the two respiratory effort 

signals showed 66% accuracy compared with respiratory distress index for the whole night 

of sleep [7].

The goal of this study is to evaluate classification of whole-night normal and apneic epochs 

using extracted features from the phase and magnitude of the respiratory efforts signals, 

compared and combined with some other features from HRV and oxygen saturation signals. 

The main phase feature studied in this paper is the phase-locking value (PLV). PLV is a 

nonlinear measure of synchronization between two signals and was introduced by Hoke et 

al. [8] in 1989 when studying magnetoencephalo-grams, and used in studying synchrony 

between EEG signals by Lachaux et al. [9] and Mormann et al. [10]. The PLV is a statistical 

quantity bounded between 0 and 1. A PLV value of zero means that the two signals are not 

coupled at all while a PLV of one means that the two signals are perfectly coupled because 

of the constant phase difference between the two signals over all time sample. Compared to 

other synchronization measures, PLV shows simplicity, yet it keeps the same informational 

level as the more complex measures [11].
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II. Methods

Polysomnographic data for 50 OSA patients (AHI = 36.86 ± 24.32) and 50 control subjects 

(AHI = 1.1 ± 1.48) were selected from the Sleep Heart Health Study (SHHS) [12]. The 

selected group includes 24 severe apnea (AHI > 30), 14 moderate apnea (30 ≥ AHI > 15), 

and 12 mild apnea (15 ≥ AHI > 5) patients. Ten subjects had AHI between 4.5 and 5.5. No 

other demographic data were provided by the source. The thoracic and abdominal 

respiratory effort signals, ECG, and oxygen saturation signals (sampled at 10, 250, and 1 Hz, 

respectively) were extracted for the whole night. These records were divided into segments 

of 1-min length. Using the provided starting time and duration of every apnea/hypoapnea 

event, each segment i was labeled with its apnea type as follows:

If DO (i) ≥ 5 s label(i) is: Obstructive Apneic

else if DM (i) ≥5 s label(i) is: Mixed Apneic

else if DC (i) ≥5 s label(i) is: Central Apneic

else if DH (i) ≥5 s label(i) is: Hypoapneic

where DO, DM, DC, and DH are durations of obstructive, mixed, central, and hypoapnea in 

each segment, respectively. All the apnea/hypoapnea labeled segments are then annotated as 

apneic, while the remaining unlabeled segments are annotated as normal.

To compute the PLV between the two effort signals, the instantaneous phases of the two 

signals are first computed using the Hilbert transform. Given a function x(t), the analytical 

signal z(t) is defined as follows:

(1)

where  is the Hilbert transform of x(t) and is computed as follows:

(2)

where p.v. denotes that the integral is taken in the sense of Cauchy principal value, and the 

instantaneous phase is calculated as follows:

(3)

The PLV is then computed as follows:

(4)

where  is the operator of averaging over time and Δθ(t) is the instantaneous phase 

difference. For discrete signals, the PLV is calculated as follows:
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(5)

In our application, Δθ(n) is instantaneous phase difference between the thoracic and 

abdominal respiratory efforts and N is the number of samples in each 1-min segment (N = 

600). The Hilbert transform was computed using the built-in MATLAb function “hilbert,” 

which implements the discrete-time Fourier transform to compute the analytical signal. PLV 

is a normalized number that varies between zero and one. The other features extracted from 

the respiratory signals are the mean of the phase difference Δθm , the standard deviation of 

the phase difference Δθstd, the standard deviation of the thoracic effort Tstd, and the standard 

deviation of the abdominal effort Astd, all computed for the 1-min segments.

RR intervals were extracted from the ECG signals using the Pan–Tompkins algorithm [13]. 

Premature ventricular contractions (PVC) were detected by using a discriminator based on 

the five-point median of the RR interval. A PVC is detected if:

(6)

where mRR is the median of the normal five RR intervals preceding RRi. The corrected RRi 

and RRi+1 were computed using linear interpolation. The RR intervals were evaluated at 

every heartbeat. Cubic-spline interpolation was used to resample the signal as a function of 

time (in seconds) with a sampling frequency of 1 Hz. The RR signal was then divided into 

segments of 1-min length. The Power Spectral Density was computed using a 256-point 

FFT. The mean and standard deviation of the RR intervals, the absolute and normalized 

powers in the VLF, LF, and HF bands, and the ratio of LF power over the HF power (LHR) 

were all computed. The 1-min means and standard deviations of the oxygen saturation 

(SaO2m and SaO2std) were also computed. For epoch classification, support vector machine 

(SVM) classifiers were used [14]. SVM classifiers have shown better performance over 

linear discriminant and neural network classifiers in OSA recognition [15]. SVM constructs 

a hyper plane or a set of hyper planes in a high-dimensional space where the n-dimensional 

input vector is mapped into a K-dimensional feature space via a nonlinear mapping φ(x). 

