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SUMMARY

We propose an automatic structure recovery method for additive models, based on a backfitting 

algorithm coupled with local polynomial smoothing, in conjunction with a new kernel-based 

variable selection strategy. Our method produces estimates of the set of noise predictors, the sets 

of predictors that contribute polynomially at different degrees up to a specified degree M, and the 

set of predictors that contribute beyond polynomially of degree M. We prove consistency of the 

proposed method, and describe an extension to partially linear models. Finite-sample performance 

of the method is illustrated via Monte Carlo studies and a real-data example.
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1. Introduction

Because of recent developments in data acquisition and storage, statisticians often encounter 

datasets with large numbers of observations or predictors. The demand for analysing such 

data has led to the current heightened interest in variable selection. For parametric models, 

classical methods include backward, forward and stepwise selection. More recently, many 

approaches to variable selection have been developed that use regularization via penalty 

functions. Examples include the lasso (Tibshirani, 1996), smoothly clipped absolute 

deviation (Fan & Li, 2001), the adaptive lasso (Zou, 2006; Zhang & Lu, 2007), and the L0 

penalty (Shen et al., 2013). Fan & Lv (2010) give a selective overview of variable selection 

methods.

Variable selection for nonparametric modelling has advanced at a slower pace than for 

parametric modelling, and has been studied primarily in the context of additive models, 

which are an important extension of multivariate linear regression. An additive model 

presupposes that each predictor contributes a possibly nonlinear effect, and that the effects 

of multiple predictors are additive. Such models were proposed by Friedman & Stuetzle 

(1981) and serve as surrogates for fully nonparametric models. Most nonparametric variable 

selection methods studied so far deal with additive models; see Ravikumar et al. (2009), 

Huang et al. (2010), Fan et al. (2011), and references therein. An exception is Stefanski et al. 

(2014), which considers variable selection in a fully nonparametric classification model. 

wu@stat.ncsu.edu stefansk@ncsu.edu

HHS Public Access
Author manuscript
Biometrika. Author manuscript; available in PMC 2015 December 02.

Published in final edited form as:
Biometrika. 2015 June 2; 102(2): 381–395. doi:10.1093/biomet/asu070.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, variable selection and structure recovery for the varying coefficient model, a 

popular extension of the additive model, have been studied: Xia et al. (2004) considered 

structure recovery towards semi-varying coefficient modelling; Fan et al. (2014) studied a 

new variable screening method; and for the longitudinal setting Cheng et al. (2014) 

investigated variable screening and selection, as well as structure recovery.

Partially linear models were proposed by Engle et al. (1986). Combining the advantages of 

linearity and additivity, these models assume that some covariates have nonlinear additive 

effects while others contribute linearly. Estimation for a partially linear model requires 

knowing which covariates have linear effects and which have nonlinear effects, information 

that is usually not available a priori. Recently, Zhang et al. (2011) and Huang et al. (2012) 

proposed methods to identify covariates that have linear effects and ones that have nonlinear 

effects.

We consider an additive model for a scalar response Y and predictors X = (X1, … , XD)T,

(1)

under the identifiability conditions E{md (Xd)} = 0 (d = 1 , … , D). Denote a random sample 

from model (1) by {(Yi, Xi): i = 1, … , n}, where Xi =(Xi1, … , XiD)T. The goal is to estimate 

α and md (·) (d = 1, … , D).

We a method for estimating md(·) that first distinguishes between important predictors and 

predictors that are unimportant, i.e., those Xd for which md(·) = 0. Next, motivated by Zhang 

et al. (2011) and Huang et al. (2012), the method identifies predictors that have linear effects 

from the estimated set of important predictors. Then, the method identifies the predictors 

that have quadratic effects, and so on. This process continues and results in estimates of sets 

of predictors that have polynomial effects at different degrees, up to some degree M, and the 

set of predictors for which the corresponding md(·) are not polynomial of any degree up to 

M.

At the core of our structure recovery method is a new nonparametric kernel-based variable 

selection method derived from the measurement-error model selection likelihood approach 

of Stefanski et al. (2014). They studied the relationship between lasso estimation and 

measurement error attenuation in linear models, and used that connection to develop a 

general approach to variable selection in nonparametric models.

