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SUMMARY

HIV latency is the chief obstacle to eradicating HIV but is widely believed to be an evolutionary 

accident providing no lentiviral fitness advantage. However, findings of latency being “hardwired” 

into HIV’s gene-regulatory circuitry appear inconsistent with latency being an evolutionary 

accident, given HIV’s rapid mutation rate. Here, we propose that latency is an evolutionary “bet-

hedging” strategy whose frequency has been optimized to maximize lentiviral transmission by 

reducing viral extinction during mucosal infections. The model quantitatively fits the available 

patient data, matches observations of high-frequency latency establishment in cell culture and 

primates, and generates two counterintuitive but testable predictions. The first prediction is that 

conventional CD8-depletion experiments in SIV-infected macaques increase latent cells more than 

viremia. The second prediction is that strains engineered to have higher replicative fitness—via 

reduced latency—will exhibit lower infectivity in animal-model mucosal inoculations. 

Therapeutically, the theory predicts treatment approaches that may substantially enhance 

“activate-and-kill” HIV-cure strategies.
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INTRODUCTION

HIV actively replicates in CD4+ T lymphocytes but can also enter a long-lived quiescent 

state termed proviral latency in memory CD4+ T cells (Chun et al., 1997a; Finzi et al., 

1997). The population of latently infected cells is relatively small in patients (~1 in 106 

CD4+ T cells) and does not generate significant viral RNA (Pierson et al., 2000). However, 

latently infected cells provide a critical viral reservoir, which enables lentiviral persistence 

even during prolonged antiretroviral therapy (ART). Further, if patients interrupt ART, 

persisting latent viruses reactivate, driving HIV to pre-treatment viral loads within weeks 

(Richman et al., 2009). Consequently, latency is the chief barrier to a curative HIV therapy.

While latency enables HIV to avoid extinction during ART, the benefit of latency prior to 

the ART era—during the centuries of natural lentiviral infections—remains unclear. In fact, 

latency appears to have been deleterious prior to ART since latently infected cells produce 

no virus and decrease patient viral loads. Given latency’s reduction of lentiviral replicative 

fitness, the prevailing hypothesis is that latency is an evolutionary accident—an 

epiphenomenon that only results when lentiviruses infectCD4+ T cells that are transitioning 

from activated to quiescent memory states (Coffin and Swanstrom, 2013; Eisele and 

Siliciano, 2012; Han et al., 2007). Latency is therefore viewed to be an infrequent bystander 

effect that only occurs after a viral-driven adaptive immune response initiates and CD4+ T 

lymphocytes begin to form memory subsets. Yet, a recent study in Rhesus macaques 

indicates that latency reaches high levels within the first 3 days of infection (Whitney et al., 

2014), which is prior to the generation of an SIV-specific adaptive immune response 

(Kuroda et al., 1999).

If latency were a non-beneficial viral trait or epiphenomenon, one would expect it to have 

been lost due to natural selection or genetic drift, given lentiviruses’ rapid evolutionary 

rates. Yet, a companion study (Razooky et al., 2015 [this issue of Cell]) demonstrates that 

the ability to establish latency is “hardwired” into HIV’s gene-regulatory circuitry. This 
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study matches recent data showing that ~50% of cell-culture infections—in which adaptive 

immune responses are absent—result in lentiviral latency (Calvanese et al., 2013; Dahabieh 

et al., 2013). Further, HIV’s auto-regulatory Tat circuit appears optimized to amplify 

stochastic fluctuations in viral gene expression, producing fluctuations that are sufficient to 

induce a probabilistic switch to latency (Burnett et al., 2009; Weinberger et al., 2005; 

Weinberger et al., 2008). In general, stochastic expression noise is thought to be selected 

against and thus filtered out of regulatory circuits when not beneficial (Batada and Hurst, 

2007; Fraser et al., 2004). The persistence of a hardwired latency circuit suggests an 

unknown selective advantage, which outweighs latency’s putative fitness cost of reducing 

long-term viral loads.

One possible selective benefit is that—by providing a long-lived viral reservoir—latency 

could enhance lentiviral survival during unfavorable environmental conditions. Similar “bet-

hedging” hypotheses (Cohen, 1966) have been proposed for bacteriophage- γ lysogeny 

(Arkin et al., 1998) and bacterial persistence (Balaban, 2011). However, lentiviral latency 

would only provide a bet-hedging advantage if there were risks of viral extinction due to 

environmental fluctuations. In reality, lentiviruses appear in little danger of population 

crashes, as they evade immune clearance and maintain high viral loads of ~105 particles/ml 

of blood plasma for years (and lentiviruses clearly did not evolve under pressure from 

antiretroviral drugs). Further, lentiviruses only infect a small percentage (~1%–2%) of 

available target cells, making target-cell fluctuations unimportant during chronic infection. 

Nevertheless, viral loads remain low during one phase of the lentiviral lifecycle: initial 

mucosal infection.

The probability of successful mucosal infection is low, with <1% of unprotected sex acts 

between HIV-discordant couples resulting in self-propagating systemic HIV infections 

(Fraser et al., 2007; Gray et al., 2001; Wawer et al., 2005). When successful infections do 

occur, they expand from single founder sequences (Kearney et al., 2009; Keele et al., 2008), 

indicating that only one variant in the transmitted quasispecies avoids extinction. Further, 

animal models of HIV capture a consistent ~6 day delay from experimental mucosal 

inoculation to self-propagating infection (Haase, 2011; Zhang et al., 1999), which implies 

that the first days of lentiviral infection provide conditions unsuitable for viral growth.

