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SUMMARY

All plants are inhabited internally by diverse microbial communi-
ties comprising bacterial, archaeal, fungal, and protistic taxa.
These microorganisms showing endophytic lifestyles play crucial
roles in plant development, growth, fitness, and diversification.
The increasing awareness of and information on endophytes pro-
vide insight into the complexity of the plant microbiome. The
nature of plant-endophyte interactions ranges from mutualism to
pathogenicity. This depends on a set of abiotic and biotic factors,
including the genotypes of plants and microbes, environmental
conditions, and the dynamic network of interactions within the
plant biome. In this review, we address the concept of endophy-
tism, considering the latest insights into evolution, plant ecosys-
tem functioning, and multipartite interactions.

INTRODUCTION

Endophytes are microorganisms that spend at least parts of
their life cycle inside plants. Endophyte definitions have

changed in the past years and expectedly will evolve further over
the coming years. The term “endophyte” has commonly been
used for fungi living inside plants, but later researchers realized
that interior parts of plants could be colonized by bacteria as well
(1, 2). Plants do not live alone as single entities but closely associ-
ate with the microorganisms present in their neighborhood, and
especially with those living internally. The emergence of the con-
cept of the “plant microbiome,” i.e., the collective genomes of
microorganisms living in association with plants, has led to new
ideas on the evolution of plants where selective forces do not act
merely on the plant genome itself but rather on the whole plant,
including its associated microbial community. Lamarckian con-
cepts of acquired heritable traits may be explained via the holog-
enome concept by vertical transmission of valuable traits provided
by endophytes to plants (3).

The most common definition of endophytes is derived from
the practical description given in 1997 by Hallmann and coau-
thors (2), who stated that endophytes are “. . .those (bacteria) that
can be isolated from surface-disinfested plant tissue or extracted
from within the plant, and that do not visibly harm the plant.”
This definition has been valid for cultivable species in most labo-
ratories in the world over the past 2 decades. However, due to the
suspected lack of adequate elimination of nucleic acids after dis-
infection of plant surfaces, this definition appeared to be less suit-
able for noncultured species upon the introduction of molecular
detection techniques in endophyte research (4).

Conceptual aspects related to the nature of endophytes are

under dispute. For instance, must plant pathogens be considered
endophytes or not, even when they have lost their virulence (5)?
Recently, a typical bacterial group of endophytes beneficial to
plants, the group of fluorescent pseudomonads, turned out to be
detrimental to leatherleaf ferns under specific conditions (6). This
indicates that potential plant mutualists can become deleterious
for their hosts. Endophytes should not be harmful to the plant
host, but what about harmfulness to other species, for instance,
when particular bacteria that colonize internal compartments of
plants are harmful to humans (7)?

The most common endophytes are typed as commensals, with
unknown or yet unknown functions in plants, and less common
ones are those shown to have positive (mutualistic) or negative
(antagonistic) effects on plants (2). However, these properties are
often tested in a single plant species or within groups of closely
related plant genotypes, but rarely over a taxonomically wide
spectrum of plant species. Also, the environmental conditions
wherein plant-endophyte interactions are studied are often rather
narrow. Furthermore, interactions between members of the en-
dophyte community have rarely been investigated. A few studies
demonstrated that interactions between taxonomically related
microbial endophytes can shift whole populations inside the plant
(8, 9). Bacterial and fungal endophytic communities are com-
monly investigated separately, but the interaction between both
groups inside plants can become a fascinating new field in endo-
phyte research (10).

Studies of plant-endophyte interactions are commonly based
on controlled, optimized conditions for growth of host plants and
seldom based on variable, field-realistic conditions. Effects as-
cribed to endophytes in healthy plants might change when host
plants are grown under less favorable, or even stressful, condi-
tions. In conclusion, our current understanding of endophytes is
built on a rather small set of experimental conditions, and more
varied experimental settings would be required for deeper insight
into endophyte functioning. Because of this and the general pref-
erence to investigate microbial species that are relatively easy to
cultivate, our knowledge of the ecology and interactions of endo-
phytes in plants is still biased.

New developments in high-throughput technologies, such as
next-generation sequencing, permit the investigation of complex
microbiomes and will facilitate larger sample sizes and encourage
deeper analyses of microbial communities (11). The new “omics”
approaches are valuable tools for exploring, identifying, and char-
acterizing the contributions of genetic and metabolic elements
involved in the interactions between host plants and endophytes.
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For instance, metagenome sequencing has revealed important
functions required for survival of bacterial endophytes inside
plants (12), and metabolome analysis demonstrated the effects of
beneficial endophytes on primary metabolites of plants (13). The
combination of cultivation-independent and improved cultiva-
tion technologies will allow the exploration of hitherto uncultured
groups living in association with plants (14, 15). In addition, the
locations of endophytes in different plant compartments are dis-
putable (16), but powerful image analyses can provide informa-
tion about the exact colocalization within plant tissues and about
physical contacts between different microbial groups (17–19). We
are reaching a pivotal point in our perception of endophytes, and
we expect that technical innovations in microbial detection will
soon drastically change our concepts of endophytes as living enti-
ties colonizing internal plant compartments.

In this paper, we present a historical overview of the endophyte
research leading to the current understanding of endophytes. The
state of science for defined groups of endophytes is described in
succeeding sections, based on the vast number of peer-reviewed
publications on endophytes, which have been growing exponen-
tially over the last 3 decades. Furthermore, we elaborate the ex-
pected impacts of novel technologies on endophyte research. It is
our purpose to revisit current concepts on endophytes and to
assess directions for new research on microbial endophytes based
on the latest technological developments.

HISTORY OF ENDOPHYTE DEFINITIONS

The German botanist Heinrich Friedrich Link was the first to de-
scribe endophytes, in 1809 (20). At that time, they were termed
“Entophytae” and were described as a distinct group of partly par-
asitic fungi living in plants. Since then, many definitions have
evolved; for a long time, they mostly addressed pathogens or par-
asitic organisms, primarily fungi (21–23). Only Béchamp de-
scribed so-called microzymas in plants, referring to microorgan-
isms (24). Generally, in the 19th century, the belief was that
healthy or normally growing plants are sterile and thus free of
microorganisms (postulated by Pasteur; cited in reference 25).
Nevertheless, Galippe reported the occurrence of bacteria and
fungi in the interior of vegetable plants and postulated that these
microorganisms derive from the soil environment and migrate
into the plant, where they might play a beneficial role for the host
plant (26, 27). Other studies in the late 19th century and the be-
ginning of the 20th century confirmed the occurrence of beneficial
microorganisms within plants (28, 29). Nevertheless, contrasting
views on the existence of plant-beneficial endophytes prevailed at
that time (28, 30–34). Nowadays, it is a well-established fact that
plants are hosts for many types of microbial endophytes, includ-
ing bacteria, fungi, archaea, and unicellular eukaryotes, such as
algae (35) and amoebae (36).

An important discovery was made in 1888 by the Dutch micro-
biologist Martinus Willem Beijerinck, who isolated root nodule
bacteria in pure culture from nodules of Leguminosae plants and
showed that these isolates, which were later classified as Rhizo-
bium leguminosarum (37), were capable of fixing atmospheric ni-
trogen (38). At the same time, Hermann Hellriegel and Hermann
Wilfarth reported mineral N independence of leguminous plants,
as well as the importance of symbiotic nitrogen fixation by rhizo-
bia (39). Albert Bernhard Frank reported another important mu-
tualistic symbiosis, i.e., the living together of unlike organisms
(40), between roots of trees and underground fungi (41). He

coined the term “mycorrhiza” to describe the interaction, which
literally means “fungus roots.”

More recently, in 1991, Orlando Petrini defined endophytes as
“all organisms inhabiting plant organs that at some time in their
life cycle can colonize internal plant tissues without causing ap-
parent harm to their host” (42). Since then, many definitions have
been formulated (2, 43–48), essentially all pertaining to microor-
ganisms which for all or part of their life cycle invade tissues of
living plants without causing disease. Although this endophyte
definition has been the basis of many studies and might be a prag-
matic approach to distinguish between endophytes and patho-
gens, it has some drawbacks and raises some questions.

First, this definition is more suitable for cultivated endophytes,
as only with those is it possible to assess phytopathogenicity. How-
ever, in most cases, pathogenicity assays are not performed, or
they are performed with only one plant species, although patho-
genicity might occur with a different plant genotype or under
different conditions. Second, it is well known that some bacteria
may live as latent pathogens within plants and become pathogenic
under specific conditions (6) or are pathogens of other plants.
Third, it has been shown that bacterial strains belonging to a well-
known pathogenic species of a specific plant host may even have
growth-promoting effects on another plant (49, 50). These find-
ings demonstrate that it is not trivial to clearly distinguish a non-
pathogenic endophyte from a pathogen and that properties such
as pathogenicity or mutualism may depend on many factors, in-
cluding plant and microbial genotype, microbial numbers, and
quorum sensing or environmental conditions. With cultivation-
independent analyses, it is now even more difficult to assess the
pathogenicity of individual microbiome members. In conclusion,
we question the currently applied definition of endophytes and
claim that the term “endophyte” should refer to habitat only, not
function, and therefore that the term should be more general and
include all microorganisms which for all or part of their lifetime
colonize internal plant tissues.

PLANT-MICROBE SYMBIOSES

Different groups of bacteria and fungi interact with higher plants.
Genetic links between the association of plants with arbuscular
mycorrhizal fungi (AMF) and root nodule symbioses have been
found (51–53), suggesting that at least segments of bacterial and
fungal endophytic populations coevolved with each other and
with their host. Mutualistic interactions leading to adaptive ben-
efits for both partners occasionally evolved to even more complex
forms, in which more than two partners were involved (10).