2. Backfitting algorithm

Backfitting coupled with smoothing is commonly used for fitting model (1). Here we use 

univariate local polynomial smoothing, with  denoting the univariate local polynomial 

smoother with kernel function K (·), bandwidth h and degree p.

Local polynomial smoothing (Fan & Gijbels, 1996) is a well-studied nonparametric 

smoothing technique. To estimate the regression function g(t) = E(Z…T = t) from an 

independent and identically distributed random sample {(Ti, Zi) : i = 1, … , n}, local 
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polynomial regression uses Taylor series approximations and weighted least squares. The 

local polynomial smoothing estimate  of g(t0) based on smoother  is given by , 

the optimizer of

See Fan & Gijbels (1996) for a detailed account of local polynomial modelling.

Using univariate local polynomial smoothing with kernel K(·), bandwidth hd and degree pd 

to estimate md(·) in the additive model (1), the backfitting algorithm consists of the 

following steps.

Step 1

Initialize by setting  and  for d = 1, … , D.

Step 2

For d = 1, … , D:

(a) apply the local polynomial smoother  to 

 and set the estimated function to be the 

updated estimate  for md (·);

(b) if necessary, apply centring by updating  with .

Step 3

Repeat Step 2 until the changes in all  (d = 1, … , D) between successive iterations are 

less than a specified tolerance.

Denote the estimates at convergence by  (d = 1, … , D) and , where h = (h1, 

… , hD)T and p = (p1, … , pD)T are the vectors of smoothing bandwidths and local 

polynomial degrees, respectively. For simplicity we use the same kernel K (·) for each 

component, and thus K (·) is omitted from the notation .

Backfitting works well for problems of moderate dimension D. However, even though 

backfitting entails only univariate smoothing, its performance deteriorates as D gets larger. 

Consequently, variable selection is important for the additive model.
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3. Variable selection via backfitting local constants

3·1. Variable selection

In Step 2(a) of the backfitting algorithm, any smoothing method can be applied. In this 

section we consider the local constant smoother, i.e., the local polynomial smoother of 

degree 0, and propose a nonparametric variable selection method for the additive model (1).

With pd =0 in Step 2(a) of the backfitting algorithm, we update the estimate  of md 

(xd) by the minimizer  of

(2)

Note that K{hd
−1(Xid – xd )} = K(0) for all i when hd = ∞. In this case, md (·) is globally 

approximated by a0. The corresponding optimizer of (2) is given by 

, which equals zero because  and 

centring is applied in Step 2(b) of the backfitting algorithm.

Thus, when pd = 0, the backfitting algorithm leads to the constant zero function 

 when hd = ∞. Consequently, the jth predictor is excluded from the model 

when hd = ∞ and is included only when hd < ∞. The equivalence, hd < ∞ if and only if the 

jth predictor is included, is key to the approach described in Stefanski et al. (2014), and we 

exploit it repeatedly in our method. We assume in this section that the degree of local 

polynomial smoothing for every function component is 0, i.e., pd 0 for d = 1, … , D. In this 

way, the smoothing bandwidth relates directly to the importance of each predictor, with 

small hd corresponding to important predictors.

As in Stefanski et al. (2014), we reparameterize hd as λd = 1/hd, so that large λd will 

correspond to important predictors and λd = 0 to unimportant predictors. Predictor 

smoothing is now determined by the inverse bandwidths λd. Stefanski et al. (2014) show that 

variable selection can be obtained by minimizing a loss function with respect to the λd, 

subject to a bound on the total amount of smoothing as determined by the sum of the λd or, 

equivalently, a bound on the harmonic mean of the bandwidths.

A suitable loss function for backfitting is the sum of squared errors

where in the second two arguments of , λ−1 = (1/λ1, … , 1/λD)T and 0D denotes 

the D × 1 zero vector. We shall also write 1s for the s × 1 vector of ones.

In the absence of constraints, the minimum of SSE with respect to λ is 0, and corresponds to 

overfitted models. As in Stefanski et al. (2014), appropriate regularization is achieved by 

solving the constrained optimization problem
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(3)

Solving (3) distinguishes important predictors, , from those that are unimportant, .

3·2. Modified coordinate descent algorithm

The constrained optimization problem (3) is not convex because of the complicated 

dependence on λ through the backfitting algorithm and the univariate local polynomial 

smoothing. We have had success using a modified coordinate descent algorithm.