The unfavorable conditions of early lentiviral infections typically occur in the mucosa, 

where >90% of HIV infections initiate (Haase, 2011). HIV’s evolutionary precursor in non-

human primates (SIV) also spreads through mucosal transmission—via sexual activity or 

fighting with subsequent communal wound licking (Santiago et al., 2005). Mucosal 

challenge experiments in primates with large inoculations provide direct evidence that the 

mucosa are initially unfavorable to lentiviral growth: large inoculations of ~109 infectious 

units (by TCID50) initially burn out within ~5 days (Miller et al., 2005). Quantitatively, 

each initially infected cell lives for ~1 day (Markowitz et al., 2003), so the number of 

actively infected cells after 5 days scales with (R0
muc)5 — wherein R0

muc is the basic 

reproductive ratio during early mucosal infection. Since actively infected cells crash within 

~5 days (Miller et al., 2005), (R0
muc)5 approaches 0, implying that R0

muc < < 1 during initial 

mucosal infection.
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Here, we quantitatively test the hypothesis that latency provides a bet-hedging advantage 

that increases the probability of successful lentiviral transmission despite reducing viral 

loads during systemic infection (Figure 1A). The key point is that increasing the probability 

of latency (plat) increases the probability that each initially infected cell survives initial 

mucosal infection. Yet, increasing plat also decreases viral loads in systemically infected 

hosts, which reduces the inoculum transmitted to new hosts. With a higher per-cell survival 

rate but fewer initially infected cells, the question is whether latency’s fitness benefits 

outweigh its costs—which would establish latency as an evolutionarily beneficial trait that is 

maintained by natural selection.

RESULTS AND DISCUSSION

Mathematical Models of Lentiviral Transmission and Rationale for Models

Three classes of mathematical models are developed to quantify the net impact of latency on 

lentiviral transmission (Figure S1). Each class of models generalizes the well-parameterized 

basic model of viral dynamics (Nowak and May, 2000) to include both proviral latency and 

the conditions of early mucosal infection (i.e., R0
muc < 1) during which latency may be 

critical (Experimental Procedures).

The first class of models tracks initial lentiviral infection in the mucosa alone (Extended 

Experimental Procedures, Section A). Given the small numbers of infected cells during 

initial mucosal infection, the established model of mucosal infection is stochastic (Pearson et 

al., 2011). We analyze this experimentally parameterized stochastic model—and a 

deterministic approximation to this model—to quantify how the probability of viral 

extinction in the mucosa depends on the probability of latency (plat).

The second class of models extends the single-compartment model into a two-compartment 

model (Figure 1B) that tracks both initial infection in the mucosa and systemic infection in 

the lymphoid tissue (Extended Experimental Procedures, Section B). Importantly, the initial 

and systemic infection model compartments only differ in a single experimentally measured 

parameter: R0 (Figure 1B and Table S1). Collectively, the models predict an optimal value 

of  that matches latency frequencies measured in cell culture (Calvanese et al., 

2013; Dahabieh et al., 2013) and is consistent with latency levels measured in mucosal 

primate infections (Whitney et al., 2014). However, the large value of plat does not match 

the low frequencies of latency observed in chronically infected patients (Chun et al., 1997b; 

Ho et al., 2013).

The third class of models incorporates a canonical immune response (Nowak and May, 

2000) into the two-compartment model (Extended Experimental Procedures, Section C)—

since a key difference between cell-culture models and chronic infection is the presence of 

an adaptive immune response. Each immune parameter added is either tied to a distinct 

patient-measured value or has been measured previously in the literature (Table S2). With 

SUPPLEMENTAL INFORMATION
Supplemental Information includes Extended Experimental Procedures, five figures, and two tables and can be found with this article 
online at http://dx.doi.org/10.1016/j.cell.2015.02.017.
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no added free parameters, the immune model fits all available patient data and predicts the 

same robust  value.

Latency’s Net Evolutionary Impact Is the Product of Its Impact on Both Initial Infection and 
Systemic Infection

To calculate the optimal plat value, the two-compartment models track latency’s net 

evolutionary impact across both mucosal and systemic infections. While the nonlinear 

models are complex, we decouple latency’s net impact on viral transmission into a product 

of two factors: (1) the average initial inoculum of infected cells per mucosal inoculation (I0), 

and (2) the probability that an initially infected cell establishes systemic infection (pestab) 

(Figure 1A). This product can be derived analytically when the number of infected cells is 

Poisson distributed and when each infected cell lineage is statistically independent. Under 

these two assumptions, the probability of lentiviral transmission per-mucosal inoculation 

(ptransmission) reduces to:

[1]

The equality in Equation [1] is a direct calculation of the Poisson probability that at least 

one infected cell in the inoculum I0 establishes systemic infection. Critically, ptransmission < 

10−2 since < 1% of lentiviral infections result in self-propagating infections (Gray et al., 

2001; Wawer et al., 2005). Given the equality, ptransmission < 10−2 immediately implies that 

pestab I0 < ~10−2.

Having used the equality to establish that pestab I0 < ~10−2, we can discard the quadratic and 

higher-order terms in the Taylor Series expansion of e−pestabI0 with negligible impact. This 

leads to the subsequent approximation (i.e., linearization) in Equation [1]: ptransmission ≈ 

pestab I0.