Evolution of Plant-Fungus Symbioses

Plant-fungus symbioses are known to have occurred during early
colonization of land by terrestrial plants (54). The fungal group
Glomeromycota has for a long time been the prime candidate for
interaction with the first terrestrial plants, in the Ordovician era,
but members of the Mucoromycotina are also speculated to have
had symbiotic interactions with the first terrestrial plants (55).
The association between AMF and plants evolved as a symbiosis,
facilitating the adaption of plants to the terrestrial environment
(56). The oldest known fossils representing terrestrial fungi with
properties similar to those of AMF were collected from dolomite
rocks in Wisconsin and are estimated to be 460 million years old,
originating from the Ordovician period (54). It was therefore as-
sumed that terrestrial AMF already existed at the time when bryo-
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phyte-like, “lower” plants covered the land. All other plant-AMF
interaction types, such as ectomycorrhiza and orchid and ericoid
mycorrhiza, appeared later and are considered to be derived from
the first interactions between AMF and the first terrestrial plants
(57).

It is assumed that no tight interactions between plants and fungi
occurred initially but that, due to nutritional limitations, interac-
tions between both partners evolved (57). It is still unknown
whether the first AMF were already mutualistic symbionts or
whether mutualistic lifestyles evolved from pathogenic forms. The
internal spaces of plants became important habitats for plant-
colonizing fungi. Specific tissue layers, such as the endodermis
and exodermis, evolved, forming the borders of cortex cells sur-
rounding fungi internalized in the roots (57). This finally resulted
in the formation of arbuscules, which are typical structures in
plant-AMF interactions. AMF became more dependent on their
host for energy sources and adopted an obligate life cycle. On the
other hand, intraradical hyphae increased the total root surface
area of the host plant, allowing substantially more nutrient (P)
uptake from the soil environment. As evolution progressed, more
extreme forms of plant-fungus interactions appeared, such as my-
coheterotrophic plants, i.e., plants that fully exploit their fungal
counterparts during interaction (58).

Evolution of Plant-Bacterium Symbioses

The best-described plant-bacterium interaction is the one be-
tween leguminous plants and rhizobia. The interactions of
nitrogen-fixing bacteria belonging to the genera Azorhizobium,
Bradyrhizobium, Ensifer, Mesorhizobium, Rhizobium, and Sinorhi-
zobium (collectively called “rhizobia”; for a full list of genera, see
http://www.rhizobia.co.nz/taxonomy/rhizobia) are capable of in-
ducing differentiation in root nodule structure, as demonstrated
in Fabaceae and Parasponia plants (60). Typical symptoms in
roots of leguminous plants infected by rhizobia are curling of root
hairs and the appearance of infection threads and, finally, nodule
primordia in the inner root layers—these are all processes medi-
ated by signal exchange between plants and rhizobia (for a review,
see reference 61). In primordium cells, the bacteria become sur-
rounded by the plant membrane, and together, the bacteria and
plant structure form the symbiosome, in which atmospheric ni-
trogen is fixed and transferred in exchange for carbohydrates (62).
Symbiosomes have a structure similar to that of mycorrhizal ar-
buscules, which are also surrounded by a plant membrane. It is
interesting that a number of legume-nodulating rhizobial strains
form endophytic associations with monocotyledonous plants,
such as rice (63), maize (64), and sugarcane (65), and dicotyle-
donous plants, such as sweet potato (66). Although nodule pri-
mordia were not observed, rhizobial nifH transcripts were found
inside roots of rice and sugarcane plants (12, 65). The contribu-
tion of rhizobium-assimilated nitrogen to the total nitrogen pool
in nonleguminous plants is still a matter of debate (67).

Recent studies revealed that the nature of the association of
both AMF and rhizobia with host plant species can be mutualistic,
parasitic, or nonsymbiotic (68, 69). A meta-analysis demonstrated
that the plant response to AMF depends on various factors, most
importantly the host plant type and N fertilization (69). Apart
from mutualistic rhizobia, parasitic strains which infect legumes
but fix little or no nitrogen have been reported (68). The rhizobi-
um-legume symbiosis seems to be characterized by a continuum
of different types of symbiotic interactions, in many cases depen-

dent on the presence of symbiotic genes, frequently located on
plasmids, needed for the mutualistic interaction (70).

ENDOPHYTE DIVERSITY

Prokaryotic Endophytes

We present an overview of prokaryotic endophytes reported to
date, based on a curated database (see Data Sets S1 and S2 in the
supplemental material) comprising all currently available 16S
rRNA gene sequences assigned to endophytes (published in peer-
reviewed journals indexed to the PubMed or Web of Science da-
tabases and deposited in the International Nucleotide Sequence
Database Collaboration repository, as of 1 March 2014). Only
sequences longer than 300 bp and from studies that applied
well-established surface sterilization procedures, such as the ap-
plication of sodium hypochlorite (NaOCl) or mercury chloride
(HgCl2), were included. The database comprises 4,146 16S rRNA
gene sequences from isolates (56%) and 3,202 16S rRNA gene
sequences from uncultured organisms (44%). Sequences from
earlier next-generation high-throughput sequencing technologies
(e.g., 454 pyrosequencing) were able to produce only relatively
short nucleotide stretches (i.e., �300 bp), which limits the dis-
criminatory power for classification of different taxonomic
groups, and thus were not included in our database.

Prokaryotic endophytes considered in this database are diverse
and comprise 23 recognized and candidate phyla (2 from Archaea
and 21 from Bacteria) (Table 1; see Fig. S1 in the supplemental
material). Despite this remarkable diversity, more than 96% of the
total number of endophytic prokaryotic sequences (n � 7,348) are
distributed among four bacterial phyla (54% Proteobacteria, 20%
Actinobacteria, 16% Firmicutes, and 6% Bacteroidetes). These
phyla have also been reported to be dominant in the plant envi-
ronment (71, 72). The database comprises only a few (n � 29)
sequences from Archaea, which were mainly detected in coffee
cherries (73), rice and maize roots (74, 75), and the arctic tundra
rush Juncus trifidus (76).

Most of the prokaryotic endophytes (26%) could be assigned to
the Gammaproteobacteria, including 56 recognized and 7 uniden-
tified genera as well as the “Candidatus Portiera” genus (see Data
Set S1 and Fig. S2 in the supplemental material). It should be
noted that Gammaproteobacteria also comprise a large number of
genera and species which are known as phytopathogens (77, 78).
Endophytic Gammaproteobacteria are largely represented by a few
genera: Pseudomonas, Enterobacter, Pantoea, Stenotrophomonas,
Acinetobacter, and Serratia (�50 sequences each) (see Fig. S2).
Members of the genus Enterobacter associate with diverse organ-
isms, and their ecological relationships range from mutualism to
pathogenesis. For instance, four species of Enterobacter in plants
have been described as opportunistic pathogens, whereas many
others (at least five) are beneficial to the host (79), including a
monophyletic clade that was recently named Kosakonia (80). The
nature of the interactions of other members of the Gammaproteo-
bacteria, including Pseudomonas, Pantoea, and Stenotrophomonas
species, is similar to that for Enterobacter, with few species de-
scribed as plant pathogens and many others described as plant
mutualists. Similarly, the Alphaproteobacteria encompass a large
number (18%) of endophytic sequences, belonging to 57 recog-
nized and 14 unidentified genera as well as the “Candidatus
Liberibacter” genus (see Data Set S1 and Fig. S3). Most of the
sequences can be assigned to the genera Rhizobium and Bradyrhi-
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zobium, known for their N2-fixing symbioses with legumes, and
Methylobacterium and Sphingomonas (�50 sequences each) (see
Fig. S3). Methylobacterium is capable of growth on methanol as
the sole source of carbon and energy and has been hypothesized to
potentially dominate the phyllosphere environment (81). The Be-
taproteobacteria sequences (10%) comprise 53 recognized and 10
unidentified genera of endophytes (see Data Set S1), mainly be-
longing to Burkholderia, Massilia, Variovorax, and Collimonas
(�40 sequences each) (see Fig. S4). Burkholderia strains have the
potential to colonize a wide range of hosts and environments (82),
suggesting a great metabolic and physiological adaptability of en-
dophytes belonging to this genus.

Among Gram-positive endophytes, the class Actinobacteria
(20%) comprises diverse endophytes belonging to 107 recognized
and 15 unidentified genera (see Data Set S1 in the supplemental
material). Most of the sequences group with the genera Strepto-
myces, Microbacterium, Mycobacterium, Arthrobacter, and Curto-

bacterium (�50 sequences each) (see Fig. S5). Members of the
genus Streptomyces are well known for their capacity to synthesize
antibiotic compounds (83). The class Bacilli (15%) comprises 25
recognized and 2 unidentified genera of endophytes (see Data Set
S1). The genera Bacillus, Paenibacillus, and Staphylococcus have
more than 100 sequences assigned to them (see Fig. S6). Within
the genus Bacillus, the species Bacillus thuringiensis is well known
for its production of parasporal crystal proteins with insecticidal
properties (84).

Overall, most bacterial endophytes belong to mainly four phyla,
but they encompass many genera and species. Their functions
cannot be assigned clearly to taxonomy and seem to depend on the
host and environmental parameters.