Coordinate descent for high-dimensional lasso regression (Fu, 1998; Daubechies et al., 

2004) cycles through variables one at a time, solving simple marginal univariate 

optimization problems at each step, and thus is computationally efficient. It has been studied 

extensively, for example by Friedman et al. (2007) and Wu & Lange (2008), among others. 

However, standard coordinate descent cannot be applied directly to (3).

In our modified coordinate descent algorithm, we initialize with equal smoothing, i.e., we 

set λd = τ0/D for all d = 1, … , D. We then cycle through all components and make 

univariate updates. Current solutions are denoted by , where the superscript 

c means current. Suppose that we are updating the d’th component. Let 

, a vector whose elements are all zero except for the d’th, which 

is 1, and set . The components of , 

and  sum to unity. Thus, for any γ ∈ [0, τ0], the components of , 

sum to τ0 and satisfy the first constraint in (3). We then update the set of current solutions to 

the components of the vector , where  is the optimizer of

subject to 0 ≤ γ ≤ τ0. Cycling through d’ = 1, … , D completes one iteration of the algorithm. 

Iterations continue until the change in solutions between successive iterations becomes small 

enough.

3·3. Tuning

The tuning parameter τ0 controls the total amount of smoothing, and can be selected by 

standard methods such as crossvalidation, AIC or BIC. Denote the optimizer of (3) by . If 

an independent tuning dataset is available, then τ0 can be selected by minimizing the sum of 

squared prediction errors of the estimator 
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 over the tuning set. For methods 

such as AIC and BIC, the degrees of freedom is needed. The local constant smoothing estimator 

is a linear smoother, and we couple the backfitting algorithm to marginal local constant 

smoothing. For each function component, the trace of the corresponding smoothing matrix 

minus 1 can be used as the degrees of freedom. The trace is reduced by 1 to account for the 

centring applied in Step 2(b) of the backfitting algorithm.

4. Higher-degree local polynomial regression

The approach in § 3 extends readily to higher-degree local polynomial regression. Suppose 

that we use local degree p* polynomial regression in Step 2(a) of the backfitting algorithm. 

With pd = p* in Step 2(a), we update the estimate  of md (xd) by the minimizer  of

As remarked previously, K{hd
−1(Xid – xd)} = K(0) for all i when hd = ∞. Consequently, 

 is a global approximation of md (xd). For this case, in Step 2(a) of the 

backfitting algorithm the estimate  is updated by , where  are the 

optimizers of .

Thus, when pd = p*, the backfitting algorithm yields a polynomial of degree p* as the 

estimate of md(·) when hd = ∞. The interpretation is that the dth predictor makes a 

polynomial contribution of degree up to p*. Based on this, we derive a method for detecting 

predictors that contribute polynomially up to degree p* in the additive model.

Now we use backfitting with univariate local polynomial smoothing of degree p* for every 

function component, again parameterizing via inverse bandwidths λd = 1/hd. As in the 

previous section, the general approach of Stefanski et al. (2014) leads to solving

(4)

where τp* plays the same role as τ0 in (3), and in the last two arguments of , λ−1 

= (1/λ1, … , 1/λD)T and p*1D is the product of p* and 1D. In this case, an optimizer 

means that the dth predictor contributes polynomially at a degree no greater than p*.

The modified coordinate descent algorithm and the tuning procedures discussed in § § 3·2 

and 3·3 extend naturally to (4).
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5. Automatic structure recovery

The procedures in § § 3 and 4 provide the building blocks for the additive model automatic 

structure recovery method. In combination, they enable estimation of the predictors that are 

not important, as well as those that contribute at the pth degree polynomially.

We let  denote the set of predictors that contribute polynomially at degree p and only at 

degree p, and we let  denote the set of predictors that contribute beyond polynomially 

degree p, which includes higher-degree polynomials as well as nonpolynomial functions. 

Thus  means at degree p, and  indicates beyond degree p. With these naming 

conventions, a predictor that contributes at degree p = 0 is no more informative than a 

constant and is therefore unimportant. Specifically, , 

 for p = 1,2, … and  for p = 0, 

1, 2, … Here md(·) = 0 means that md(t) = 0 for any t in its domain of interest, and md(·) ≠ 0 

means that md(t) ≠ 0 for some t. Our automatic structure recovery method proceeds in the 

following steps.