Given Equation [1], the overall goal of determining whether latency’s benefits outweigh its 

costs reduces to quantifying latency’s impact on pestab and I0.

Latency Increases the Probability that an Initially Infected Cell Survives Mucosal Infection 
and Establishes Systemic Infection

To quantify latency’s impact on pestab, we begin by tracking lentiviral survival during 

mucosal infection alone. As noted above, the first 5 days of mucosal infection are 

characterized by a lack of detectable actively infected cells (Li et al., 2005; Miller et al., 

2005), indicating that R0 in the mucosa (R0
muc) is initially < < 1 (Extended Experimental 

Procedures, Section D). R0
muc < < 1 is also consistent with the infrequency of successful 

mucosal transmissions (ptransmission < 0.01) and the ~6-day delay before systemic infection 

when lentiviral infections do establish (Miller et al., 2005).

Both deterministic differential equations models (Figure 2A) and stochastic Monte-Carlo 

models (Figures S2A and S2B) capture the fitness advantage of latency in the mucosa. 

Model simulations are performed with R0 < 1 and an inoculated dose of virus that results in 

a few dozen initially infected cells, matching animal mucosal experiments (Haase, 2011; 
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Miller et al., 2005; Zhang et al., 1999). The quantitative models show that—in the absence 

of latency—all virions and infected cells are driven extinct in the first 5 days of mucosal 

infection (Figures 2A, inset, and S2A). In contrast, low levels of latency enable viral 

survival (Figures 2A and S2B). To test the robustness of these predictions across all R0 < 1 

and I0 < 100, a continuous-time branching-process model was developed (Grimmett and 

Stirzaker, 1992). The branching-process model (Extended Experimental Procedures, Section 

A) directly computes the viral extinction probability as a function of time, providing an 

efficient alternative to averaging thousands of Monte-Carlo simulations for each R0 and I0. 

In the absence of latency, the viral extinction probability approaches 1 by day 5 of mucosal 

infection, except in the small slice when R0 ≈ 1 (Figures S2C and S2D)—which does not 

match the levels of R0 inferred from animal mucosal challenge experiments (Miller et al., 

2005).

For completeness, the surviving number of mucosally infected cells was directly computed 

using a Wright-Fisher model (Hartl and Clark, 2007; Extended Experimental Procedures, 

Section A). The Wright-Fisher simulations demonstrate that the surviving number of 

mucosally infected cells increases approximately linearly with plat for each I0 (Figures S2E–

S2G). This linear dependence can also be derived analytically. Given that R0
muc < < 1 

during initial mucosal infection, the majority of latently infected cells are produced in the 

first generation of infection (Extended Experimental Procedures, Section A). Since these 

cells are unlikely to reactivate during the short duration of initial infection, the number of 

latently infected cells that survive mucosal infection is ≈ platI0, the latent fraction of the 

inoculum. Thus, both simulations and analytics indicate that increasing plat approximately 

linearly increases the number of infected cells that survive initial mucosal infection.

Given that latency appears to increase viral survival in the early mucosa, we next tested 

whether latency increases the probability of systemic infection, which mainly occurs in the 

lymphoid tissue where >98% of CD4+ T cells reside (Murphy, 2011). To do so, the Wright-

Fisher model was extended into a two-compartment model that directly captures the two 

typical stages of lentiviral infection: early mucosal infection and systemic (lymphoid) 

infection (Extended Experimental Procedures, Section B). Only a single parameter value is 

assumed to differ between the early mucosal and systemic infection compartments. While 

R0
muc is parameterized to be <1, R0 during systemic infection in the lymphoid tissue (R0

LT) 

is set to 10 to match its value in chronically infected patients (Nowak and May, 2000).

The two-compartment model fits the available human and animal data of early infections, 

showing that: (1) only a small fraction of mucosal infections result in systemic infections 

(Fraser et al., 2007), (2) successful systemic infections emerge after ~5–7 days (Haase, 

2011), and (3) systemic infections initiate from single “founder” infected cells (Kearney et 

al., 2009; Keele et al., 2008). More importantly, the two-compartment model directly shows 

that latency increases the probability (pestab) of systemic infection—with pestab maximized 

when plat > 0.6 (Figure S2H; Extended Experimental Procedures, Section E).

Latency Decreases the Inoculum in a New Host

While increasing plat increases the probability of systemic lymphoid infection for any given 

inoculum of initially infected cells (I0), the probability of lentiviral infection also depends on 
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I0 itself. Critically, I0 is proportional to the viral load of the transmitting patient (Extended 

Experimental Procedures, Equation S4). Thus, we can quantify latency’s impact on I0 by 

measuring latency’s impact on viral loads in systemically infected patients.

To track latency’s effect on systemic viral loads, we simulated the deterministic model in the 

lymphoid compartment alone (i.e., R0 = 10). Initial mucosal infection was not tracked in 

these simulations because of the data showing that systemic infections emerge from single 

“founder” viruses independent of the inoculum (Kearney et al., 2009; Keele et al., 2008). 

These data indicate that mucosal dynamics affect the probability of systemic infection, but 

not the level once established. Thus, we assumed the existence of a single founder infected 

cell and solved Equation [6] numerically. Assuming successful systemic establishment, the 

systemic infection model shows that increasing plat decreases long-term viral loads (Figure 

2B). Consequently, increasing the frequency of latency (plat) decreases infection inocula (I0) 

at the population scale.