The equation of hyper plane separating two different classes is given by the relation

(7)

where W = [ω0, ω1, . . . , ωK] is the weight vector of the network. All training and testing 

operations are done using kernel functions. The most commonly used kernels are linear, 

polynomial, and Gaussian. In this study, linear and second-order polynomial functions were 

selected as kernels with different values of the regularization parameter C (C = 0.1, 1, 5, 10), 

which is a constant that determines the tradeoff between the maximum margin and minimum 

classification error. A high C can minimize training error but will also compromise margin 

separation. Due to the long training time, one-tenth of the normal and apneic epochs were 

used to train the classifiers. The classification was done for the respiratory effort, HRV, and 

oxygen saturation features separately then, a classification using all these features was 
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performed. In this study, the overall accuracy is defined as the percentage of total epochs 

correctly classified. The sensitivity is defined as the percentage of apneic epochs correctly 

classified and the specificity is the percentage of normal epochs correctly classified. For 

subject classification, the total number of apneic minutes per hour of sleep (m-AHI) was 

computed for each subject and a threshold value to maximize the subject classification 

accuracy was found. Here, the sensitivity is defined as the percentage of OSA subject 

correctly classified while the specificity is defined as the percentage of control subject 

correctly classified.

III. Results

The total number of the 1-min segments for the 100 subjects was 39575: 22908 annotated as 

normal while 16 667 annotated as apneic. Among the apneic minutes; 5462 were labeled as 

obstructive, 4 as mixed, 656 as central, and 10 545 as hypoapnea. Fig. 1 shows the 

synchrony between the thoracic and abdominal respiratory efforts during normal breathing 

and the paradoxical breathing during OSA. Fig. 2 shows the instantaneous phase difference 

and the PLV of an OSA patient during OSA and Fig. 3 shows these features during normal 

breathing for the same OSA patient. During obstructive apnea, the phase difference between 

the two respiratory signals increases that results in lowering the corresponding PLV. During 

normal breathing, the phase difference decreases and PLV increases toward one. Table I 

shows the mean ± std and one-way ANOVA p-value for the respiratory effort, HRV, and 

oxygen saturation features that showed significant differences between the control and OSA 

groups. To evaluate any influence of rapid eye movement (REM) sleep on increasing the 

OSA epochs, variation in the respiratory phase features (PLV, Δθm , Δθstd) between REM 

and non-rapid eye movement (NREM) sleep was tested. However, no significant difference 

was found in any of these features between these two sleep stages. The extracted features 

were implemented to classify the normal and apneic epochs using the SVM classifier. Table 

II shows the minute classification results of the respiratory effort, HRV, and oxygen 

saturation signals separately and the combination of all these signals. The polynomial kernel 

always gave higher accuracy than the linear kernel classification. Also, the combined-signal 

classifier always had the highest accuracy compared to the separate signal classifiers. 

Among the three signals, oxygen saturation always had the highest specificity (up to 98%), 

while the respiratory efforts had the highest sensitivity (up to 72%). There was an interesting 

increase in the oxygen saturation sensitivity from 25% (using the linear kernel) to 60% 

(using the polynomial kernel). This caused an improvement in its overall accuracy to reach 

80%. Generally speaking, the accuracy increases as C increases where the maximum 

accuracy achieved at C = 5 or 10 except for the oxygen-saturation linear classification where 

the accuracy decreases as C increases. The maximum minute accuracy (Acc: 82.4%, Sen: 

69.9%, Spec: 91.4%) was achieved with the combined-signal classifier, implementing a 

second-order polynomial kernel with C = 5. Table III shows the subject classification 

results. Here again, the polynomial classifier showed better accuracy except for the 

respiratory efforts where it had a slight drop. Also, the combined classifier gave the best 

results: Acc: 92%, Sen: 89.8%, Spec: 94.1%, C = 1 for the linear kernel and Acc: 95%, Sen: 

91.8%, Spec: 98.1%, C = 0.1, 1 and 5 for the polynomial kernel. Interestingly, the best 

oxygen-saturation classifier had the same accuracy even with 100% sensitivity but with a 
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lower specificity of 90.2%. Fig. 4 shows the m-AHI for the 100 subjects computed by the 

best oxygen-saturation classifier. The lower dashed line (m-AHI = 7) represents the 

threshold that gives the highest apnea classification accuracy. All the OSA patients were 

correctly classified with this threshold while five control subjects were falsely classified as 

patients. Among these five subjects, three were on the borderline (their AHI > 4.5). The 

upper dashed line (m-AHI = 31) represents the threshold that gives the highest accuracy for 

apnea severity classification, where one severe apnea was falsely classified as moderate and 

one moderate apnea was classified as severe. To test the agreement between the AHI and m-

AHI, the Bland–Altman method was used [16]. Any subject with AHI ≥ 60 was removed 

from the analysis since m-AHI saturates at 60. Again, the oxygen saturation classifier gave 

the best results. The mean bias was −1.06 and the upper and lower limits were 7.99 and 

−10.11, respectively. The difference between the AHI and m-AHI tends to increase as the 

apnea severity increases. When severe OSA patients were removed from the analysis, the 

upper and lower limits were lowered to 2.03 and −5.8, respectively, and the mean bias was − 

1.89.