Step 1

Identify important and unimportant predictors.

With appropriately chosen τ0, solve (3) to obtain , and set 

 and , the complement of  in the set {1, … D}. Then  and 

 are estimates of the sets of unimportant and important predictors, respectively.

Step 2

Identify from  the predictors that contribute linearly.

After identifying the set  of important predictors, the next step is to identify a subset of 

 consisting of functions that contribute linearly. We remove unimportant predictors Xd 

with  from consideration and apply the method of § 4, namely (4) with p* = 1, to the 

data , where  denotes the subvector of Xi with indices in . 

We define  and  to be the backfitting estimates obtained 

using the data  with bandwidths  for . Let  denote 

the cardinality of the set . For an appropriately tuned τ1, we solve the optimization 

problem
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and denote its optimizer by , for . The set  estimates the set 

of predictors contributing linearly, and  estimates the set of predictors 

that contribute beyond linearly.

Step 3

Identify from  the predictors that contribute quadratically.

In Step 2 the set  of linear predictors was identified. The set  is global in principle, and 

this property can be ensured via profiling (Severini & Wong, 1992). For  we denote 

the global fit coefficient for the linear predictor Xd by β1d or, in vector form, . For a 

given , we Apply the backfitting algorithm of degree pd = 2 with bandwidth 

 to the data  and denote the 

corresponding estimates by  and ; we 

have given  a fourth argument to emphasize its dependence on . Using profiling, 

we solve

to obtain the best estimate for , which we denote by  to emphasize its 

dependence on . With the above notation and definitions, we solve the optimization 

problem

for appropriately tuned τ2, and denote its optimizer by . Then 

 estimates the set of predictors that contribute quadratically, and 

 estimates the set of predictors that contribute beyond quadratically.

Steps 4 to M + 1

Identify predictors that have kth-degree polynomial effects by using appropriate τk for k 3, 4, 

….
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After Step 3, we have estimated the set of linear predictors and the set of quadratic 

predictors. In a straightforward manner Step 3 can be modified to identify the sets of 

predictors that contribute polynomially at degrees k = 3, k = 4, and so on, up to k = M.

Step M + 2. Fit the final model.

After Step M + 1, we have obtained estimates  for k = 0, 1 … , M and . The final 

model is then estimated by combining the profiling technique and the backfitting technique 

as in Step 3. In this final step, we couple the backfitting algorithm with local linear 

smoothing, as we want to estimate only the function md(·) itself for .

6. Theoretical properties

In this section we study the consistency of the proposed structure recovery scheme. We first 

show that the estimated set of unimportant predictors is consistent.

Proposition 1

Suppose τ0 → ∞ such that  as n → ∞, and assume that Conditions A1–A5 in the 

Appendix hold. Then the solution to (3) satisfies  in probability for , and 

 in probability for . Consequently,  as n → ∞.

Remark 1

There is a small gap between Proposition 1 and the proposed procedure, which is 

confounded with the numerical analysis. In our procedure  is defined as , but 

Proposition 1 shows that the solution to (3) satisfies  in probability for . Thus 

there would be closer agreement between the proposition and the algorithm if we had 

defined  as  for some small δ > 0. However, based on our numerical experience 

so far, the optimizer is indeed sparse, returning exact zeros. Therefore, we shall keep the 

definition of  as . This remark also applies to Theorem 1.

The consistency in Proposition 1 is readily extended to the estimated set of predictors that 

contribute polynomially at different degrees, resulting in the following consistency property 

for the proposed structure recovery scheme.

Theorem 1

Suppose that for k = 0, 1, … , M, τk → ∞ and  as n → ∞, and assume that 

Conditions A1–A5 in the Appendix hold. Then the estimators  and 

satisfy  as n → ∞.

The proofs of Proposition 1 and Theorem 1 are given in the Appendix.
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7. Simulation studies

We use simulation models adapted from Zhang et al. (2011) to study the finite-sample 

performance of the proposed method. In each model, predictors are generated as Xj = (Uj + 

ηU)/ (1 + η) for j = 1, … , D, where U1, … , UD, U are independent and identically 

distributed Un[0, 1] variables, with η at levels 0 and 0·5, resulting in pairwise correlations of 

0 and 0·2. We compare our method with the smoothing spline analysis-of-variance method 

(Kimeldorf & Wahba, 1971; Gu, 2002), as well as the linear and nonlinear discovery method 

of Zhang et al. (2011) and its refitted version, in terms of both integrated squared error and 

predictor-type identification.