The Evolutionarily Optimal Probability of Latency Is ~0.5

Given Equation [1], if latency’s benefit to pestab exceeds its cost to I0, then latency increases 

the probability of lentiviral transmission (ptransmission). Mathematically, this net evolutionary 

benefit of latency can only occur if the (evolutionarily optimal) value of plat that maximizes 

ptransmission is greater than 0. Here, we test whether the maximizing value of plat is greater 

than 0, directly quantifying latency’s net evolutionary benefit.

We first derive pestab as a function of plat. After initial mucosal infection, only latently 

infected cells persist, with the number of surviving latently infected cells defined to be 

. As noted above, due to R0
muc < < 1, the majority of mucosal latent infections emerge 

in the first generation of infection, making  (Figures 2A, S2F, and S2G). At 

least one of these surviving infected cells must be reactivated (with probability preact) to 

establish systemic infection. Thus, the per-inoculum probability of establishing systemic 

infection is:

[2]

Equation [2] emerges from the result that only latently infected cells survive initial infection 

in the mucosa (Figures 2A and S2A–S2E). To demonstrate robustness, below we introduce a 

“leakage” probability (fnonlatent) that reflects the fraction of systemic infections that are 

established by non-latent cells—including Langerhans dendritic cells, actively infected cells, 

and free virions.

We next solve for I0 as a function of plat. As noted above, the average infectious dose (i.e., 

I0) that can be transmitted to a new individual is directly proportional to the time integral of 

the viral load— ∫ V(t)dt, Equation [S4]—over the duration of systemic infection (Nowak 

and May, 2000). Analytically solving this time integral yields (Extended Experimental 

Procedures, Section B):
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[3]

The constant term in Equation [3] only implies constant in plat—it may depend on other 

parameters. Further, Equation [3] is solved under the assumption that latently infected cells 

rarely reactivate prior to cell death (i.e., r < < dL in Table S1). This conservative assumption 

reduces the optimal level of latency by presuming that latently infected cells generally die 

before contributing to viral loads. Given this maximal fitness cost, latency reduces the 

reproductive ratio during systemic infection, R0
LT, by the factor (1 − plat).

By combining Equations [1–3], ptransmission emerges as a function of plat (Figure 2C):

[4]

Equation [4] shows that, for each value of R0
LT, the probability of viral transmission has an 

optimum at a specific plat. To analytically derive this optimum, we make the simplifying 

assumption that preact is constant in plat. This makes 

. Differentiating the simplified transmission 

probability with respect to plat yields the following optimal probability of latency, denoted 

:

[5]

Strikingly, for a typical value of R0
LT ~10 (Nowak and May, 2000),  is the 

probability of latency that maximizes lentiviral transmission (Figure 2C).

In agreement with these analytic derivations, numerical solutions also show that ptransmission 

has an optimum at plat ≈ 0.5 (Figure 2D). The numerical simulations are generated by 

directly calculating ∫ V(t)dt in model runs, rather than approximating it via Equation [3]. 

Sensitivity analyses show that this optimum at plat ≈ 0:5 exists across the entire observed 

range of R0
LT values (Figure 2D).

Large Optimal Latency Probability Is Robust to Changes in Model Assumptions

The main prediction of a large  value remains valid even if one removes key 

mathematical assumptions. In particular, the two-compartment Wright-Fisher model 

(Extended Experimental Procedures, Section B) inverts the assumption that preact is constant 

in plat, allowing preact to strongly decrease in plat. Even in this extreme scenario—in which 

latency has a substantial fitness cost beyond its reduction of viral loads during systemic 

infection—  (Figure S2I). Similarly, the large  value remains valid when one 

relaxes the assumption that only latently infected cells seed systemic infections. To show 

this, we analytically re-calculated  when a fraction (fnonlatent) of successful infections are 

established via non-latent routes (Extended Experimental Procedures, Section E). Even if 
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80% of lentiviral transmissions are established via non-latent routes, . More 

generally, as long as fnonlatent is less than 100%, latency remains evolutionarily beneficial 

(Figures 2E and S2J).

Strikingly, relaxing other model assumptions increases the large  value. For example, 

relaxing the assumption that latently infected cells die prior to reactivation (i.e., r < < dL) 

reduces the cost of latency during systemic infection and therefore increases the optimal 

latency probability. In fact, if r ≥ dL,  (Extended Experimental Procedures, Section 

E). Further, if lentiviral transmissibility saturates at high viral loads (Fraser et al., 2007)—so 

that latency’s decrease of steady-state viral loads does not decrease I0—then  would 

again equal 1, due to the absence of a cost to latency (Extended Experimental Procedures, 

Section E).

Simplified Two-Compartment Model Fits the High Frequencies of Latency Measured in 
Experimental Models

The predicted value of  matches the latency frequencies of 50% (Dahabieh et al., 

2013) or higher (Calvanese et al., 2013) measured in cell culture.  is also consistent 

with a recent in vivo study in Rhesus macaques, in which a large reservoir of latently 

infected cells is documented on day 3 of mucosal infection (Whitney et al., 2014). However, 

 is inconsistent with the low latency frequencies measured in chronically infected 

patients. Only 1 in 106–107 patient CD4+ T cells appear to be latently infected (Chun et al., 

1997a; Sedaghat et al., 2007). This has led to estimates of plat ~10−5 − 10−4 (Rong and 

Perelson, 2009a; Sedaghat et al., 2007). While more recent studies indicate that the latency 

frequency in patient cells is ~60-fold higher (Ho et al., 2013), this still leaves plat < < 0.5 

during chronic infection. Below, we show that the dichotomy between latency’s high 

frequency in early infection and cell culture and latency’s low frequency in chronic infection 

can be explained by the onset of the adaptive immune response.

