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Abstract

Background—There is an urgent need to improve lung cancer outcome by identifying and 

validating markers of risk. We previously reported that the cytokinesis-blocked micronucleus 

assay (CBMN) is a strong predictor of lung cancer risk. Here we validate our findings in an 

independent external lung cancer population and test discriminatory power improvement of the 

Spitz risk prediction model upon extension with this biomarker.

Methods—1,506 participants were stratified into a test set of 995 (527 cases /468 controls) from 

MD Anderson Cancer Center and a validation set of 511 (239 cases / 272 controls) from 

Massachusetts General Hospital. An epidemiologic questionnaire was administered and genetic 

instability was assessed using the CBMN assay.

Results—Excellent concordance was observed between the two populations in levels and 

distribution of CBMN endpoints [binucleated-micronuclei (BN-MN), binucleated-nucleoplasmic 

bridges (BN-NPB)] with significantly higher mean BN-MN and BN-NPB values among cases 

(P<0.0001). Extension of the Spitz model led to an overall improvement in the AUC (95% CI) 

from 0.61 (55.5 – 65.7) with epidemiological variables to 0.92 (89.4 – 94.2) with the addition of 

BN-MN endpoint. The most dramatic improvement was observed with the never smokers 

extended model followed by the former and current smokers.
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Conclusions—The CBMN assay is a sensitive and specific predictor of lung cancer risk and 

extension of the Spitz risk prediction model led to an AUC that may prove useful in population 

screening programs to identify the “true” high risk individuals.

Impact—Identifying high-risk subgroups that would benefit from screening surveillance has 

immense public health significance.
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INTRODUCTION

Over 80% of lung cancers are attributed to tobacco exposure; however, fewer than 20% of 

smokers will develop lung cancer in their lifetime (1– 3). This is a classic example of 

genetic host susceptibility as a modulator of an exposed individual’s risk for development of 

cancer (4). Genetically determined modulation of environmental exposures is an attractive 

mechanism to explain the variation of individual susceptibility among current and former 

smokers (5). Since biologic variability may occur at any stage of carcinogenesis, the 

variation in inter-individual susceptibility poses a challenge in quantitative human risk 

assessment and warrants testing and validation of biomarkers that allow accurate 

identification of high risk individuals.

A crucial early event in carcinogenesis is the induction of the genomic instability phenotype, 

which enables an initiated cell to evolve into a cancer cell by achieving a greater 

proliferative capacity (6). Such instability is mediated through chromosomal changes, at a 

gross level, and is therefore cytogenetically detected (7). Evidence that cytogenetic 

biomarkers are positively correlated with cancer risk has been strongly validated in both 

cohort and nested case-control studies, leading to the conclusion that chromosome 

aberrations are a relevant marker of cancer risk (8–12), reflecting the outcome of both the 

genotoxic effects of carcinogens and the genetic host susceptibility.

The cytokinesis-blocked micronucleus assay (CBMN) is a commonly used method for 

measuring DNA damage (13). This multi-endpoint assay simultaneously assesses DNA 

damage endpoints in the form of micronuclei, nucleoplasmic bridges and nuclear buds as 

well as other cellular events such as necrosis, apoptosis and cell proliferation (14). 

Micronuclei in binucleated cells (BN-MN) are identified as chromosome fragments or whole 

chromosomes that fail to engage with the mitotic spindle; nucleoplasmic bridges in 

binucleated cells (BN-NPBs) originate from asymmetrical chromosome rearrangements 

and/or telomere end-fusions (15, 16) and nuclear buds in binucleated cells (BN-NBUDs) 

represent a mechanism by which cells remove amplified DNA and are markers of possible 

gene amplification (17).