For an estimate  of the additive model (1), define the integrated squared error 

, estimated via Monte Carlo using an independent test set of size 

1000. The linear and nonlinear discovery methods, original and refitted, are designed to 

identify predictors having null, linear, nonlinear, or a mixture of linear and nonlinear effects, 

whereas the goal of the proposed method is to identify predictors that contribute 

polynomially at different degrees and predictors that contribute beyond polynomially of a 

specified degree M. In the simulation studies, we fixed M to be 2. We use the Bayesian 

information criterion for tuning parameter selection in all methods.

Model 1

In the first data-generation model, Y = f1(X1)+ f2(X2)+ f3(X3)+ε with f1(t)=3t, f2(t)=2 sin(2πt) 

and f3(t)=2(3t – 1)2. Here ε ~ N(0, σ2) is independent of the predictors. Two values of the 

standard deviation, σ = 1 and σ = 2, and two dimensions, D = 10 and D = 20, are considered. 

For all settings, X4, … , XD are unimportant. In terms of the linear and nonlinear discovery 

classification scheme, X1 has a purely linear effect, X2 has a purely nonlinear effect, and X3 

has a mixture of linear and nonlinear effects (Zhang et al., 2011). For our method, X1 is a 

linear predictor, X3 is a quadratic predictor, and X2 contributes beyond quadratically. 

Training samples of size n =100 are used. The results from 100 simulated datasets are 

reported in Tables 1 and 2.

Table 1 summarizes the performance of the smoothing spline method, the two linear and 

nonlinear discovery methods, the proposed polynomial structure classification method, and 

two oracle methods, which are included to assess the utility of the underlying classification 

schemes irrespective of estimation error. Oracle 1 is the linear and nonlinear discovery 

oracle that makes use of information on which predictors are noise, purely linear, purely 

nonlinear, or a mixture of linear and nonlinear. Oracle 2 is the oracle for our method and 

uses information on which predictors are noise, linear, quadratic, or beyond quadratic. The 

polynomial structure classification method has the smallest integrated squared error values 

among all methods for all generating distributions, and oracle 2 dominates oracle 1.

Table 2 summarizes the predictor classification performance of the methods under 

comparison. For the linear and nonlinear discovery method, the table entries are the average 

and standard deviation of the numbers of predictors identified as purely linear (X1), purely 

nonlinear (X2), a linear-nonlinear mixture (X3), and noise (X4, … , XD). Similarly, for the 

WU and STEFANSKI Page 10

Biometrika. Author manuscript; available in PMC 2015 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed method, the table entries are the average and standard deviation of the numbers of 

predictors identified as linear (X1), quadratic (X3), beyond quadratic (X2), and noise (X4, … , 

XD). Also reported are the percentages of times that all variables were correctly classified 

according to each method’s underlying classification scheme.

The proposed polynomial structure classification method performs well for all generative 

models, although both it and the linear and nonlinear discovery method generally perform 

less well for larger values of D, σ and η. Because the two methods are based on different 

classification schemes, predictor classification is not directly comparable, except with 

respect to the noise variables. The proposed method identified all noise variables for all 100 

simulated datasets for all generative models, whereas the linear and nonlinear discovery 

method missed some noise predictors, more in cases where σ, η and especially D were large.

For one simulated dataset with σ = 1, η = 0·5 and D = 10, we plot in Fig. 1 the nonzero 

optimizers  of (3) in the first variable selection step as functions of τ0. The optimizers 

corresponding to the important predictors, X1, X2 and X3, change to nonzero values quickly 

as τ0 increases and before any unimportant predictors show changes. Only four lines are 

visible in the graph because the optimizers corresponding to the other six predictors are zero 

for 0 ≤ τ0 ≤ 45.