Mathematical Models Incorporating the Immune Response Are Required to Explain the 
Divergent Latency Frequencies between Experimental Models and Patients

Unlike early mucosal infections or cell-culture infections, chronic lentiviral infections 

contain an HIV-specific adaptive immune response (Turnbull et al., 2009). Previous work 

has shown that this adaptive immune response must be incorporated into the basic model of 

viral dynamics (De Boer and Perelson, 1998; Nowak and May, 2000) to fit the 2–3 log drop 

in viral loads between the viral peak during acute infection and the viral set point established 

during chronic infection (Stafford et al., 2000). We hypothesized that incorporating a 

canonical adaptive immune response (De Boer and Perelson, 1998; Nowak and May, 2000) 

would also be necessary to observe the reduced level of latently infected cells documented 

during chronic infection.

A substantial body of literature suggests that the model assumptions that plat and r are 

constant must be relaxed to account for the adaptive immune response. In particular, the 

activation levels of CD4+ T cells appear to increase during chronic infection in vivo, as is 
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measured by the expression levels of three activation markers (Li et al., 2005) and the 

increased turnover rates of CD4+ T cells (Mohri et al., 1998). While the exact mechanism is 

unknown, one potential driver of CD4+ T cell activation is the body’s homeostatic response 

to the depletion of CD4+ T cells during acute infection (Mohri et al., 1998). Another 

potential mechanism is CD8+ T cells’ secreting activating cytokines such as TNF-α 

(Murphy, 2011). Whatever the mechanism, cellular activation factors sharply decrease plat 

and sharply activate HIV transcription (Calvanese et al., 2013; Chun et al., 1998; Siliciano 

and Greene, 2011), for example, by accumulating transcription factors (e.g., NF-κB) that 

activate the HIV LTR promoter. Further, in the companion study (Razooky et al., 2015), 

mathematical modeling shows that cellular activation levels bias HIV circuit output (i.e., plat 

and r), even though latency is hardwired into the circuit.

Since an adaptive immune response is associated with an increase in CD4+ T cell activation 

levels (Li et al., 2005) that reduces plat and increases r (Calvanese et al., 2013; Chun et al., 

1998; Siliciano and Greene, 2011), we hypothesized that the adaptive-immune response 

could be responsible for the reduced plat levels in chronically infected patients (Figure 3A). 

This hypothesis was quantitatively tested by allowing plat and r to vary as functions of the 

effector CD8+ T cell concentration, E[t] (Extended Experimental Procedures, Section C). 

Before the initiation of the adaptive-immune response (i.e., before chronic infection), the 

model naturally generates high latency probabilities of ~0.5 and low reactivation rates, as in 

the simplified models above. However, after the viremia peak, cellular activation (Li et al., 

2005) and cell death (Doitsh et al., 2010) become substantial, increasing r(E[t]) to high 

levels and decreasing plat(E [t]) to low levels (Figure 3B). As a result, the immune model 

mechanistically explains the divergent latency frequencies measured between experimental 

models (cell culture and non-human primates) and chronically infected patients (Figure 3B).

Models Incorporating the Immune Response Fit Available Patient Data while Retaining the 
Robust Optimal Latency Prediction

While the immune-response model interprets the low levels of plat measured during chronic 

infection, validation against all available patient data is a critical test of the model. Thus, 

wetested whether the model could recapitulate extant patient data on: (1) viral loads before 

ART (Fraser et al., 2007), (2) effector T cell concentrations before ART (Turnbull et al., 

2009), (3) latently infected cells before ART (Chun et al., 1997b), and (4) latently infected 

cells after ART (Finzi et al., 1999). Strikingly, the extended immune-response model is able 

to fit these four data plateaus (Figure 4A), using established parameter estimates (Table S2). 

In particular, the immune- response model reproduces the depressed latent reservoir of ~106 

cells measured in chronically infected patients. Further, the model captures the ~1 log drop 

in the latent reservoir under ART (Figure 4A), because ART leads to antigen depletion. This 

causes the immune-cell population to contract and the reactivation rate r(t) to decrease to its 

low background level. To be sure that these fits were not artifacts due to model complexity, 

we also tested simplified immune response models (Extended Experimental Procedures, 

Section E). While these simplified models fit the four steady-state plateaus, they cannot 

reproduce the pre-steady-state kinetics measured in patients (Figure S3). In contrast, the full 

immune model fits both steady-state and pre-steady-state kinetics (Figure 4A, inset), 
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including the viral decay kinetics measured in patients who undergo ART (Markowitz et al., 

2003).

Critically, the level of the adaptive immune response does not change the prediction of the 

simplified model (i.e., the model without an immune response) that the initial latency 

probability plat(0) has a large optimum of ~0.5 (Figures 4B and S3). As a result, the 

prediction of the high optimal latency probability is directly applicable to natural lentiviral 

hosts even if they exhibit depressed immune responses. Further, as in the simplified models 

lacking an immune response, the large  value is preserved even when a large fraction of 

systemic infections are mediated by non-latent cells (Extended Experimental Procedures, 

Section E). The optimal latency prediction is also robust to perturbations of epidemiological 

assumptions, such as the monotonic dependence of lentiviral transmission on viral loads 

(Extended Experimental Procedures, Section E). Overall, the robustness of  in the 

immune model matches the robustness of  in the simplified models.