Eukaryotic Endophytes

A data set of eukaryotic endophytic full-length internal tran-
scribed spacer (ITS) regions was also built for this study (see Data
Set S3 in the supplemental material). A total of 8,439 sequences
were retrieved from the National Center for Biotechnology Infor-
mation (NCBI) nucleotide database (Table 2 shows the details of
data retrieval and analysis; data were current as of 1 August 2014).
Endophytes mainly belong to the Glomeromycota (40%), Ascomy-
cota (31%), Basidiomycota (20%), unidentified phyla (8%), and,
to a lesser extent, Zygomycota (0.1%) (Table 2).

The phylum Glomeromycota only comprises endophytes known
as arbuscular mycorrhizal fungi (AMF) (85) (see Data Set S3 in the
supplemental material). Most of the eukaryotic endophytes (39%)
can be assigned to the class Glomeromycetes. All members of this
class form ubiquitous endosymbioses with most land plants and
are of undeniable ecological and economic importance (86–88).
AMF of the genera Glomus and Rhizophagus form obligate symbi-
oses with a wide variety of host plants from the subkingdom Em-
bryophyta (86). Among the Ascomycota, a large number of endo-
phytes are identified in the class Dothideomycetes (15%). Besides
endophytes, many members of the Dothideomycetes class are ne-
crotrophic plant-pathogenic fungi, which are remarkable because
of their production of host-specific toxins, such as phytotoxic me-
tabolites and peptides that are biologically active only against a
particular plant species (89–92). Overall, this class contains many
species of the genera Alternaria and Epicoccum comprising endo-
phytes (see Data Set S3). Although Alternaria brassicae is consid-
ered an opportunistic plant pathogen (93), it is frequently de-
tected in high abundance in healthy plants (94, 95). Many
members of the class Sordariomycetes (9%) are endophytes, such
as species of the genera Balansia, Epichloë, Nemania, Xylaria, and
Colletotrichum, but this class is also well known for phytopatho-
genic members, such as Cryphonectria parasitica (the causal agent
of chestnut blight), Magnaporthe grisea (rice blast), Ophiostoma
ulmi and Ophiostoma novo-ulmi (Dutch elm disease), and Fusar-
ium, Verticillium, and Rosellinia species (96).

Among the Basidiomycota (Table 2), the class Agaricomycetes
(18%) contains a large number of endophytes, mainly mush-
room-forming (basidiome) fungi causing wood decay, white and
brown rot saprotrophs, and the beneficial ectomycorrhiza (EMC)
symbionts (97). Furthermore, members of the order Sebacinales
form mycorrhizal symbioses with a broad range of plants, includ-
ing woody plants and members of the families Orchidaceae and
Ericaceae and the division Marchantiophyta (98). Additional
assigned classes containing endophytes are Atractiellomycetes,
Cystobasidiomycetes, Microbotryomycetes, and Tremellomycetes

TABLE 1 Summary of the endophytic data set from all peer-reviewed
publications with prokaryotic 16S rRNA gene sequencesa

Phylogenetic affiliationb

No. of
sequences

% of
sequences

Bacteria 7,319
Acidobacteria 53 0.72
Actinobacteria 1,461 19.88
Armatimonadetes 6 0.08
Bacteroidetes 462 6.29
GOUTA4c 1 0.01
ODc 6 0.08
TM7c 2 0.03
Chlamydiae 8 0.11
Chlorobi 5 0.07
Chloroflexi 3 0.04
Cyanobacteria 102 1.39
Deinococcus-Thermus 7 0.1
Elusimicrobia 1 0.01
Firmicutes

Bacilli 1,132 15.41
Clostridia 68 0.93

Fusobacteria 3 0.04
Nitrospirae 3 0.04
Planctomycetes 5 0.07
Proteobacteria

Alpha- 1,337 18.2
Beta- 736 10.02
Delta- 26 0.35
Epsilon- 3 0.04
Gamma- 1,878 25.56

Spirochaetae 3 0.04
Tenericutes 2 0.03
Verrucomicrobia 6 0.08

Archaea 29
Euryarchaeota 23 0.31
Thaumarcheota 6 0.08

Total 7,348
a Endophytic sequences with �300 bp were retrieved from peer-reviewed manuscripts
available in the ISI Web of Science and PubMed databases (as of 1 March 2014).
b Based on comparison with the small-subunit rRNA SILVA database (version 115)
(372) by using the SINA aligner (364).
c Candidate division phyla.
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(see Data Set S3 in the supplemental material). Similar to the case
for bacterial endophytes, various taxa comprise known phyto-
pathogens and strains without known pathogenic effects, indicat-
ing that the functions of endophytic fungi also cannot necessarily
be linked to taxonomy.

LIFESTYLES OF ENDOPHYTES

Degrees of Intimacy between Plants and Endophytes

Microorganisms can be strictly bound to plants and complete a
major part or even their entire life cycle inside plants. Microor-
ganisms requiring plant tissues to complete their life cycle are
classified as “obligate.” Well-documented examples of obligate
endophytes are found among mycorrhizal fungi and members of
the fungal genera Balansia, Epichloë, and Neotyphodium, from the
family Clavicipitaceae (Ascomycota) (99, 100). On the other ex-

treme are “opportunistic” endophytes that mainly thrive outside
plant tissues (epiphytes) and sporadically enter the plant endo-
sphere (101). Among these are rhizosphere-competent colonizers,
such as bacteria of the genera Pseudomonas and Azospirillum and
fungi of the genera Hypocrea and Trichoderma (102–105). It is
interesting that endophytes, which are transmitted vertically via
seeds, are often recovered as epiphytes, suggesting that various
endophytes might also colonize surrounding host plant environ-
ments (106, 107). Between these two extremes is an intermediate
group, which comprises the vast majority of endophytic microor-
ganisms, the so-called “facultative” endophytes. Whether faculta-
tive endophytes use the plant as a vector for dissemination or are
actively selected by the host is still a matter of debate (107–110).
However, facultative endophytes consume nutrients provided by
plants, which would in fact reduce the ecological fitness of the host
plant. This point is therefore often used as an argument that the
so-called facultative endophytes must be mutualists in plants,
even if the details of the interaction are unclear.

Overlaps exist between these three groups; thus, these catego-
ries must be considered “marking points” within the continuum
of colonization strategies existing among endophytes. Indepen-
dent of class, the microbial species thriving inside plant tissues are
ecologically fit to survive and to proliferate under the local condi-
tions of the plant interior, and aspects of survival are discussed
later.

COLONIZATION OF THE ENDOSPHERE

Colonization Behavior of Fungal Endophytes

Successful colonization by endophytes depends on many vari-
ables, including plant tissue type, plant genotype, the microbial
taxon and strain type, and biotic and abiotic environmental con-
ditions. Different colonization strategies have been described for
clavicipitaceous and nonclavicipitaceous endophytes (111, 112).
Species of the Clavicipitaceae, including Balansia spp., Epichloë
spp., and Claviceps spp., establish symbioses almost exclusively
with grass, rush, and sledge hosts (47, 113), in which they may
colonize the entire host plant systemically. They proliferate in the
shoot meristem, colonizing intercellular spaces of the newly form-
ing shoots, and can be transmitted vertically via seeds (113). Some
Neotyphodium and Epichloë species may also be transmitted hor-
izontally via leaf fragments falling on the soil (114). At the stage of
inflorescence development, the mycelium of Neotyphodium can
also colonize ovules and be present during infructescence devel-
opment in the scutellum and the embryo, as demonstrated for
Lolium perenne (115). When the inflorescence of the grass host
develops, Epichloë can also grow over the developing inflorescence
and form stromata, which can be differentiated sexually with the
help of Botanophila flies (116).

Based on colonization characteristics, Rodriguez et al. (117)
classified clavicipitaceous endophytes as class 1 fungal endo-
phytes. Fungi colonizing above- and below-ground plant tissues,
i.e., the rhizosphere, endorhiza, and aerial tissues (118), and being
horizontally and/or vertically transmitted (119) were grouped as
class 2 fungal endophytes (117). Class 3 endophytes were defined
to contain mostly members of the Dikaryomycota (Ascomycota or
Basidiomycota), which are particularly well studied in trees, but
also in other plant taxa and in various ecosystems (120–126).
Members of this class are mostly restricted to aerial tissues of var-
ious hosts and are horizontally transmitted (127, 128). Class 4

TABLE 2 Summary of the endophytic data set from all peer-reviewed
eukaryotic full-length ITS sequences (as of 1 August 2014)a

Taxonomic assignmentb

No. of
sequences

% of
sequences

Total 8,439

Ascomycota 2,610 30.92
Archaeorhizomycetes 2 0.02
Dothideomycetes 1,272 15.07
Eurotiomycetes 54 0.64
Incertae sedis 2 0.02
Lecanoromycetes 5 0.06
Leotiomycetes 171 2.03
Orbiliomycetes 0 0
Pezizomycetes 112 1.33
Saccharomycetes 11 0.13
Sordariomycetes 785 9.30
Unidentified 196 2.32

Basidiomycota 1,712 20.3
Agaricomycetes 1,560 18.49
Atractiellomycetes 26 0.31
Cystobasidiomycetes 3 0.04
Exobasidiomycetes 0 0
Microbotryomycetes 23 0.27
Pucciniomycetes 1 0.01
Tremellomycetes 30 0.36
Ustilaginomycetes 0 0
Unidentified 69 0.82

Glomeromycota 3,390 40.17
Glomeromycetes 3,294 39.03
Unidentified 96 1.14

Zygomycota
Incertae sedis 5 0.06

Unidentified 722 8.56
a Fungal ITS sequences were retrieved from the NCBI nucleotide database by using the
following search strings for the endophytic data set: “Endophyt*[ALL] AND
nuccore_PubMed[Filter] AND internal[Title]” and “Mycorrhiza*[ALL] AND
nuccore_PubMed[Filter] AND internal[Title].” Full-length ITS (ITS1, 5.8S, and ITS2
regions) sequences were extracted using ITSx (365) and assigned to operational
taxonomic units (OTUs; definition set at 97% sequence similarity) with UCLUST
(366), using the QIIME pipeline (367).
b Based on comparison with the UNITE fungal ITS reference database (version 6)
(368), using the QIIME pipeline (367).
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endophytes comprise dark, septate endophytes, which, similar to
mycorrhizal fungi, are restricted to roots, where they reside inter-
and/or intracellularly in the cortical cell layers (129).