IV. Discussion

Paradoxical respiration is a well-known respiratory pattern in OSA syndrome. It is observed 

in our dataset, as all the respiratory phase features were significantly different between the 

control and OSA groups. The absence of significant differences in these features between 

the NREM and REM sleep stages supports the results that show the respiratory disturbance 

is not greatly affected by sleep stages, in contrast to the studies that suggest that OSA is a 

REM-predominant phenomenon [17]. The high sensitivity of the respiratory features 

compared to the HRV and oxygen-saturation features in the minute classification shows that 

the phase difference between the thoracic and abdominal efforts is better in capturing the 

obstructive apnea event. However, the sensitivity was in the 70% range. Including the 

central apnea epochs in the total apneic epochs helped in lowering the sensitivity as no 

respiratory efforts are observed during central apnea; however, the contribution of these 

epochs is small since they represent less than 4% of the total apneic epochs. Hypoapnea 

epochs on the other hand, (63% of the apneic epochs) had greater effect in lowering the 

sensitivity, as the changes in the amplitude and phase difference between the respiratory 

efforts are smaller than the OSA epochs. Also, the sampling rate used in the SHHS for the 

respiratory efforts was 10 Hz. This is reasonable for normal breathing that varies between 

12–20 breaths/min; however, it might not be enough to capture detailed phase variation 

during apnea. The increase of the sympathetic tone (observed as increase in the LF power of 

HRV) and the cyclic variation of the heart rate (observed as increase in the VLF power of 

HRV) are well known behaviors associated with sleep apnea [18], [19]. However, the cyclic 

alternating pattern, which is the natural arousal rhythm of the NREM sleep, is associated 

with significant increase of the LF and decrease of HF spectral components of the HRV in 

normal subjects [20]. Also, the frequency resolution using the 1-min time window is low 

(around 0.017 Hz). This reduces the accuracy of the estimated power in VLF band (0.003–

0.04 Hz). Enlarging the time-window will improve the frequency resolution; however, it will 

affect the time resolution and will reduce the accuracy of the minute classification. This 

explains the low sensitivity of the HRV classifier. On the other hand, the oxygen saturation 
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classifier showed interesting results. Oxygen saturation is known to have low sensitivity and 

high specificity as many OSA patients displayed normal oximetry [21] and our results from 

the linear classifier were consistent with this. Using second-order kernel caused a big 

improvement in the sensitivity as the specificity stayed high. There is no clear explanation of 

this improvement; however, it is most likely related to the advantage of the polynomial 

kernel in separating the normal and apneic planes. Further analysis using higher order 

polynomials and other kernel types needs to be implemented to determine the optimum 

kernel type for best classification accuracy. A disadvantage of the SVM is its long training 

time especially with long dataset (around 40 000 points in our case). However, new 

algorithms are proposed to improve the training speed and even improve the overall 

accuracy [22].

V. Conclusion

The respiratory phase and magnitude features showed high sensitivity in the apnea minute 

classification compared to the other features. This is expected since OSA is associated with 

phase asynchrony between the two respiratory efforts. Oxygen saturation features were more 

accurate in classifying the normal epochs. Implementing second-order polynomial kernel 

had a clear improvement on the oxygen-saturation accuracy in the minute and subject 

classification. These features can be incorporated into automatic algorithms for portable 

OSAmonitoring using the available respiratory and oxygen saturation devices.
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Fig. 1. 
Thoracic effort (dashed curve) and abdominal effort (solid curve) during normal breathing 

(top) and OSA (bottom).
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Fig. 2. 
Phase difference (top) and PLV (bottom) during OSA. OSA epochs are represented with the 

dark horizontal lines at the top of the plots.
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Fig. 3. 
Phase difference (top) and PLV (bottom) during normal breathing.
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Fig. 4. 
m-AHI computed from the best oxygen saturation classifier for the 100 subjects (*:control; 

+:mild/moderate apnea, o: severe apnea subjects).
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TABLE I

Average and Standard Deviation of Respiratory,HRV, and Oxygen-Saturation Features for Control and OSA 

Groups

Feature Control OSA ANOVA

Δθm (rad) 0.56 ± 0.38 1.05 ± 0.54 p<10−5

Δθstd (rad) 0.37 ± 0.17 0.82 ± 0.41 p<10−9

PLV 0.86 ± 0.14 0.64 ± 0.20 p<10−8

Astd 0.13 ± 0.07 0.22 ± 0.14 p<0.0001

Tstd 0.13 ± 0.06 0.16 ± 0.08 p<0.05

VLF (sec2) 0.25 ± 0.25 0.53 ± 0.58 p<0.005

LF (sec2) 0.20 ± 0.20 0.50 ± 1.08 p<0.05

NVLF 0.34 ± 0.08 0.42 ± 0.13 p<0.005

NHF 0.29 ± 0.10 0.24 ± 0.12 p<0.05

RRstd (sec) 0.04 ± 0.02 0.06 ± 0.05 p<0.005

SaO2m(%) 95.53 ± 1.66 93.34 ± 1.78 p<10−8

SaO2std(%) 0.82 ± 0.58 2.12 ± 1.09 p<10−10
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