We have previously reported in a pilot study and confirmed in a larger study (18–20) that 

BN-MN and BN-NPB are strong predictors of lung cancer susceptibility with an overall 

positive predictive value of 96.1 and negative predictive value of 89.7 associated with 

disease status (19). In the current study, we externally validate our findings in an 
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independent lung cancer population and test the effect of extending an existing lung cancer 

risk prediction model (21) with the CBMN endpoints. To date, several lung cancer 

prediction risk models have been developed [Bach, Spitz, Liverpool Lung Project, Prostate 

Lung Colon Ovary and European Prospective Investigation into Cancer and Nutrition] based 

on epidemiological risk factors with a wide range of discriminatory power (21–25). Only 

two of such models have been extended by the addition of biomarkers; however, the 

resulting improvement in discriminatory power is only modest (26–28). Our data show that 

the extension of the Spitz model with the BN-MN endpoint leads to a substantial 

improvement in the discriminatory power of the model among all smoking strata.

MATERIALS and METHODS

Study Participants

A total of 1,506 participants comprised the study test set of 995 study participants (527 

cases / 468 controls) and validation set of 511 study participants (239 cases / 272 controls). 

A complete epidemiologic questionnaire was administered and CBMN assay was conducted. 

The study was approved by institutional review boards at the University of Texas MD 

Anderson Cancer Center (MDACC), Kelsey-Seybold Clinics, Massachusetts General 

Hospital (MGH), and the Harvard School of Public Health. All subjects provided written 

informed consent for participation.

Lung cancer cases—Lung cancer patients were recruited at both MDACC in Houston 

and MGH in Boston. A total of 527 non-Hispanic White lung cancer cases from MDACC 

[recruited between 2005– 2011] were included in the model development and internal 

validation part of the study. A total of 239 lung cancer patients from MGH [recruited 

between 2009– 2011] were included as an external validation set. All cases were newly 

diagnosed, histologically confirmed, lung cancer patients enrolled before initiation of 

chemotherapy or radiation therapy, with no restriction on age, stage, or histology. Lung 

cancer patients were treated in the Thoracic Surgery, Thoracic Oncology, or Pulmonary 

Units at MDACC or MGH. Lung cancer diagnosis was histologically confirmed by a lung 

pathologist.

Healthy Controls—A total of 740 healthy controls were recruited between 2005–2011 

from the Kelsey-Seybold Clinic, a multispecialty physician group located in the Houston 

metro area. Four-hundred and sixty eight healthy controls were frequency matched to the 

MDACC lung cancer cases by age (±5 years), sex, ethnicity, and smoking status (never, 

former, or current) and used for the model development and internal validation part of the 

study. An independent set of 272 healthy controls, that were mutually exclusive from the 

internal validation set, were frequency-matched to the MGH lung cancer cases on age (± 5 

years), gender and smoking status and used to create a comparison group for the MGH lung 

cancer cases in the external validation part of the study.

For all participants, former smokers were individuals who had smoked at least 100 cigarettes 

in their lifetime but quit at least 12 months prior to lung cancer diagnosis (for cases) or prior 

to the interview (for controls). Current smokers include those currently smoking and “recent 

quitters” [i.e., those who quit within the last 12 months from diagnosis (for cases) or 
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interview (for controls)]. Data on smoking history include smoking duration, number of 

cigarettes smoked per day, computed pack-years smoked, and age at smoking initiation for 

all smokers plus age at smoking cessation and computed years since cessation for former 

smokers. Smoking duration was determined by subtracting the age at which the participant 

had started smoking from either the age at which the participant had quit smoking (former 

smokers) or the participant’s current age (current smokers). Pack-years were calculated by 

multiplying the smoking duration (in years) by the number of cigarettes smoked per day and 

then dividing by 20. Time of smoking cessation for former smokers was determined by 

subtracting the age at which the participant had quit smoking from the participant’s current 

age. Participants were classified as positive for asbestos or wood dusts (sanding or sawdust) 

exposures if they had been directly exposed for at least 8 hours/week for a year. Participants 

were classified as positive for a family history of any cancer if at least two first-degree 

relatives had cancer and positive for a family history of any smoking-related cancer if at 

least one first-degree relative had a smoking-related cancer. Participants were also classified 

by self-reported physician-diagnosed emphysema, COPD or hay fever at any time prior to 

study entry. The MGH cases did not provide hay fever information; therefore we did not 

include this variable in our extended model.