Colonization Behavior of Bacterial Endophytes

Many bacterial endophytes originate from the rhizosphere envi-
ronment, which attracts microorganisms due to the presence of
root exudates and rhizodeposits (130, 131). Mercado-Blanco and
Prieto (132) suggested that the entry of bacterial endophytes into
roots occurs via colonization of root hairs. To a certain extent,
stem and leaf surfaces also produce exudates that attract microor-
ganisms (130). However, UV light, the lack of nutrients, and des-
iccation generally reduce colonization of plant surfaces, and only
adapted bacteria can survive and enter the plant via stomata,
wounds, and hydathodes (130, 133). Endophytes may also pene-
trate plants through flowers and fruits via colonization of the an-
thosphere and carposphere (18, 130).

Depending on the strain, various colonization routes have been
described, and specific interactions have been suggested (133,
134). Several of these routes involve passive or active mechanisms
enabling bacteria to migrate from the rhizoplane to the cortical
cell layer, where the plant endodermis represents a barrier for
further colonization (130, 135). For bacteria that can penetrate the
endodermis, the xylem vascular system is the main transport route
for systemic colonization of internal plant compartments (134),
whereas others colonize intercellular spaces locally. Bacteria have
been shown to colonize xylem vessels, and the sizes of the holes of
the perforation plates between xylem elements are sufficiently
large to allow bacterial passage (130, 134, 136–138). However,
vertical spread of bacteria through plants may take several weeks
(139), and it is unclear why bacterial endophytes progress so
slowly in the vascular system. Bacteria might even migrate to re-
productive organs of Angiospermae plants and have been detected
in the inner tissues of flowers (epidermis and ovary), fruits (pulp),
and seeds (tegument) of grapevines (18) and in pumpkin flowers
(140), as well as in the pollen of pine, a Gymnospermae plant
(141). Suitable niches for colonization by bacterial endophytes
have been described for different plant taxonomic groups, includ-
ing Bryophytes, Pteridophytes, Gymnospermae, and Angiosper-
mae (17, 130, 142) (Fig. 1). Overall, it is not known whether en-
dophytes need to reach a specific organ or tissue for optimal
performance of the functions which have been identified for en-
dophytes.

FUNCTIONS OF ENDOPHYTES

Some endophytes have no apparent effects on plant performance
but live on the metabolites produced by the host. These are termed
commensal endophytes, whereas other endophytes confer benefi-
cial effects to the plant, such as protection against invading patho-
gens and (arthropod) herbivores, either via antibiosis or via in-
duced resistance, and plant growth promotion (Fig. 2). A third
group includes latent pathogens (143). Generally, endophytes can
have neutral or detrimental effects to the host plant under normal
growth conditions, whereas they can be beneficial under more
extreme conditions or during different stages of the plant life cy-
cle. For example, the fungus Fusarium verticillioides has a dual role
both as a pathogen and as a beneficial endophyte in maize (144).
The balance between these two states is dependent on the host
genotype, but also on locally occurring abiotic stress factors that
reduce host fitness, resulting in distortion of the delicate balance

and in the occurrence of disease symptoms in the plant and pro-
duction of mycotoxins by the fungus (144). However, beneficial
effects have also been demonstrated, e.g., strains of the endophytic
fungus F. verticillioides suppress the growth of another pathogenic
fungus, Ustilago maydis, protecting their host against disease
(145).

Plant Growth Promotion and Protection against Biotic and
Abiotic Stresses

ISR and production of antibiotic secondary metabolites. Carroll
(111) suggested in 1988 that endophytes play a role in the defense
systems of trees. Because life cycles of endophytes are considered
to be much shorter than the life cycle of their host, they may evolve
faster in their host, resulting in higher selection of antagonistic
forms that contribute to resistance against short-living pathogens
and herbivores. Later, in 1991, Carroll suggested that endophyte-
mediated induced resistance occurs in Douglas fir trees (146).
Endophytes may induce plant defense reactions, so-called in-
duced systemic resistance (ISR), leading to a higher tolerance of
pathogens (147, 148). There is increasing evidence that at an initial
stage, interactions between beneficial microorganisms and plants
trigger an immune response in plants similar to that against
pathogens but that, later on, mutualists escape host defense re-
sponses and are able to successfully colonize plants (148). Bacte-
rial strains of the genera Pseudomonas and Bacillus can be consid-
ered the most common groups inducing ISR (reviewed in
references 149 and 150), although ISR induction is not exclusive
to these groups (151, 152). Bacterial factors responsible for ISR
induction were identified to include flagella, antibiotics, N-acyl-
homoserine lactones, salicylic acid, jasmonic acid, siderophores,
volatiles (e.g., acetoin), and lipopolysaccharides (152, 153) (Fig.
2). The shoot endophyte Methylobacterium sp. strain IMBG290
was shown to induce resistance against the pathogen Pectobacte-
rium atrosepticum in potato, in an inoculum-density-dependent
manner (151). The observed resistance was accompanied by
changes in the structure of the innate endophytic community.
Endophytic community changes were shown to correlate with dis-
ease resistance, indicating that the endophytic community as a
whole, or just fractions thereof, can play a role in disease suppres-
sion (151). In contrast to bacterial endophytes, fungal endophytes
have less frequently been reported to be involved in protection of
their hosts via ISR (154–156).

Fungal endophytes are better known for their capacity to pro-
duce compounds that have growth-inhibitory activities toward
plant pathogens and herbivores. These compounds comprise al-
kaloids, steroids, terpenoids, peptides, polyketones, flavonoids,
quinols, phenols, and chlorinated compounds (157–159) (Fig. 2).
Alkaloids produced by the clavicipitaceous fungi of grasses are
among the best-described compounds produced by endophytes.
For example, the neurotoxic indole-diterpenoid alkaloids, so-
called lolitrems, are responsible for intoxication of cattle grazing
on the endophyte-infected grass (160, 161). Some of these com-
pounds, as well as some other alkaloids, are important for protec-
tion of the plant against insect herbivores (162, 163). Also, several
reports have been published on the production of antiviral, anti-
bacterial, antifungal, and insecticidal compounds by fungal endo-
phytes, and most of these endophytes are transmitted horizon-
tally, forming local infections in their hosts (157, 164). Not all
horizontally transmitted fungal endophytes produce protective
compounds, and due to the often small window of opportunity for
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contact with plant pathogens, in both time and space, their role in
host protection against plant pathogens is still under dispute. A
study made with cacao plants indicated that pathogens commonly
colonize tree leaves but that infection does not always result in the
occurrence of disease, and even that they can act as beneficial or
harmless endophytes in their host (165–167). A recent report sup-
ported this finding and further demonstrated that production of

endophytic antimicrobial compounds by endophytes can be in-
duced by the presence of a pathogen (168).

Bacterial endophytes also produce antimicrobial compounds
(Fig. 2). For example, the endophyte Enterobacter sp. strain 638
produces antibiotic substances, including 2-phenylethanol and
4-hydroxybenzoate (169). Generally, endophytic actinomycetes
are the best-known examples of antimicrobial compound produc-

FIG 1 Microphotographs of endophytes showing (arrows) endophytic fungi in Sphagnum sp. (Alex Fluor 488-wheat germ agglutinin [WGA]) (A), endophytic
fungi in a fern stem (Alex Fluor 488-WGA) (B), endophytic fungi in a stem of a Pinus sp. (Alex Fluor 488-WGA) (C), fungal endophytes in a stolon of a Trifolium
sp. (Alex Fluor 488-WGA) (D), and mycorrhiza colonizing Eleutherococcus sieboldianus (toluidine blue) (E). (F and G) Bacterial endophytes in Sphagnum
magellanicum (fluorescence in situ hybridization [FISH] with probes targeting Alphaproteobacteria [F] and Planctomycetes [G]). (H and I) Bacterial endophytes
in fern leaves (double labeling of oligonucleotide probes-fluorescence in situ hybridization [DOPE-FISH] with EUBMIX-FLUOS probe for all bacteria [H] and
with NONEUB-FLUOS probe [I]). (J and K) Colonization of Scots pine seedling by green fluorescent protein-tagged Methylobacterium extorquens DSM13060.
(L) Bacterial endophytes in flowers of grapevine plants (FISH with EUBMIX-Dylight488 and LGC-Dylight549 probes, targeting all bacteria and Firmicutes,
respectively). (M) Bacterial endophytes in the xylem of grapevine plants (DOPE-FISH with EUBMIX-FLUOS and HGC69a-Cy5 probes, targeting all bacteria and
Actinomycetes, respectively). (N and O) Bacterial endophytes in a nodule of Medicago lupulina (DOPE-FISH with EUBMIX-FLUOS probe targeting all bacteria
[N] and with NONEUB-FLUOS probe [O]). (Panel E reprinted from reference 362. Panels F and G reprinted from reference 17 by permission from Macmillan
Publishers Ltd. [copyright 2011]. Panels J and K reprinted from reference 369 with kind permission from Springer Science and Business Media. Panel L reprinted
from reference 18 with kind permission from Springer Science and Business Media. Panel M reprinted from reference 363 by permission of the Society for
Molecular Biology and Evolution.) All photographs show environmental samples, except those in panels J and K. Note that Alexa Fluor 488-WGA can also detect
microbes other than fungi.
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ers, and compounds discovered so far include munumbicins
(170), kakadumycins (171), and coronamycin (172). Recently,
multicyclic indolosesquiterpenes with antibacterial activity were
identified in the endophyte Streptomyces sp. HKI0595, isolated
from the mangrove tree (Kandelia candel) (173), and spox-
azomicins A to C, with antitrypanosomal activity, were found
to be produced by Streptosporangium oxazolinicum strain K07-
0450T, isolated from orchid plants (174). Some of these com-
pounds appear to be valuable for clinical or agricultural purposes
(175), but their exact roles in plant-microbe interactions still need
to be elucidated.