Experimental Depletion of CD8+ T Cells in SIV-Infected Macaques Will Increase the Latent 
Reservoir ~3 Logs More Than Viremia

The immune model argues that CD8+ T cells depress the latent reservoir during chronic 

infection—either directly (e.g., through secreted cytokines) or indirectly (e.g., through 

activation of downstream cell types that secrete factors). Thus, a direct test of the model can 

be achieved by depleting CD8+ T cells with anti-CD8 antibodies. CD8 depletion should 

increase the latency probability (plat) toward its original high value of ~0.5 and 

concomitantly decrease the reactivation rate (r) toward its original low value. In fact, the 

model quantitatively predicts the outcome of this experiment. Whereas previous CD8 

depletion studies have already measured an ~1–3 log increase in the number of actively 

infected cells following CD8 depletion in SIV-infected Rhesus macaques (Jin et al., 1999; 

Metzner et al., 2000; Schmitz et al., 1999), the model predicts that the latent reservoir will 

increase by ~5 logs following CD8 depletion (Figure 5A). Thus, the increase in the latent 

reservoir would be ~3 logs greater than the increase in actively infected cells and viremia 

(Figure 5B). A corollary prediction is that CD8 depletion during early pre-peak infection 

(Matano et al., 1998), prior to a high-level adaptive immune response, will only increase the 

latent reservoir ~2- to 3-fold and will thus be harder to reliably measure (Figure S4). 

Notably, these experimental tests of the model require viral outgrowth assays (Finzi et al., 

1997) since directly measuring proviral DNA will only report on actively infected cells, 

which outnumber latently infected cells by orders of magnitude. A viral outgrowth assay 

post-CD8 depletion would provide quantitative verification of the model and would 

consequently test the model’s output that latency is a viral bet-hedging strategy tuned by 

natural selection.

Viral Strains Engineered to Have Higher Replicative Fitness—via Reduced Latency—Will 
Exhibit Lower Infectivity in Animal-Model Mucosal Inoculations

A more direct experimental test of the model would involve mucosal challenge experiments 

using recombinant SIV strains engineered to have substantially reduced latency 

probabilities. Engineering strains with reduced latency efficiencies appears possible since 
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different HIV-1 clades are already known to exhibit different latency frequencies. These 

clade-specific differences appear to be driven by cis elements within the HIV-1 LTR 

(Jeeninga et al., 2008; van der Sluis et al., 2011). The model directly predicts that the 

reduced-latency recombinants will establish self-propagating systemic infections less 

frequently than the wild-type strains maintaining high latency frequencies. Further, these 

reduced latency strains could be quantitatively tested for increased replicative fitnesses via 

competitive growth assays with wild-type strains. If decreasing latency both increased 

replicative fitness and decreased successful lentiviral transmission, this would directly show 

that proviral latency provides a bet-hedging advantage that increases viral transmission 

despite reducing steady-state viral loads.

Proviral Latency Contrasted with Alternate Mechanisms of Initial Viral Survival

A natural question is whether alternatives to latently infected CD4+ T cells exist that also 

increase the probability of initial viral survival in the mucosa. One proposed non-latent route 

is dendritic cell migration from the mucosa to the target-cell rich lymphoid tissue (Kahn and 

Walker, 1998; Wu and KewalRamani, 2006). More specifically, Langerhans dendritic cells 

present in the mucosa can be infected by HIV and are prone to migration to the lymphoid 

tissue, where they can support subsequent dissemination of HIV by cis transfer (Peressin et 

al., 2014). Yet, Langerhans cells’ dissemination of HIV may be partially blocked by 

neutralizing antibodies (Su et al., 2012). Follicular dendritic cells may provide another route 

of viral survival; however, these cells do not migrate to the mucosa (Murphy, 2011). In 

contrast to dendritic cells, proviral latent cells are neither impacted by neutralizing 

antibodies (being quiescent) nor blocked by the mucosal barrier, which has been proposed to 

be a viral bottleneck (Haaland et al., 2009). Latency can thus act as a type of “Trojan horse” 

for the virus. More fundamentally, even if alternative routes of initial viral survival exist, the 

results of this study (i.e., ) remain robust as long as latency seeds some fraction of 

systemic infections (Figures 2E and S2J).

Suppressing Latent Reactivation in the First Week of Infection Could Substantially Reduce 
the Latent Reservoir, Enhancing “Kick-and-Kill” Therapy

The model presents a potential therapeutic strategy that exploits the need for latently 

infected cells to reactivate to both establish systemic infection and dramatically increase the 

size of the latent reservoir (Figure S5). Thus, if the early reactivation rate were reduced—for 

example, by suppressing antigen- presenting cell (APC) migration (Peressin et al., 2014) or 

HIV transcriptional reactivation (Weinberger et al., 2008)—systemic infection would be 

rendered less likely and the latent reservoir size would be substantially decreased (Figure 

S5). While a caveat of this proposed approach is detection and treatment within the first 

week of infection, similar early treatments have been achieved; for a review, see Haase 