Lymphocyte Cultures for CBMN Assay

The CBMN assay was performed following the standard cytokinesis-block technique (29, 

30) and duplicate lymphocyte cultures were prepared for each study subject (20–22). Slides 

were scored blindly following the well-established HUMN Project criteria (29–31). Briefly, 

a cell was identified as binulceated if it contained two nuclei with intact nuclear membranes, 

an intact cytoplasmic boundary and an intact cell membrane. An event was recorded as a 

MN if the morphology was identical to that of the two nuclei but smaller, non- retractile and 

not connected to the main nucleus. An event was recorded as a nucleoplasmic bridge if the 

connection between the two nuclei was non-retractile and had the same staining quality as 

the main nuclei. For each sample, 1000 binucleated cells were evaluated and BN-MN and 

BN-NPB endpoints were recorded. The assay was conducted blinded to case-control status 

and run consecutively as cases and controls were enrolled into the study, which should 

nullify selection bias in assay data availability. All MDACC samples were assayed and 

scored at MDACC. The MGH samples were assayed at Harvard and the blinded slides were 

sent to MDACC for scoring.

Statistical Methods

External Validation of the CBMN assay—Statistical analyses were performed using 

SAS and STATA software. Within each participant group, Fisher’s exact test was used to 

compare discrete variables such as sex, smoking status, second hand smoke, dust exposure, 

asbestos exposure, and family history of cancer between the cases and controls. The mean 

differences of continuous variables (age, number of cigarettes per day, and cessation age) 

between cases and controls were tested by the Student’s t-test. Wilcoxon rank-sum test was 

applied to compare the distribution of spontaneous BN-MN and BN-NPB between groups.

Development of Extended Spitz Model—Data from MDACC lung cancer cases and 

controls were used to develop the CBMN extended models for never, former and current 
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smokers, separately. We retained the original epidemiologic variables of the Spitz model 

(21) namely: second hand smoke [in never smokers], age quit smoking [in former smokers], 

pack-years and smoking-related cancers [in current smokers], family history of any cancers 

[in never & former smokers], emphysema, dust and asbestos exposures and hay fever [in 

former & current smokers], and fit multiple logistic models with these epidemiologic 

variables and BN-MN CBMN endpoint, stratified by smoking status. Based on our previous 

studies showing a high correlation between BN-MN and BN-NPB endpoints, we only used 

the BN-MN endpoint for model extension (21) and developed separate BN-MN extended 

risk models for never, former and current smokers.

Validation of the Extended Spitz Model—The MGH lung cancer cases and 

independent controls were used to validate the extended Spitz model and to evaluate the 

increase in discriminatory power. For each model, we calculated the area under the receiver 

operator characteristic curve (AUC). Within each smoking group, we performed pairwise 

comparisons of the AUCs to evaluate model improvement upon marker addition. To further 

evaluate improvement in discriminatory power within each smoking stratum, we calculated 

the increase in improvement in risk prediction using the net reclassification improvement 

method (32). In addition, we compared the positive predictive value and negative predictive 

value between the original and extended model, overall and stratified by smoking status.

RESULTS

Subject’s Characteristics

Table 1 summarizes the demographics and matching variables for MDACC and MGH study 

subjects. Mean age ±SD of MDACC study population was 62 ± 10.8 (cases) and 59 ± 12.1 

(controls) (p<0.001). On average, controls were 3 years younger but within the 5-year age 

matching criterion. Cases were significantly heavier smokers than controls measured by 

pack years. Self-reported histories of COPD, dust and asbestos exposure were significantly 

higher among cases. Demographic details for the MGH external validation study subjects 

and the independent MDACC controls are also summarized in Table 1. Cases (n=239) and 

controls (n=272) were well matched on age, gender and smoking status. Mean age ±SD was 

65 ± 10.7 for cases and 64 ± 11.0 for controls. History of COPD but not dust or asbestos 

exposure was significantly higher among the cases.