Production of additional secondary metabolites. Secondary
metabolites are biologically active compounds that are an impor-
tant source of anticancer, antioxidant, antidiabetic, immunosup-
pressive, antifungal, anti-oomycete, antibacterial, insecticidal, ne-
maticidal, and antiviral agents (157, 175–182). In addition,
endophytes produce secondary metabolites that are involved in

mechanisms of signaling, defense, and genetic regulation of the
establishment of symbiosis (183). Besides the production of sec-
ondary metabolite compounds, endophytes are also able to influ-
ence the secondary metabolism of their plant host (182). This was
demonstrated in strawberry plants inoculated with a Methylobac-
terium species strain, in which the inoculant strain influenced
the biosynthesis of flavor compounds, such as furanones, in the
host plants (184–186). Recently, bacterial endophytes, along
with bacterial methanol dehydrogenase transcripts, were local-
ized in the vascular tissues of strawberry receptacles and in the
cells of achenes, the locations where the furanone biosynthesis
gene is expressed in the plant (187). Similarly, biosynthesis and
accumulation of phenolic acids, flavan-3-ols, and oligomeric
proanthocyanidins in bilberry (Vaccinium myrtillus L.) plants
were enhanced upon interaction with a fungal endophyte, a
Paraphaeosphaeria sp. strain (188).

Iron homeostasis. Some bacterial and fungal endophytes are

FIG 2 Beneficial properties of endophytes. The left panel shows plants inoculated (In) with beneficial microorganisms that significantly improve plant growth
compared to noninoculated (Ni) plants. Various microorganisms, in particular bacteria (orange) and fungi (purple), can colonize the internal tissues of the plant
(middle panel). Once inside the plant, the endophytic bacteria and fungi interact intimately with the plant cells and with surrounding microorganisms (large
panel). Endophytic fungi, represented here as arbuscular mycorrhizal fungi (AMF) (lilac), might form specialized structures, called arbuscules, where plant-
derived carbon sources, mainly sucrose (Su), are exchanged for fungus-provided phosphate (Pi), nitrogen (NH4

�), and potassium (K�) elements (blue). Plant
cytoplasmic sucrose is transported to the periarbuscular space, where it is converted to hexose (HEX) to be assimilated by the fungus. Hexose is finally converted
to glycogen (G) for long-distance transport. Phosphate and nitrogen are transported inside the fungal cytoplasm as polyphosphate granules (Poly-P), which are
converted to Pi and arginine (Arg) in the arbuscule. Pi is transported to the host cytoplasm, whereas Arg is initially converted to urea (Ur) and then to ammonium
(NH4

�). Fungal and bacterial plant hormones, such as auxins (IAA), gibberellins (GAs), cytokinins (CKs), volatile organic compounds (VOCs), and polyamines
(Poly-NH2), as well as secondary metabolites (SMs), are transferred to the host (violet). Various bacterial structures, such as flagella, pili, secretion system
machineries (e.g., TIV SS and SEC), and lipopolysaccharides, as well as bacterium-derived proteins and molecules, such as effectors (EF), autoinducers, and
antibiotics, are detected by the host cells and trigger the induced systemic resistance (ISR) response (red). ACC, the direct precursor of ethylene (ET), is
metabolized by bacteria via the enzyme ACC deaminase (ACCd), thus ameliorating abiotic stress (light green). A range of reactive oxygen species detoxification
(ROS detox) enzymes might also ameliorate the plant-induced stress (orange). Diazotrophic bacterial endophytes are capable of fixing atmospheric nitrogen
(N2) and might actively transport NH4

� and nitrate (NO3
�) to the host (dark green). Bacterial processes of siderophore production (Sid) and uptake (Fe) that

are involved in plant growth promotion, biocontrol, and phytoremediation are shown in brown. Examples of various substrates on which the transmembrane
proteins are enriched among endophytes are shown in yellow. Transcriptional regulators (TR) are also shown (orange). Communications and interactions
between cells of microorganisms dwelling inside the plant tissues are promoted by growth factor (GF), antibiotic (A) (fuchsia), and autoinducer molecules.
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producers of vivid siderophores (153, 189–192). Siderophores are
essential compounds for iron acquisition by soil microorganisms
(193, 194), but they also play important roles in pathogen-host
interactions in animals (195, 196). The role of siderophores pro-
duced by endophytes in plant colonization is unknown, but it has
been suggested that these compounds play a role in induction of
ISR (153) (Fig. 2). Furthermore, siderophore production was
shown to play an important role in the symbiosis of Epichloë fes-
tucae with ryegrass, as shown upon interruption of the sidero-
phore biosynthesis gene cluster in E. festucae (191). It is possible
that siderophores modulate iron homeostasis in E. festucae-in-
fected ryegrass plants. Siderophores produced by endophytic
Methylobacterium strains are also involved in suppression of Xy-
lella fastidiosa, the causative agent of citrus variegated chlorosis in
Citrus trees (189). A recent comparative genomic analysis of pro-
teobacterial endophytes revealed that strains lacking the gene
clusters involved in siderophore biosynthesis have a larger total
number of genes encoding membrane receptors for uptake of
Fe3�-siderophore complexes, hence potentially allowing them to
take up siderophores produced by other endophytes (197).

Protection against biotic and abiotic stresses. Whereas most
of the described endophytes protect the plant from biotic stresses,
some endophytes can also protect the plant against different abi-
otic stresses. For example, fungal strains of Neotyphodium spp.
were shown to be able to increase tolerance toward drought in
grass plants by means of osmo- and stomatal regulation (198), and
they protected the plants against nitrogen starvation and water
stress (199). The root fungal endophyte Piriformospora indica was
shown to induce salt tolerance in barley (200) and drought toler-
ance in Chinese cabbage plants (201). In both cases, increases in
antioxidant levels were the proposed mechanisms behind eleva-
tion in stress tolerance in these plants. Colonization of fungal
endophytes of the genus Trichoderma in cacao seedlings also re-
sulted in a delay in the response to drought stress (202), and the
bacterial endophyte Burkholderia phytofirmans strain PsJN ele-
vates drought tolerance levels in maize (203) and wheat plants
(204). Furthermore, fungal endophytes have been shown to inter-
fere with cold tolerance of rice plants (205), and B. phytofirmans
strain PsJN has been shown to enhance chilling tolerance in grape-
vine plantlets (206).

ACC deaminase is a bacterial enzyme that is often associated
with alleviation of plant stress (Fig. 2). This enzyme is responsible
for lowering the levels of ethylene in the plant by cleaving the
plant-produced ethylene precursor 1-aminocyclopropane-1-car-
boxylate (ACC) to ammonia and 2-oxobutanoate, preventing eth-
ylene signaling (207). The plant hormone ethylene acts in the ger-
mination of seeds and in response to various stresses, and it is the
key regulator of colonization of plant tissue by bacteria (208). This
suggests that, apart from stress alleviation, ACC deaminase sup-
ports colonization of a number of bacterial endophytes. When the
ACC deaminase gene of B. phytofirmans PsJN was inactivated, the
endophyte lost the ability to promote root elongation in canola
seedlings (209). Another study performed on cut flowers indi-
cated that bacterial endophytes are able to colonize the shoot and
that ACC deaminase delays flower senescence (210).

Plant growth stimulation. Some endophytes are involved in
plant growth promotion, despite the fact that they are promoting
growth at the expense of obtaining valuable nutrients provided by
the host plant (211–213). High endophyte infection loads in
plants indicate that benefit-cost balances are at least neutral or

positive, suggesting that most endophytes must be beneficial to
their hosts. Such beneficial effects may result from interference in
photosynthesis and carbon fixation processes taking place in
plants. A fungal grass endophyte strain of Neotyphodium lolii was
found to influence CO2 fixation but was not shown to be able to
interfere with light interception, photochemistry, or net photo-
synthesis (214). No effect on photosynthesis, stomatal conduc-
tance, photosynthetic water use efficiency, or the maximum and
operating efficiencies of photosystem II was found in poplar trees
inoculated with the bacterial plant growth-promoting endophyte
Enterobacter sp. 638 (215). On the other hand, inoculation of
wheat with the bacterium B. phytofirmans strain PsJN increased
the photosynthetic rate, CO2 assimilation, chlorophyll content,
and water use efficiency under drought conditions (204).