(2011). Critically, a substantially smaller latent reservoir of ~102 cells would require the 

reactivation of far fewer latent cells by imperfect “shock-and-kill” strategies (Archin et al., 

2012; Deeks, 2012). As a result, suppression of reactivation during the first week of 

infection followed by shock and kill could substantially enhance the chances of HIV 

eradication.
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Implications for Alternate Antiviral Therapy Approaches

A further implication of the result that latency is a hardwired, evolutionarily maintained trait 

is that it may be easier to control HIV by increasing, rather than purging, the latent reservoir 

(Dar et al., 2014; Weinberger and Weinberger, 2013; Weinberger et al., 2008). Current 

shock-and-kill therapies are fighting natural selection in attempting to reactivate each of 

~105 latent cells. In contrast, discovering a non-toxic compound that switches 90%–95% of 

actively infected cells to latency would drive HIV’s basic reproductive ratio (R0) below 1, 

making HIV infection unsustainable. While still a hypothetical avenue, enhancing viral 

latency may provide a viable alternative if shock-and-kill strategies fail to achieve their goal 

of complete eradication.

EXPERIMENTAL PROCEDURES

A Simplified Two-Compartment Model to Quantify the Net Impact of Latency on Lentiviral 
Transmission

All models described in the main text are variations of the well-parameterized basic model 

of viral dynamics (Nowak and May, 2000) expanded to include latent infections (Rong and 

Perelson, 2009a, 2009b; Sedaghat et al., 2007, 2008). Absent an immune response, the 

deterministic form of the models is captured by the following ordinary differential 

equations:

[6]

In the model above, uninfected “target” cells (T) are produced at rate b, decay at rate dT, and 

can be infected by virus particles (V) at rate k. Upon viral infection, target cells become 

either latently infected cells (L) with probability plat or become actively infected (virus-

producing) cells (I) with probability 1 − plat. Latently infected cells reactivate into actively 

infected cells at rate r or die at the (slow) rate dL. Actively infected cells produce “burst 

sizes” of n virions as they die at rate dI. Virions decay at the relatively fast rate c. All 

parameter values are given in Table S1; Table S2 contains parameters for the model 
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extended to include an adaptive immune response (Extended Experimental Procedures, 

Section C).

Critically, the infection models can be simplified by re-parameterizing the equations interms 

of thebasic reproductiveratio:R0=bkn/cdT.This “non-dimensionalization” enables us to 

capture the disparate dynamics between mucosal infection (Figure 2A) and systemic 

infection (Figure 2B) by simulating the same model for both infection stages and only 

varying a single parameter, R0. Further, R0
muc is experimentally bounded to be < < 1 from 

the viral dynamics during initial infection (Miller et al., 2005), and R0
LTis similarly 

measured to be ~10 during systemic infection (Nowak and May, 2000). As a result, no 

assumptions about unknown parameter values are needed to obtain the optimal latency 

probability ( ). More directly, Equation [5] shows that ( ) only depends on R0
LT (for 

detailed derivations and tests of the models, see Extended Experimental Procedures).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mathematical model proposes evolutionary basis for HIV latency

• Hardwired latency circuit enhances HIV transmission across target-cell-poor 

mucosa

• Predicted optimal latency rate for HIV transmission matches measured levels

• Model predictions are testable in primates by modulating latency rates or CD8 

levels
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Figure 1. HIV Latency as a Bet-Hedging Strategy for Maximizing Viral Transmission
(A) Schematic of the lentiviral transmission process. Lentiviral transmission is illustrated as 

a two-compartment process, beginning with viral inoculation in the mucosa and progressing

—in some cases—to systemic infection in the lymphoid tissue, where >98% of CD4+ T cells 

reside (Murphy, 2011). The parameter plat reflects the probability that an HIV-infected cell 

enters latency. An HIV strain incapable of entering latency (plat = 0) would generate 

increased viral loads during systemic infection, transferring more virions to new hosts. 

However, the latency-incapable virions would rapidly destroy the small CD4+ T cell 

Rouzine et al. Page 19

Cell. Author manuscript; available in PMC 2016 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population initially present in the mucosa of the new host—reducing the probability of 

systemic infection (upper). In contrast, an HIV strain capable of entering latency (plat > 0) 

would generate lower viral loads during systemic infection, transferring fewer virions to new 

hosts. Yet, the relatively few transferred virions would not destroy all mucosal target cells. 

By entering long-lived latency in some mucosal cells, the latency-capable strain would 

increase its probability of surviving initial infection to establish systemic infection (lower).

(B) Schematic of the two-compartment model of lentiviral transmission. The two major 

processes controlling the probability of lentiviral transmission (ptransmission) are: (1) the 

inoculum of infected cells (I0) and (2) the probability that an infected cell in the inoculum 

survives initial infection to establish systemic infection (pestab). (Right to left) HIV enters a 

host mucosal site, but due to the small number of permissive target cells in the early mucosa 

(prior to day 6), R0 < 1. To successfully establish systemic infection, the virus must avoid 

extinction until R0 > 1. Critically, the likelihood of an actively infected cell or a free viral 

particle surviving until day 6 to initiate systemic infection is negligible since virus-

producing cells die within 40 hr of infection and viral progeny are cleared from the system 

~100-fold more rapidly. In contrast, latently infected cells are long-lived and can reactivate 

once R0 > 1 to initiate systemic viral expansion. Therefore, despite reducing long-term viral 

loads, latency may increase ptransmission by increasing viral survival during initial infection. 