Model 2

In the second data-generation model,  with f1(t)=3t, f2(t)=−4t, f3(t)=2t, 

f4(t)=2 sin(2πt), f5(t)=3 sin(2πt)/{2 – sin(2πt)}, f6(t)=5[0·1 sin(2πt) + 0·2 cos(2πt) + 

0·3{sin(2πt)}2 + 0·4{cos(2πt)}3 + 0·5{sin(2πt)}3] + 2t and f7(t)=2(3t – 1)2. Here ε ~ N(0, σ2) 

is independent of the predictors, with σ controlling the noise level; we take σ = 1 or 2. The 

dimension is D = 20 and so there are 13 noise predictors, X8, … , X20. For the linear and 

nonlinear discovery methods, X1, X2 and X3 are linear, X4 and X5 are nonlinear, and X6 and 

X7 are mixed linear-nonlinear. For our method, X1, X2 and X3 are linear, X7 is quadratic, and 

X4, X5 and X6 are beyond quadratic. Training samples of size n = 250 are used. Tables 3 and 

4 present the results from 100 simulated datasets in the same format as for Model 1. 

Conclusions about the performance of the methods are similar to those for Model 1.

8. Extension to partially linear models

The partially linear model is an extension of the additive model where, in addition to 

predictors X1, … , XD, there are predictors Z1, … , Zq known to contribute linearly, so that

(5)

The Zj commonly include indicators for categorical variables such as gender, race and 

location.

We illustrate the extension of our method to the partially linear model (5) via profiling by 

analysing the diabetes data from Willems et al. (1997). The goal of that study was to 
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understand the prevalence of obesity, diabetes and other cardiovascular risk factors. The 

data include 18 variables on each of 403 African American subjects from central Virginia, 

with some missing values. The response variable in our analysis is glycosolated 

haemoglobin, which is of interest because a value greater than 7·0 is usually regarded as 

giving a positive diagnosis of diabetes.

We exclude two variables, the second systolic blood pressure and second diastolic blood 

pressure, as they are missingness-prone replicates of two other included variables, the first 

systolic and first diastolic blood pressures. Doing so leaves 15 candidate predictors. Twelve 

of these 15 variables are continuous and are rescaled to the unit interval: X1 = cholesterol, X2 

= stabilized glucose, X3 = high density lipoprotein (hdl), X4 = cholesterol to hdl ratio, X5 = 

age, X6 = height, X7 = weight, X8 = first systolic blood pressure, X9 = first diastolic blood 

pressure, X10 = waist circumference, X11 = hip circumference, and X12 = postprandial time 

when samples were drawn. The remaining three variables are categorical variables for 

location, gender and frame. Location is a factor with two levels, Buckingham and Louisa; 

we set Z1 = 0 for Buckingham and Z1 = 1 otherwise. For gender we set Z2 =0 for female and 

Z2 =1 for male. The frame variable has three levels; we set Z3 = 0 and Z4 = 0 for small 

frames, Z3 = 1 and Z4 = 0 for medium frames, and Z3 = 0 and Z4 = 1 for large frames.

We fit the partially linear model (5) to study the dependence of glycosolated haemoglobin 

on the variables X1, … , X12, Z1, … , Z4, using the natural extension of the automatic 

structure recovery algorithm to discern the effects of X1, … , X12. We use the Bayesian 

information criterion to select tuning parameters. Our method identified X1, X3, X6, … , X12 

as unimportant predictors; X5 was selected to have a linear effect, X4 a quadratic effect, and 

X2 a beyond-quadratic effect.

As Fig. 2(a) shows, on the original scale X4 has one outlier, 19·3, far outside the range of the 

other observations, which are between 1·5 and 12·2. Upon removing the outlier and 

reapplying our method, X1, X3, X4, X6, … , X12 are identified as unimportant, X5 as having a 

linear effect, and X2 as having a beyond-quadratic effect. The nonlinear fit for X2 is shown 

in Fig. 2(b).

9. Discussion

We have proposed and studied the properties of a new automatic structure recovery and 

estimation method for the additive model. The method is readily generalizable and can be 

extended to generalized additive models (Hastie & Tibshirani, 1990) and survival data 

models (Cheng & Lee, 2009).

Classifying predictors into those that are unimportant and those that contribute through 

polynomials of specified degree is accomplished by using a nonparametric variable selection 

method based on the results of Stefanski et al. (2014). Like the nonparametric classification 

method proposed by Stefanski et al. (2014), each step of our new method uses regularization 

by bounding a sum of inverse kernel bandwidths. Other choices of penalty, such as 

for fixed γ ≥ 0, are possible and worthy of study. Based on our limited experience, γ = 1 

gives good overall performance. However, in light of the results in Stefanski et al. (2014), it 
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is expected that γ < 1 would increase sparsity whereas γ > 1 would decrease sparsity but 

yield regression function estimators that have better mean-squared error properties.