Distribution of CBMN-endpoints

MDACC population—Mean CBMN biomarker endpoints, BN-MN and BN-NPB were 

significantly higher in the cases (Table 2). Overall, the mean ± SD of BN-MN for cases was 

3.54 ± 0.99 compared to 1.76 ± 0.83 for controls (p<0.001). Distributions for BN-MN did 

not vary by age, gender, or smoking status. The mean ± SD of BN-MN among never, former 

and current smokers cases was 3.56 ± 1.02; 3.54 ± 0.98 and 3.54 ± 0.99 as compared to 

1.69± 0.81; 1.73± 0.79 and 1.82 ± 0.87 among controls (P<0.001). Similarly, the overall 

mean ± SD for BN-NPB among cases was 4.25 ± 0.76 compared to 0.99 ± 0.62 among 

controls (p<0.001). Distributions for BN-NPB did not vary by age, gender, or smoking 

status. Mean ± SD of BN-NPB among never, former and current smokers cases was 4.18 ± 
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0.75; 4.25 ± 0.75 and 4.29 ± 0.77 as compared to 0.94 ± 0.59; 0.97 ± 0.60 and 1.04 ± 0.66 

among controls (p<0.001).

MGH population—Similar to the MDACC population, the mean CBMN biomarker 

endpoints, BN-MN and BN-NPB were significantly higher in cases (Table 2). Overall, mean 

± SD of BN-MN for cases was 3.60 ± 1.01; 1.81± 0.87 for controls (p<0.001). Distributions 

for BN-MN did not vary by age, gender, or smoking status. Mean ± SD of BN-MN among 

never, former and current smokers was 3.62 ± 1.21; 3.61 ± 0.93 and 3.57 ± 1.02 as 

compared to 1.70 ± 0.81; 1.86 ± 0.86 and 1.80 ± 0.93 among controls (P<0.001). Mean ± 

SD BN-NPB endpoint, among cases was 3.89 ± 1.02 compared to 1.02 ± 0.66 among 

controls (p<0.001). Distributions for BN-NPB did not vary by age, gender, or smoking 

status. Mean ± SD of BN-NPB among NS, FS and CS cases was 3.86 ± 0.95; 3.94 ± 0.96 

and 3.83 ± 1.12 as compared to 1.03 ± 0.80; 1.02 ± 0.62 and 1.00 ± 0.61 among controls 

(p<0.001).

There was excellent concordance of the BN-MN data between the model building and 

validation populations. Overall, mean ± SD of BN-MN among cases was 3.60 ± 1.01 as 

compared to 3.54 ± 0.99 (P=0.498) for the test set (Table 2). MDACC cases had slightly 

higher values of BN-NPB compared to MGH cases (P>0.05). In both model building and 

model validation sets, cases had significantly higher (P<0.0001) mean BN-MN and BN-

NPB values compared to controls, overall and within each smoking strata.

Multivariable Risk Model [The Extended Spitz Model]—Table 3 shows the results of 

the extended Spitz risk models [never, former and current smokers] using the model 

building population. This model was developed to generate estimates of predicted 1-year 

absolute risk of lung cancer. For the risk factors from the original Spitz model, lung cancer 

among never smokers was not significantly associated with either exposure to SHS (odds 

ratio [OR], 1.12) or family history of any cancer (OR, 1.06). For former smokers, none of 

the original Spitz risk factors were significantly associated with lung cancer such as personal 

history of emphysema (OR, 2.14), exposure to dust (OR, 1.30), family history of any cancer 

(OR, 1.2), age of smoking cessation for those who quit between age of 42–53 (OR, 1.23), 

and those who quit at or over age of 54 (OR = 1.35). For current smokers, the original Spitz 

lung cancer risk factors associated with lung cancer included personal history of 

emphysema, and smoking pack years (ORs, 5.77 for heaviest, 3.24 for moderate and 3.66 

for lightest smokers respectively). Although, the ORs for dust, Asbestos, and smoking 

related cancer family history in the new model were on par with that reported in the Spitz 

Model with OR’s of 1.47, 1.67, and 1.51, these did not achieve statistical significance due to 

the smaller sample size in our study as compared to that used to derive the Spitz model (23).