This would make latency evolutionarily beneficial at the population scale.

See also Figure S1
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Figure 2. An Evolutionary Optimum for Latency
(A) Numerical solutions to Equation [6] showing the dynamics of latently infected cells in 

early mucosal infection (R0
muc = 0.25). As plat increases, the number of surviving latently 

infected cells increases. (Inset) The dynamics of actively infected cells in early mucosal 

infection showing that as plat increases, actively infected cells reach extinction more rapidly.

(B) In systemic infection, (R0
LT = 10), increases in plat decrease the virus load (and, 

therefore, the viral dose transmitted to the next host). Dynamics in (A and B) are calculated 

numerically from Equation [6], using the parameters in Table S1 (r = 0).

Rouzine et al. Page 21

Cell. Author manuscript; available in PMC 2016 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Schematic flowchart of the derivation of the (optimal) latency probability  that 

maximizes ptransmission. Red text indicates key assumptions made at each step of the 

derivation. For example, R0
muc < < 1 implies that the vast majority of latently infected cells 

during initial infection are produced in the first generation, leading to the approximation 

. The results of the analytic derivation quantify the tradeoff of latency: 

increasing plat linearly increases pestab but decreases I0 by the factor (1-plat). Since this 

tradeoff is almost equally balanced, the optimal latency probability, , approximately 

equals 0.5.

(D) Normalized probability of host-to-host transmission (ptransmission) as a function of plat. 

Results shown are obtained either analytically, from Equation [5] (magenta line), or 

numerically using the plateau levels of actively infected cells (I) and latently infected cells 

(L) simulated in A and B (magenta dots). As in C, the probability of transmission is 

maximized when plat ~0.5.

(E) Normalized probability of host-to-host transmission when systemic infections emerge 

from non-latent routes (e.g., dendritic cells) with probability fnonlatent > 0 (Equations [S12 

and S13]). The maximum probability of transmission occurs at slightly lower plat values, but 

 is still large.

See also Figure S2.
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Figure 3. Incorporating the Immune Response Explains the Divergent HIV-Latency Frequencies 
between Experimental Models and Patients
(A) Extended model of systemic HIV infection, which includes CD8+ T cells (E) that kill 

actively infected cells (or suppress viral replication) and activate latently infected cells 

(Equations [S9] and [S10]).

(B) The latency probability (plat) and reactivation rate (r) change dramatically around the 

time of the viremia peak due to the immune response (e.g., due to bystander cytokine 

activation by immune cells, Equation [S10]). Inclusion of immune cells into the model is 
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capable of interpreting the low incidence of latently infected cells in chronically infected 

patients.

Rouzine et al. Page 24

Cell. Author manuscript; available in PMC 2016 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. The Extended Immune-Response Model Fits the Available In Vivo Data and Does Not 

Change the Optimal Latency Probability for Resting Cells, 
(A) Dynamics of cell compartments during systemic infection calculated from Equations 

[S9] and [S10]. Antiretroviral therapy (ART) initiated during steadystate infection causes a 

decline of the latent reservoir (L). The saturation of the fall in the latent reservoir is due to 

the decline in immune cells (E) during ART. (Data points across human patients) Virus load 

prior to ART (Fraser et al., 2007) (green triangles); latent cells prior to ART (Chun et al., 

1997b) and after highly active ART (Finzi et al., 1997) (cyan triangles); effector CD8 T cells 
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(Turnbull et al., 2009) (red triangles). For each data set (triangles), box-and-whisker plots 

show the upper and lower quartiles of the patient data. (Blowout) Virus load after the onset 

of ART (Markowitz et al., 2003) (green triangles, error bars show SD).

(B) Normalized transmission rate ptransmission as a function of plat(0) calculated from the 

dynamics in A and Equation [1]. Two cases are shown for comparison: with immune cells 

(E, green triangles) and without immune cells (E = N = 0, blue curve). Inclusion of immune 

cells into the model only weakly affects the prediction of a large optimal latency probability 

for resting cells, . Model parameters in A and B are in Tables S1 and S2 (with 

R0
LT = 15 and plat(0) = 0.5 in A). See also Figure S3.
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Figure 5. Depletion of CD8+ T Cells in SIV-Infected Macaques Is Predicted to Increase the 
Latent Reservoir Significantly More Than Viremia
(A) Predicted dynamics in systemic infection for the extended model (Equations [S9] and 

[S10]). Data points and parameters are as in Figure 4, with the upper and lower quartiles of 

the patient data (triangles) shown in box-and-whisker plots.

(B) The ratio of virions to latently infected cells will be inverted following CD8+ T cell 

depletion (post-depletion corresponds to day 125 in A). The dramatic 2-log increase in 

viremia has been observed, as shown by the data points at 1 week post-depletion in Jin et al. 

(1999) and Schmitz et al. (1999). The dashed horizontal line at 10−3 RNA/ml/cell 

corresponds to a 1:1 ratio of latently and actively infected cell counts. Blue bars correspond 

to the parameters and compartment sizes in the simulation example in A. The maximal 

expected errors (vertical bars) are estimated from the whisker box borders in A (the two 

middle quartiles). Since the dynamic balance between actively infected cells and latently 

infected cells is modulated by plat and r, the depletion of immune cells affecting plat and r is 

predicted to change this balance and disproportionately increase the latent reservoir.

See also Figures S4 and S5.
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