As noted by a referee, modifications to our method and additional development of the theory 

to accommodate the case of a diverging dimension D would be useful directions to pursue. 

Alternatively, for data with large D, one could precede the use of our method with 

application of one of the screening procedures recently developed by Fan et al. (2011) and 

Cheng et al. (2014).
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Appendix

For d = 1, … , D, denote the density of Xd by fd(·). We assume the following technical 

conditions from Fan & Jiang (2005), as our method is based on backfitting coupled with 

local polynomial smoothing.

Condition A1

The kernel function K(·) is bounded and Lipschitz continuous with bounded support.

Condition A2

The densities fd(·) are Lipschitz continuous and bounded away from zero over their bounded 

supports.

Condition A3

For all pairs d and d’, the joint density functions of Xd and Xd are Lipschitz continuous on 

their supports.

Condition A4

For all d = 1, … , D, the (pd + 1)th derivatives of md(·) exist and are bounded and 

continuous.

Condition A5

The error has finite fourth moment, E(∣ε∣4) < ∞.

For the backfitting estimate coupled with local polynomial smoothing as defined in § 3, we 

have the following asymptotic result.
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Lemma A1

Assume that Conditions A1–A5 hold and hd → 0 such that  as n n → ∞, for d 

= 1, … , D. Then

(A1)

Proof

Lemma A1 is a straightforward consequence of the third step in the proof of Theorem 1 in 

Fan & Jiang (2005). The term on the left-hand side of (A1) is RSS1/n in their notation, which 

they show converges in probability to σ2. Fan & Jiang (2005) did not explicitly state the rate 

of convergence, but it is readily deduced from their proof. We use their notation in the rest 

of this proof.

Note that RSS1 = εAn2ε + BTB + 2BT(WM – In)ε and An2 = In + STS – S – ST + Rn2, according 

to Fan & Jiang (2005, p. 903). Thus it is enough to track the convergence rates of the 

different terms. Also,  almost surely, according 

to (B.4) in Fan & Jiang (2005), and  by definition. Consequently, 

. By line 6 from the bottom of the right-hand column of p. 901 

in Fan & Jiang (2005), . By (B.11)–(B.

24), . As Rn2 = O(1T1/n) uniformly over its 

elements, . Combining these terms and noting that 

 completes the proof.

For k = 0, 1, … , let πk be the set of all polynomial functions of degree k. Define 

 to be the set of predictors with corresponding additive 

component functions which are polynomial of degree at most that of the corresponding local 

polynomial used in the backfitting algorithm. Denote its complement by 

.

Proposition A1

Suppose that Conditions A1–A5 hold, that hd ≥ c0 > 0 for  and some constant c > 0, 

and that hd’ → 0 and  as n → ∞ for . Then

WU and STEFANSKI Page 14

Biometrika. Author manuscript; available in PMC 2015 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A2)

Proof

Opsomer & Ruppert (1999) studied a backfitting estimator for semiparametric additive 

models and showed that the estimator of the parametric component is n1/2-consistent. The 

condition hd ≥ c0 > 0 for  and some c0 > 0 implies that the smoothing bandwidth hd is 

bounded away from zero for . As md(·) ∈ πpd for , there is no approximation 

bias in using local polynomial smoothing to estimate the corresponding component in the 

backfitting algorithm. Thus the techniques of Opsomer & Ruppert (1999) can be used to 

show that the estimator of md(·) for  is n1/2-consistent as hd > c0 > 0. The n1/2-

consistent rate is faster than the consistency rate for smoothing other components.

Proof of Proposition 1

It is easy to show by contradiction that  in probability for . If  is bounded 

for some , then the objective function of (3) converges to the sum of σ2 plus an 

additional positive term due to smoothing bias. The additional bias term is caused by 

bounded , as the corresponding smoothing bandwidth  does not shrink to zero. 

This is suboptimal, as the smallest limit of the objective is σ2. This proves that  in 

probability for .

In (3), local constant smoothing is used for every component function. Thus pd = 0 for d 1, 

… , D. The second term on the right-hand side of (A1) or (A2) is due to bias, and the third 

term is due to variance when using local polynomial smoothing for every component. The 

condition  as n → ∞ ensures that the variance term is dominated by the bias term. 