In the extended-model, lung cancer was significantly associated with the BN-MN endpoint 

as a continuous variable, and the OR’s (95%CI’s) were 16.72 (9.01–31.02), 15.78 (10.16–

24.51) and 11.44 (7.40–17.68) for never, former and current smokers respectively. Using the 

validation set which included the MGH cases we calculated the AUC to estimate the ability 

of the extended-Spitz model to discriminate between cases and controls. Figure 1 shows the 

discriminatory power of the extended model overall and by smoking status. Overall, the 

AUC (95% CI) with the epidemiological variables was 0.61 (55.5 – 65.7), and 0.92 (89.4 – 
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94.2) with the addition of the BN-MN endpoint. The most dramatic improvement was 

observed with the never smoker extended model with an increase from 0.55 (44.1 – 66.1) to 

0.91 (86.3 – 97.3), followed by the former smoker extended model with an increase from 

0.58 (50.5 –65.4) to 0.91(87.3 – 94.8) and the current smoker extended model with an 

increase from 0.67 (58.2 – 75.1) to 0.93 (88.5 – 96.4). The pairwise comparisons of the 

receiver operator characteristic curves showed that the extended models for never, former 

and current smokers were significantly better than the original model (P<0.0001). For the 

net reclassification improvement analysis, we defined risk categories based on the lower and 

upper quartiles of predicted risk from our original model based on the 1 year absolute risk 

proposed by Bach et al. (22): low, intermediate and high with predicted risk <8%, 8%–50% 

and >50%, respectively, and calculated the increase in improvement in risk prediction of the 

extended model within each smoking stratum. We observed a significant improvement in 

classification of 0.540 among cases and 0.354 among controls which resulted in a total 

significant improvement of 0.894 (P<0.0001) for all participants.

Predictive Capability of the Extended Model—Table 4 shows the positive and 

negative predictive values for the original and BN-MN extended models. For the original 

model, overall positive and negative predictive values were poor (<60%). With the addition 

of the BN-MN, the overall positive predictive value increased 35.9 units to 91.1% and the 

negative predictive value increased 22.8 units to 81.3%. The most notable increase was 

among never smokers with an increase of 41.7 units in positive predictive value and 26.7 

units in negative predictive value.

DISCUSSION

In a proof of principle study we reported and confirmed (18–20) that the CBMN assay is a 

strong predictor of lung cancer risk. Here, we validate the use of the assay as a sensitive 

marker for lung cancer risk in an independent lung cancer population recruited from a 

similar study in a different state. The levels of BN-MN observed were similar between the 2 

populations, overall and after stratification by age, gender and smoking status. The 

significantly higher genetic damage observed in cases confirms the role of genetic instability 

in the carcinogenic process. Our controls were recruited from one state; however, since the 

measurements between the two case populations were almost identical, there is no reason to 

expect differences among the control population.

Our group developed the Spitz risk model (21) based on smoking duration, quit-time, 

occupational exposures, emphysema/COPD, second hand smoke, family cancer history, dust 

exposure, and hay fever. The validated concordance statistics showed that this model had 

equivalent to better discriminatory power and more than adequate clinical utility compared 

to other models (33). Fields et al (34) compared the discriminatory power of 5 existing 

models and reported that based on epidemiological risk factors alone, the AUCs ranged from 

0.57 to 0.84 depending on the study design and smoking status. The Spitz model for former 

and current smokers was further extended to include markers of DNA repair capacity, 

mutagen sensitivity (28) and top GWAS identified SNPs (35). The Liverpool Lung Project 

model was further extended to include the SEZ6L variant (26). However none of these 
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approaches resulted in large gains in discriminatory power; similar to observations noted 

upon SNP extensions of the Gail model (35, 36).

Several reasons prompted the selection of the CBMN endpoint for extension of the Spitz 

model. First, chromosome aberrations are well-validated cancer risk biomarkers (37, 8–11). 

Second, the CBMN is slowly replacing other chromosome aberrations assays since it is a 

more sensitive multi-endpoint assay. The BN-MN is the most common CBMN endpoint 

measured by different laboratories worldwide analyzing chromosome aberrations. Third, the 

CBMN assay is cost effective and is highly appropriate for use in large population screening 

studies. In addition, Ceppi et al (38) recently reported a good correlation between 

micronuclei measured by the CBMN assay in lymphocytes and micronuclei measured in 

oral epithelium which is a target of cigarette-smoke-induced cancer. Our results suggest a 

substantive increase in the overall predictive ability of the model. The greatest effect was 

observed among never smokers followed by former and current smokers. Previously 

extending the Spitz model with host reactivation and mutagen sensitivity assays led to 

modest increases in the observed AUC (95% CI) from 0.67 (0.63–0.71) to 0.70 (0.66–0.74) 

in former smokers and from 0.68 (0.64 – 0.72) to 0.73 (0.69 – 0.77) in current smokers (28). 