Phytohormone production by endophytes is probably the
best-studied mechanism of plant growth promotion, leading to
morphological and architectural changes in plant hosts (213, 216,
217). The ability to produce auxins and gibberellins is a typical
trait for root-associated endophytes (213, 216–219). It was pro-
posed that indole-3-acetic acid (IAA), a member of the auxin class,
increases colonization efficiency (220), possibly via interference
with the host defense system (221), and production of this com-
pound or related compounds may be an important property for
plant colonization by endophytes (Fig. 2). Cytokinin production
is commonly observed in endophytes, but on one occasion, in a
root-colonizing fungal strain of Piriformospora indica, cytokinin
biosynthesis was demonstrated and mutational deletions in cyto-
kinin biosynthesis genes resulted in abortion of any plant growth-
promoting effect (222).

Besides the production of plant growth hormones, additional
mechanisms for plant growth promotion exist. Adenine and ade-
nine ribosides have been identified as growth-promoting com-
pounds in endophytes of Scots pine (223). Volatile compounds,
such as acetoin and 2,3-butanediol, can stimulate plant growth
(224–226) and are produced by some bacterial endophytes (227,
228). Polyamines affect plant growth and development in plant-
mycorrhiza interactions (229) and are produced by the bacterium
Azospirillum brasilense (230). It can be expected that additional,
not yet understood mechanisms exist among plant-associated
bacteria to promote plant growth.

Nitrogen fixation. Nutrient acquisition for plants via nitrogen
fixation is another mechanism behind plant growth promotion.
This trait is well studied in rhizobial and actinorhizal plant sym-
bioses. Several root endophytes fix nitrogen (e.g., Acetobacter di-
azotrophicus, Herbaspirillum spp., and Azoarcus spp.) (231, 232),
but the efficiencies of nitrogen fixation in free-living endophytes
are far lower than those in root nodules of leguminous plant-
rhizobium interactions (233). One exception is the relatively high
nitrogen fixation efficiency observed in endophytic strains of Glu-
conacetobacter diazotrophicus in symbiosis with sugarcane plants
(234). Other G. diazotrophicus strains were shown to be present in
the microbiome of pine needles, including some potential N2-
fixing strains (235). This indicates that G. diazotrophicus strains
play important roles as nitrogen fixers in wider taxonomic ranges
of host plants. Another example of a N2-fixing endophyte is Paeni-
bacillus strain P22, which has been found in poplar trees (13).
Strain P22 contributed to the total nitrogen pool of the host plant
and induced metabolic changes in the plant. Nitrogen fixation
contributes to the fitness of the host plant, especially in nitrogen-
poor environments. Even if the quantities of fixed nitrogen mea-
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sured in single nitrogen-fixing species are low, it remains to be
clarified if the fixed N is for the endophytes’ own demands and/or
for provision to the host plant (236).

In summary, various mechanisms in endophytes can explain
the profound effects that endophytes have on their plant hosts. A
recent report indicates that endophyte infection can also affect the
gender selection of the host plant (237), which suggests that many
new properties remain to be identified among endophytes.

Plant-Microbe Symbioses Leading to Improved Plant
Fitness

Endophytes taxonomically differing from AMF and rhizobia were
also shown to confer increased fitness to their hosts (238, 239). As
an example, spotted knapweed (Centaurea stoebe) became more
competitive toward bunchgrass (Koeleria macrantha) upon inoc-
ulation with the fungal endophyte Alternaria alternata (238).
Stimulation of the production of secondary compounds by the
endophyte played an important role in increased fitness of the
host plant. However, inoculation with other Alternaria sp. endo-
phytes did not result in increased fitness of knapweed plants (239),
indicating that the endophyte-host plant interaction was strain
specific. In another case, it was shown that infection of wild red
fescue plants with the ergot fungus Claviceps purpurea, a seed
pathogen in many grass species, resulted in decreased herbivory by
sheep (240). In association with its host, C. purpurea produces
alkaloids that are toxic to mammalian species, thus protecting the
host from predation. From this case, it is clear that particular
microorganisms or taxa showing a lifestyle typical for endophytes
can be both pathogenic and beneficial for their host. It was fur-
thermore shown that plant-endophyte interactions can shift the
gender balance in the offspring of the plant host. The fungus
Epichlöe elymi, an endophyte in Elymus virginicus plants, is verti-
cally and maternally transmitted from parent to offspring plants,
thereby increasing its opportunity to establish new infections in
succeeding plant generations (237). Manipulation of the sex ratio
in offspring is an example of how endophytes can manipulate the
fitness of their hosts, in analogy to Wolbachia infection of partic-
ular insect species, indicating that manipulation of the gender
balance in offspring is common among higher eukaryote-microbe
interactions (241).

DECIPHERING THE BEHAVIOR OF ENDOPHYTES BY
COMPARATIVE GENOMIC ANALYSIS

Comparative genomics is an important tool for identifying genes
and regulons that are important for plant penetration and coloni-
zation by endophytes (242). Specific properties discriminating en-
dophytes from closely related nonendophytic strains have been
found on several occasions (169, 197, 243–246). Lateral gene
transfer (e.g., by mobile elements, such as plasmids and genomic
islands) plays an important role in the acquisition of properties
responsible for the capacity of bacteria and fungi to colonize the
endosphere of plants. As an example, the assembled genome of the
obligate biotroph fungus Rhizophagus irregularis was shown to
contain up to 11% transposable elements (244). No loss of meta-
bolic complexity was detected, only a drift of genes involved in
toxin synthesis and in degradation of the plant cell wall. Also, the
genome sequence of the competent bacterial endophyte Entero-
bacter sp. 638 revealed many transposable elements, which were
often flanked by genes relevant to host-bacterium interactions
(e.g., amino acid/iron transport, hemolysin, and hemagglutinin

genes), as well as a large conjugative plasmid important for host
colonization (169).

A comparative genomic and metabolic network study revealed
major differences between pathogenic (n � 36) and mutualistic
(n � 28) symbionts of plants in their metabolic capabilities and
cellular processes (246). Genes involved in biosynthetic processes
and functions were enriched and more diverse among plant mu-
tualists, while genes involved in degradation and host invasion
were predominantly detected among phytopathogens. Pathogens
seem to require more compounds from the plant cell wall, whereas
plant mutualists metabolize more plant-stress-related com-
pounds, thus potentially helping in stress amelioration. The study
revealed the presence of secretion systems in pathogen genomes,
probably needed to invade the host plants, while genomic loci
encoding nitrogen fixation proteins and ribulose bisphosphate
carboxylase/oxygenase (RubisCO) proteins were more exclusive
to mutualistic bacteria (246). Bacteria carrying relatively large ge-
nomes are often able to successfully colonize a wide range of un-
related plant hosts, as well as soils, whereas strains with smaller
genomes seem to have a smaller host range (247).

Comparative Genomics To Elucidate Specific Properties
That Evolved in Bacterial Endophytes

To further expand on potential functional and mechanistic as-
pects of endophytes, we compared the genomes of 40 well-de-
scribed bacterial strains which were isolated from the plant endo-
sphere (i.e., endophytes) with those of 42 nodule-forming
symbionts, 29 well-described plant bacterial pathogens, 42 strains
frequently found in the rhizosphere (i.e., rhizosphere bacteria),
and 49 soil bacteria (see Data Set S4 in the supplemental material).
Sequences from protein-encoding genes of each genome were as-
signed KEGG Ortholog (KO) tags by using the Integrated Micro-
bial Genome (IMG) comparative analysis system (248). A feature-
by-sample contingency table was created, using properties with
abundances of �25% and samples within each group with �98%
functional similarity. The assigned KO tags were normalized by
cumulative sum scaling (CSS) normalization, and then a mixture
model that implements a zero-inflated Gaussian distribution was
computed to detect differentially abundant properties by using
the metagenomeSeq package (249). A comparison of relevant
properties in the process of host colonization and establishment
for each investigated group (i.e., nodule-forming symbionts, phy-
topathogens, and bacterial strains isolated from the rhizosphere
and from soil) and for endophytes is shown in Table 3. We are
aware of the fact that endophytes may colonize the rhizosphere
(soil) or may even, under certain circumstances, have a phyto-
pathogenic lifestyle (as discussed in other parts of this review).
However, the aim of the comparative genomic analysis was to
obtain indications of potential typical endophytic properties,
which require further confirmation.