At the same time, note that a bounded and small λd for  does not introduce any extra 

term.

If  as n → ∞, consider  for  and 

for . In this case,  diverges to infinity at a faster rate than  for . 

Consequently, the asymptotic bias term on the right-hand side of (A2) using the  values is 

smaller than the bias term on the right-hand side of (A1) using  values. Here, smaller is in 

the sense of asymptotic order if , and in the sense of the constant 

multiplying the asymptotic order if  is bounded. Thus the set of  values with 

 as n → ∞ is suboptimal, as we are solving a minimization problem (3). This 

shows that  in probability for  and therefore completes the proof.
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Proof of Theorem 1

From Proposition 1, we have that  as n → ∞. Conditional on , 

we can prove that  as n → ∞ using arguments similar to those in the 

proof of Proposition 1. This process is iterated to complete the proof of the theorem.
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Fig. 1. 
Solution paths to optimization problem (3) for one simulated dataset from Model 1, plotted 

over 0 < τ0 ≤ 45. At τ0 = 40 the paths are, from bottom to top, for variables X9, X1, X3 and 

X2.
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Fig. 2. 
Results of applying our method to the diabetes data: (a) index plot of variable X4, with an 

outlier visible in the upper left corner; (b) the beyond-quadratic fit for X2 (stabilized 

glucose) after removing the X4 outlier.
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Table 1

Simulation results for Model 1: average integrated squared errors (×102) with standard deviations (×102) in 

parentheses

D σ η Oracle 1 SSANOVA LAND LANDr PSC Oracle 2

10

1
0·0 12·5 (5·5) 23·9 (9·0) 11·9 (7·4) 14·9 (6·8) 11·6 (6·2) 9·8 (4·9)

0·5 13·2 (5·4) 25·5 (8·8) 58·9 (36·8) 17·2 (7·3) 12·3 (5·9) 10·4 (4·4)

2
0·0 44·0 (22·9) 92·7 (41·6) 82·1 (48·0) 71·2 (42·4) 52·0 (34·7) 37·3 (21·9)

0·5 50·3 (26·3) 100·4 (35·9) 142·6 (47·9) 88·1 (38·0) 67·4 (34·9) 42·8 (21·7)

20

1
0·0 12·8 (5·4) 45·5 (14·3) 16·4 (12·6) 18·7 (9·7) 14·8 (7·8) 9·9 (4·4)

0·5 13·4 (5·7) 50·6 (19·6) 64·4 (36·0) 24·4 (11·6) 14·3 (8·9) 11·2 (5·4)

2
0·0 45·1 (21·0) 187·0 (65·8) 135·8 (70·9) 130·7 (60·1) 69·3 (40·7) 37·8 (18·5)

0·5 45·7 (18·9) 192·8 (62·8) 169·5 (63·5) 155·3 (63·8) 76·2 (41·7) 40·4 (19·6)

D, dimension; σ, model error standard deviation; η, predictor correlation parameter; SSANOVA, smoothing spline analysis-of-variance method; 
LAND, linear and nonlinear discovery method; LANDr, linear and nonlinear discovery method, refitted version; PSC, the proposed polynomial 
structure classification method; Oracle 1, oracle for LAND and LANDr; Oracle 2, oracle for PSC.
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Table 3

Simulation results for Model 2: average integrated squared errors (×102) with standard deviations (×102) in 

parentheses

σ η Oracle 1 SSANOVA LAND LANDr PSC Oracle 2

1
0·0 15 (4) 25 (6) 16 (5) 17 (5) 14 (4) 14 (4)

0·5 15 (4) 25 (6) 16 (5) 17 (6) 15 (6) 13 (4)

2
0·0 52 (14) 91 (22) 58 (20) 66 (19) 56 (17) 48 (13)

0·5 47 (16) 86 (24) 77 (34) 73 (31) 64 (26) 44 (15)

σ, model error standard deviation; η, predictor correlation parameter; SSANOVA, smoothing spline analysis-of-variance method; LAND, linear 
and nonlinear discovery method; LANDr, linear and nonlinear discovery method, refitted version; PSC, the proposed polynomial structure 
classification method; Oracle 1, oracle for LAND and LANDr; Oracle 2, oracle for PSC.
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