Both assays are labor intensive and not suited for wide-scale application. We also observed 

an improvement in discriminatory power >89% based on the net reclassification 

improvement criteria as well as improvement in positive and negative predictive values 

using the extended model. There are several plausible explanations for the superior 

performance of the CBMN markers. The assay provides data on both genotoxic and 

cytotoxic cellular events. The CBMN endpoints measure the end-result of parameters that 

influence genetic instability such as genetic polymorphisms, transcription variation, post-

translational modifications, metabolism, genotoxin exposures and malnutrition which also 

can cause chromosome damage and micronucleus formation. The CBMN assay is a 

comprehensive measure of events occurring throughout the cell cycle and is unlike other 

phenotypic assays, such as the mutagen sensitivity, that only measures the DNA damaging 

effect of a mutagen in the G2 phase and reflects the sensitivity of the cells to exposure to 

chemicals without consideration of other parameters such as repair. Furthermore, 

micronuclei are now recognized as mechanisms by which the recently discovered 

phenomena chromothripsis and chromoanagenesis, may occur. These phenomena are now 

being recognized as potential major contributors to the initiation and development of human 

cancer (39, 40). Chromothripsis involves chromosome shattering of one or a few 

chromosomes leading to a large number of rearrangements while chromoanageneis 

describes complex genomic rearrangements that occur as a single catastrophic event rather 

than a series of independent arrangements (41). Both mechanisms involve massive damage 

to a very small subset of chromosomes or chromosome arms that were found to be confined 

within micronuclei (40).

Prevention of even 10% of annual deaths from lung cancer would save an estimated 17,000 

lives, equivalent to all the annual deaths in the United States from ovarian cancer and almost 

all the annual deaths from brain cancers. Recent findings from the national lung screening 

trial showed a 20% reduction in lung cancer mortality among participants screened with CT 

compared to chest x-rays. However, national lung screening trial results also indicate that to 

prevent one death from lung cancer, 320 high-risk individuals must be screened (42). The 
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definition of high risk individuals based solely on age and pack years has resulted in 

unnecessary additional clinical testing and overtreatment. In order to identify the “true high 

risk” individuals, it is imperative to consider validated biomarkers of risk. Our study showed 

that the CBMN assay is an exquisitely sensitive and specific predictor of lung cancer risk 

and that the extension of the Spitz model led to an AUC that may prove useful in population 

screening programs. Clinically, the ability to identify high-risk subgroups that might benefit 

from increased screening surveillance that is not appropriate for low-risk individuals, has 

immense public health significance.
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Figure 1. Baseline and CBMN-Extended Model ROC Curves: Overall and by Smoking Status
Based on Model Testing (MGH) Population: AUC (Asymt 95% CI):

a. Overall: Spitz Model 60.6% (55.5–65.7); Extended Spitz 91.8% (89.4–94.2)

b. Never Smokers: Spitz Model 55.1% (44.1–66.1); Extended Spitz 91.8% (86.3–

97.3)

c. Former Smokers: Spitz Model 58.0% (50.5–65.4); Extended Spitz 91.0% (87.3–

94.8)

d. Current Smoker: Spitz Model 66.7% (58.2–75.1); Extended Spitz 92.5% (88.5–

96.4)

P<0.0001
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Table 2

Distribution of CBMN endpoints among MDACC and MGH populations.