Motility and chemotaxis. The ability to sense and respond to
environmental cues is one of the major properties driving coloni-
zation of microorganisms (249–252). Our comparative genomic
analysis of properties involved in chemotaxis and motility of bac-
teria suggested that protein-encoding genes related to the use of
aspartate/maltose (Tar) and dipeptides (Tap) are more abundant
among endophytes than among strains obtained from the rhizo-
sphere. The response regulator proteins CheBR and CheC and the
flagellum biosynthesis and motility mechanisms are more abun-
dant among endophytes than among phytopathogens (Table 3).
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TABLE 3 Comparative genomics of properties relevant to plant colonization and establishmenta

Category and feature (gene)

Log2 fold change in abundance in the indicated group versus endophytes

Symbionts Phytopathogens Rhizosphere bacteria Soil bacteria

Chemotaxis and motility
Aerotaxis (aer) �0.983*** 0.029 �0.259 �0.354
Serine chemotaxis (tsr) �0.697** 0.471* �0.284 0.162
Aspartate/maltose chemotaxis (tar) �0.315 �0.262 �0.276* �0.041
Ribose chemotaxis (rbsB) 1.076*** �0.423 �0.108 �0.252
Galactose chemotaxis (mglB) �0.257*** 0.030 0.390*** 0.283**
Dipeptide chemotaxis (tap) �0.174** �0.172 �0.215*** �0.089
Response regulators (cheBR) �0.276 �0.519*** �0.153 �0.280*
Response regulator (cheV) �0.880*** �0.271 0.143 0.069
Response regulator (cheD) �0.206* �0.086 0.040 0.009
Response regulator (cheC) �0.367* �0.861*** 0.096 �0.298
Response regulator (cheZ) �0.271 �0.202 �0.396*** �0.155
Flagellar apparatus (fliI) �0.252** �0.201* �0.149 0.045
Chemotaxis and motility (motA) �0.555*** �0.297* 0.094 �0.065

Signal transduction—two-component systems
Magnesium assimilation (phoQ-phoP) �0.951*** 0.052 �0.034 0.042
Stress (rstB-rstA) �0.951*** �0.022 �0.005 0.070
Carbon source utilization (creC-creB) �0.726*** 0.077 �0.098 �0.016
Multidrug resistance (baeS-baeR) �0.804*** 0.032 0.074 0.000
Copper efflux (cusS-cusR) �0.821*** �0.415 0.258 0.300
Carbon storage regulator (barA-uvrY) �0.989*** �0.044 �0.058 0.017
Antibiotic resistance (evgS-evgA) �0.868*** �0.522*** 0.143 �0.288
Nitrogen fixation/metabolism (ntrY-ntrX) �0.037 �0.233*** �0.615*** �0.089
Type IV fimbria synthesis (pilS-pilR) �0.902*** 0.038 0.039 0.180
Amino sugar metabolism (glrK-glrR) �0.974*** �0.021 �0.061 0.232
Twitching motility (chpA-chpB) �0.783*** 0.120 0.026 0.003
Extracellular polysaccharide (wspE-wspR) �0.612*** �0.072 0.044 �0.023
Cell fate control (pleC-pleD) �0.131*** �0.255** �0.639*** 0.094
Redox response (regB-regA) �0.004 �0.204* �0.099 �0.136

Transcriptional regulators
Nitrogen assimilation (nifA) �0.133 �0.757*** �0.359*** �0.220
Carbon storage regulator (sdiA) 0.617*** �0.067 �0.055 �0.279*
Biofilm formation (crp) �0.976*** 0.036 �0.036 0.068
Nitric oxide reductase (norR) �0.625*** �0.156* 0.193 0.129
NAD biosynthesis (nadR) �0.257*** 0.012 �0.103 �0.079
Beta-lactamase resistance (ampR) 0.091 0.016 �0.060 �0.339***
Pyrimidine metabolism (pyrR) �0.326** �0.051 0.121 0.015
Thiamine metabolism (tenA) 0.070 �0.976*** 0.109 0.195

Stress-related enzymes
Glutathione peroxidase (btuE) �0.360** �0.031 0.104 �0.195
Glutathione S-transferase (gst) 0.562** �0.435* �0.230 �0.351
Catalase (katE) �0.362* �0.237 0.084 0.042

Transport system
ABC, capsular polysaccharide (kpsT) �0.045 �0.277*** �0.244* �0.221
ABC, thiamine-derived products (thiY) �0.449** �0.958*** 0.000 0.000
ABC, spermidine/putrescine (potD) 0.718*** �0.308** 0.092 0.081
ABC, dipeptide (dppF) 0.204** �0.230*** �0.027 0.09
ABC, branched-chain amino acid (livK) 0.571 �0.884** �0.629 �0.734
ABC, cystine (fliY) �0.28 �0.270* 0.225 �0.355*
ABC, methionine (metN) �0.478*** �0.336* 0.031 �0.163
ABC, histidine (hisJ) �0.302 �0.096 0.349* �0.266*
ABC, lysine/arginine/ornithine (argT) 0.216 �0.336 0.464 �0.182
ABC, L-arabinose (araG) 0.145 �0.067 0.066 �0.342***
ABC, rhamnose (rhaT) �0.129 �0.826*** �0.043 �0.724***
PTS, cellobiose (celB) �1.425*** �0.947*** �0.073 �0.146
PTS, glucose (ptsG) �0.860*** 0.000 0.000 0.000
PTS, mannose (manY) �0.433*** �0.287** �0.374*** �0.264*

(Continued on following page)
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These results indicate the specificity of aspartate and dipeptide
metabolism among endophytes, whereas serine metabolism
seems to be used largely by phytopathogens. In addition, endo-
phytes might be more responsive to different environmental cues
than phytopathogens and nodule-forming symbionts.

Signal transduction. Regulation of two-component response
systems is essential for the process of bacterial cell communication
and fundamental for the synchronization of cooperative behavior
(253, 254). In this category, bacterial endophytes differ mainly
from nodule-forming symbionts and only marginally from the
other investigated groups. Genes putatively involved in antibiotic
resistance (evgS and evgA), redox response (regB and regA), nitro-
gen fixation and metabolism (ntrY and ntrX), and cell fate control
(pleC and pleD) are found more prominently among endophytes
than among phytopathogens and rhizobacteria (for the last two).
A variety of energy-generating and energy-utilizing biological
processes, including photosynthesis, carbon fixation, nitrogen fix-
ation, hydrogen oxidation, denitrification, aerobic and anaerobic
respiration, electron transport, and aerotaxis mechanisms, are
known to be regulated in response to cellular redox balance (255)
and might assist endophytes to thrive inside the host. The trans-
membrane nitrogen sensor protein NtrY interacts with the regu-
lator protein NtrX to induce the expression of nif genes (256).
Under nitrogen-limiting conditions, endophytes might be better
able to fix nitrogen for their own benefit than phytopathogens or
rhizobacteria. Overall, these results reveal distinct characteristics

that are suitable for bacteria to thrive and survive in different
environmental niches and conditions.

Transcriptional regulators. Transcriptional regulators are es-
sential for prokaryotes to rapidly respond to environmental
changes, improving their adaptation plasticity, cellular homeosta-
sis, and colonization of new niches (257). Genes putatively in-
volved in the transcriptional regulation of nitrogen assimilation
(nifA), reduction of nitric oxide (norR), regulation of carbon stor-
age (sdiA), beta-lactamase resistance (ampR), pyrimidine metab-
olism (pyrR), and thiamine metabolism (tenA) are detected in
significantly larger proportions among endophytes than among
the other investigated groups (Table 3). Regulatory genes related
to the stoichiometry of nitrogen and carbon metabolism and
those involved in the metabolism of nucleotides and vitamins and
in stress responses might be of great importance for a life inside
plants. Nodule-forming symbionts and plant pathogens that also
thrive inside plant tissues reveal mechanisms different from those
in endophytes to cope with stress and metabolism of nutrients,
suggesting that each group has its own regulatory set of genes
required for its typical behavioral responses.

Detoxification and stress-related enzymes. Due to an abrupt
burst of reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS), the internal compartments of plants are inhospitable
niches for aerobic microorganisms. Therefore, enzymes with de-
toxification capacities are essential for plant endosphere coloniza-
tion and may also function as ameliorating agents upon host-

TABLE 3 (Continued)

Category and feature (gene)

Log2 fold change in abundance in the indicated group versus endophytes

Symbionts Phytopathogens Rhizosphere bacteria Soil bacteria

PTS, ascorbate (sgaA) �0.433** 0.003 �0.207 0.158
PTS, phosphocarrier (furB) �0.317* �0.007 �0.065 0.059
Others, multidrug (mdtB) 0.076 �0.042 �0.217** 0.134
Other, tricarboxylic (tctA) 0.670*** �0.018 0.352* 0.481*
Others, C4-dicarboxylate (dctP) �0.123 �0.462* 0.382* 0.553**
Others, membrane pore protein (ompC) �1.149*** 0.090 �0.053 0.071

Secretion systems
Type I RaxAB-RaxC system (raxB) �0.270 0.357 �0.234 �0.186
Type II general pathway protein (gspD) �0.199 0.213 �0.265 0.064
Type III secretion core apparatus (yscJ) 0.354* 0.263** 0.051 �0.181**
Type IV conjugal DNA protein (virB2) 0.370 0.125 �0.718*** �0.143
Type VI Imp/Vas core components (hcp) �0.360 �0.038 �0.045 0.095
Twitching motility protein (pilJ) �0.850*** 0.058 0.028 �0.002
Type I pilus assembly protein (fimA) �0.676*** �0.300 0.282 0.158

Plant growth-promoting properties
Nitrogenase (nifH) 0.301** �0.676*** 0.226 0.030
ACC deaminase (acdS) 0.118 0.223 0.119 �0.344**
Acetoin reductase (budC) 0.024 �0.259*** �0.024 �0.059
Acetolactate decarboxylase (alsD) �1.000*** 0.000 0.000 0.000
Butanediol dehydrogenase (butB) �0.089 �0.090 0.469** �0.319
IAA biosynthesis, IAM pathway (amiE) 0.201 �0.067 �0.017 �0.029
IAA biosynthesis, IPyA pathway (ipdC) 0.077 �0.157 0.291*** �0.043
IAA biosynthesis, IAN pathway (nit) �0.156 0.088 0.084 �0.019
IAA biosynthesis, IAN pathway (nthAB) �0.136 �1.054*** �0.596*** �0.147

a The relative abundances of the assigned functional properties in each investigated group (symbionts [n � 42], phytopathogens [n � 29], rhizosphere bacteria [n � 42], or soil
bacteria [n � 49]) compared to endophytes (n � 40) are shown as normalized log2 fold changes. Negative values are shown if the endophyte group has a higher abundance.
Significant changes were computed with a zero-inflated Gaussian mixture model, and the alpha levels, denoted by *, **, and ***, were assigned to q-value thresholds of 0.05, 0.01,
and 0.001, respectively.
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induced stresses (258). Genes encoding glutathione peroxidase
(btuE), glutathione S-transferase (gst), catalase (katE), and nitric
oxide reductase (norR) are enriched, according to our analysis, in
endophyte genomes compared to phytopathogen or nodule-
forming symbiont genomes (Table 3). These ROS- and RNS-scav-
enging enzymes might assist endophytes to cope with the plant
oxidative burst and might also ameliorate host biotic and abiotic
stresses by protecting plant cells from oxidative damages (12,
259).

