Skip to main content
. Author manuscript; available in PMC: 2015 Dec 2.
Published in final edited form as: Biometrika. 2015 Mar 11;102(2):381–395. doi: 10.1093/biomet/asu070

Table 4.

Summary of predictor classification performance of the linear and nonlinear discovery method and the proposed method for Model 2

LAND PSC
σ η L NL LN Nil CC L Q BQ Nil CC
1 0·0 3·0 1·6 2·0 12·5 47 3·0 1·0 3·0 13·0 99
0·5 3·0 1·1 2·0 11·8 16 2·9 1·0 3·0 13·0 89
2 0·0 3·0 1·5 1·9 11·2 14 2·8 1·0 3·0 13·0 74
0·5 3·0 0·8 1·8 9·7 1 2·2 1·0 2·8 13·0 23
Average SD 0·2 0·6 0·2 2·0 0·3 0·1 0·1 0·1

LAND, linear and nonlinear discovery method; PSC, the proposed polynomial structure classification method; σ, model error standard deviation; η, predictor correlation parameter; L, linear; NL, nonlinear; L-N, linear-nonlinear mixture; Nil, noise; CC, proportion (%) of models with fully correct variable classifications; Q, quadratic; BQ, beyond quadratic; Average SD, block-averaged standard deviation.