MDACC MGH

Case
(N = 527)

Controls
(N =468)

Case
(N = 239)

Controls
(N = 272)

BN-MN Mean±SD Mean±SD Mean±SD Mean±SD

Overall 3.54±0.99 1.76±0.83 3.60±1.01 1.81±0.87

Age
≤62
>62

3.55±0.97
3.54±1.01

1.78±0.85
1.73±0.80

3.72±1.05
3.52±0.97

1.78±0.91
1.82±0.84

Gender
Male

Female

3.52±1.00
3.57±0.98

1.71±0.82
1.81±0.83

3.64±1.03
3.56±0.99

1.73±0.87
1.86±0.87

Smoking
Never
Former
Current

3.56 ± 1.02
3.54 ± 0.98
3.54 ± 0.99

1.69 ± 0.81
1.73 ± 0.79
1.82 ± 0.87

3.62± 1.21
3.61 ± 0.93
3.57 ± 1.02

1.70 ± 0.81
1.86 ± 0.86
1.80 ± 0.93

BN-NPB

Overall 4.25±0.76 0.99±0.62 3.89±1.02 1.02±0.66

Age
≤62
>62

4.28±0.73
4.23±0.78

0.98±0.57
1.00±0.66

3.77±1.15
3.91±0.91

1.01±0.63
1.04±0.64

Gender
Males

Females

4.28±0.74
4.22±0.77

0.99±0.62
0.99±0.62

3.97±0.88
3.83±1.11

1.02±0.64
1.03±0.63

Smoking
Never
Former
Current

4.18 ± 0.75
4.25 ± 0.75
4.29 ± 0.77

0.94 ± 0.59
0.97 ± 0.60
1.04 ± 0.66

3.86 ± 0.95
3.94 ± 0.96
3.83 ± 1.12

1.03 ± 0.8
1.02 ± 0.62
1.00± 0.61

Resulting p-values from comparing endpoints between cases and controls (BN-MN or BN-NPB) overall or stratified by age, gender or smoking 
status. Mean differences between MDACC cases and controls were significant at the 0.0001 level within all stratum. Mean differences between 
MGH cases and control were significant at the 0.0001 level within all stratum. Mean BN-MN differences between MDACC cases and MGH cases 
were not significant (P>0.05) within all stratum. Mean BN-NPB differences between MDACC cases and MGH cases were significant (P<0.05) 
within all stratum.
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Table 3

Extension of Spitz Lung Cancer Risk Models using CBMN Assay Endpoints among Never, Former and 

Current Smokers in the Model Building (MDACC) Population.

Variables BN-MN model1

OR (95% CI)

Never Smokers

CBMN 16.72 (9.01–31.02)

Second Hand Smoke 1.12 (0.47–2.68)

Family History (≥ 2) 2 1.06 (0.47–2.43)

Former Smokers

CBMN 15.78 (10.16–24.51)

Emphysema 2.14 (0.94–4.90)

Dusts 1.30 (0.64–2.64)

Family History (≥ 2)2 1.25 (0.73–2.13)

Quit Age: 42–53 1.23 (0.66–2.27)

Quit Age: ≥ 54 1.35 (0.73–2.47)

Current Smokers

CBMN 11.44 (7.40–17.68)

Emphysema 4.92 (2.16–11.23)

Pack Yr.: 28–41.9 3.66 (1.72–7.76)

Pack Yr.: 42–57.4 3.24 (1.52–6.90)

Pack Yr.: ≥ 57.5 5.77 (2.57–12.96)

Dusts 1.47 (0.69–3.11)

Asbestos 1.67 (0.84,3.32)

Family History (≥ 1) 3 1.51 (0.84–2.69)

1
= BN-MN is modeled as continuous variables

2
= Individuals with 2 or more 1st degree family members with cancer

3
= Individuals with 1 or more 1st degree family members with a smoking-related cancer
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Table 4

Positive Predictive and Negative Predictive Value for the original Spitz model versus CMBN extension of the 

model, overall and stratified by smoking status using the Model Testing (MGH) Population

Model PPV(%) NPV(%)

Overall Spitz Model
Extended-Spitz with BN-MN

55.2
91.1

58.5
81.3

Never
Smokers

Spitz Model
Extended-Spitz with BN-MN

50.0
91.7

58.3
85.0

Former
Smokers

Spitz Model
Extended-Spitz with BN-MN

64.4
94.1

45.1
78.7

Current
Smokers

Spitz Model
Extended-Spitz with BN-MN

43.9
86.4

76.7
82.2
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