Transporters. Nutrient transport is an important function for
life inside plants (169, 197). The proportion of endophytes har-
boring genes for ATP-binding cassette (ABC), major facilitator
superfamily (MFS), phosphotransferase system (PTS), solute car-
rier family (SLC), and other transport systems varied largely in our
analysis (Table 3). Genes putatively involved in the uptake of cap-
sular polysaccharides, organic ions, peptides, amino acids, and
carbohydrates were detected more prominently among endo-
phytes than in the other investigated groups (Table 3). These re-
sults indicate the complexity of nutrient transport systems of en-
dophytes, which might reflect their various lifestyle strategies for
acquiring nutrients inside plants.

Secretion systems. Protein secretion plays an important role in
plant-bacterium interactions (67, 260). Major differences in se-
cretion systems of endophytes and nodule-forming symbionts
were observed in our analysis (Table 3). Genes putatively involved
in type III secretion systems are more typical of nodule-forming
symbionts and phytopathogens than of endophytes, whereas they
are detected in a significantly larger proportion of endophytes
than soil bacteria (Table 3). This type of secretion system is more
often employed by pathogens to manipulate host metabolism
(261, 262). Conversely, type IV conjugal DNA-protein transfer
secretion systems were detected more prominently among endo-
phytes than among rhizosphere bacteria (Table 3). Type IV secre-
tion is likely to be involved in host colonization and conjugation
of DNA (263–265). Protein-encoding genes involved in adhesion
to the host via twitching motility and type I pilus assembly are also
detected more prominently among endophytes than among nod-
ulating symbionts. These systems might be determinants of host
colonization success (266, 267).

Genes involved in plant growth promotion. The nitrogenase
(nifH) gene, putatively involved in the fixation of atmospheric N2,
was detected in a significantly larger proportion of endophytes
than of phytopathogens (Table 3). Surprisingly, 28% of the inves-
tigated group of prokaryotic endophytes harbored this gene, indi-
cating that it has an important function in improving plant pro-
ductivity under conditions of N limitation (see above). One of the
genes thought to be involved in plant stress alleviation, encoding
1-aminocyclopropane-1-carboxylate deaminase (acdS), is de-
tected more prominently among endophytes than among soil bac-
teria. Recent analyses of bacterial endophyte genomes suggest that
ACC deaminase is not as widely spread among endophytes as pre-
viously thought (197, 263). However, endophytes differ signifi-
cantly in their favored pathways for the biosynthesis of the plant
hormones acetoin, 2,3-butanediol, and IAA compared to phyto-
pathogens or rhizosphere bacteria, thus suggesting some particu-
lar characteristics that promote plant growth.

To summarize, genomic differences can be found between the
different functional groups (i.e., endophytes, nodule-forming
symbionts, phytopathogens, rhizobacteria, and soil bacteria), but
we have to be aware that borders between functional groups are

not clear-cut. Properties that are largely discriminative for endo-
phytes compared to the other groups are a higher responsiveness
to environmental cues, nitrogen fixation, and protection against
reactive oxygen and nitrogen species. Endophytes might exhibit
phytopathogenic effects under certain conditions, and rhizo-
sphere bacteria might also be able to colonize plants internally.
Furthermore, the balance between mutualism and antagonism
depends on multiple parameters and might depend on a very fine-
tuned interaction between microbial elicitors and plant responses
(268).

PATHOGENS AND ENDOPHYTES: THE BALANCE OF THE
INTERACTION IS CRUCIAL

Pathogenicity: Definition and Mechanisms

Pathogenicity to humans, animals, and plants is the most ac-
claimed feature of microorganisms. Traditionally, pathogens have
been defined as causative agents of diseases, guided by Koch’s
postulates for more than a century and later advanced by making
use of molecular markers (269). Next-generation sequencing-
based technologies have drastically revolutionized our knowledge
of the microbiome, and also of pathogens (270, 271). We learned
particularly from the human microbiome that it is involved in
many more diseases than recently thought and that pathogen out-
breaks are associated with shifts of the whole community, includ-
ing those supporting pathogens (272, 273). Recently, this was also
shown for plant pathogens (140, 274).

The generally used definition of endophytes excludes patho-
genic microorganisms per se. However, all recent studies have
shown that plant-endophyte interactions have a much broader
range reaching from beneficial to pathogenic (275, 276). Many
potential human as well as plant pathogens have the capacity to
colonize the plant endosphere (275, 277). Therefore, endophytes
and internal pathogens share several mechanisms (277). Several
studies have provided evidence that similar or even identical func-
tions are responsible for beneficial interactions with plants and
virulence in humans. For example, the involvement of sidero-
phore uptake systems or extracellular enzymes is common to both
beneficial bacteria and human pathogens (278). Dörr et al. (279)
reported that type IV pili of the plant-associated Azoarcus sp.
strain BH72 are responsible for adhesion to plant and fungal cells.
Furthermore, the amino acid sequence of the pilus shows high
similarities to those of the pili of human-associated strains of
Pseudomonas aeruginosa and Neisseria gonorrhoeae. While a mu-
tant of Pseudomonas fluorescens deficient in a lauroyl transferase
involved in lipid A biosynthesis resulted in impaired root coloni-
zation (280), a similar mutant of Salmonella enterica serovar Ty-
phimurium was limited in its ability to colonize organs of the
lymphatic system of mice (281). Type III secretion systems are
responsible for the introduction of effectors into eukaryotic host
cells, and they have been found in pathogenic bacteria as well as
plant-associated bacteria with beneficial effects on host plants
(282). Genome comparisons of plant- and human-associated
Stenotrophomonas strains identified many similar properties re-
sponsible for host-microbe interactions (275), but also differ-
ent ones, which included factors responsible for host invasion,
antibiotic resistance, and several crucial virulence factors (283,
284). Interestingly, heat shock proteins were absent and a sui-
cide vector activated at 37°C was identified in the plant-asso-
ciated Stenotrophomonas strain (283). In addition, Stenotroph-
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omonas rhizophila DSM14405T possessed unique genes for the
synthesis and transport of the plant-protective compound sper-
midine, plant cell wall-degrading enzymes, and high salinity tol-
erance (283). The role of mutation frequency in niche adaptation
was identified by Turrientes et al. (285). The factors described
above are important mechanisms by which harmless bacteria can
behave as pathogens with a change of host or host niche, upon
which their virulence potential is frequently revealed to its full
extent. Stenotrophomonas maltophilia is a multiresistant patho-
gen, and clinical and plant-associated strains show similar levels of
resistance against clinically relevant antibiotics (286). For exam-
ple, quinolone resistance mediated by the efflux pump SmeDEF
is important for clinical issues but also for colonization of plant
roots (287). In addition, clinical Stenotrophomonas strains are
still able to colonize plant environments, such as tomato roots
(Fig. 3A).

Occurrence of Potential Pathogens in the Endosphere of
Plants

The plant endosphere can be colonized by plant, animal, and hu-
man pathogens. In plant microbiome analyses, several plant
pathogens were identified, although no disease symptoms were
observed (277). The fungal endophyte Verticillium dahliae is an
interesting example; this is a pathogen which causes large yield
losses in a broad range of crops, e.g., strawberry, potato, and olive
(288). On the other hand, the fungus was found in many healthy
plants as a commensal endophyte, e.g., in medicinal plants, po-
tato, and grapevine (289). Moreover, “beneficial” strains of V.
dahliae were used to biologically control Ophiostoma novo-ulmi,
the fungus which causes Dutch elm disease (290). Animal and
human pathogens, especially Escherichia coli pathovars (7, 242),
are also able to colonize endospheres (291). Figure 3D shows the
invasion of E. coli cells into lettuce leaves via stomata. Opportu-

nistic pathogens play a special role because plants, including the
endosphere, are an important reservoir for emerging opportunis-
tic pathogens (276, 277). There are many genera comprising en-
dophytes, including Burkholderia, Enterobacter, Herbaspirillum,
Mycobacterium, Ochrobactrum, Pseudomonas, Ralstonia, Serratia,
Staphylococcus, Stenotrophomonas, and Xylella, that enter bivalent
interactions with plant and human hosts. Several members of
these genera show plant growth-promoting properties as well as
excellent antagonistic properties against plant pathogens and have
therefore been utilized to control pathogens or to promote plant
growth (277). However, many strains of these species also success-
fully colonize human organs and tissues and thus cause diseases.

Enterobacteriaceae is a large family of Gram-negative bacteria
that includes, along with many harmless symbionts, many of the
more familiar, so-called enteric pathogens (292). Many members
live in the intestines of animals, but interestingly, the plant endo-
sphere is also a reservoir for enterobacteria (293, 294). In partic-
ular, the abundance of human enteric pathogens is enhanced after
intermediate disturbances (274). Although the incidence of out-
breaks of enteric pathogens associated with fresh produce in the
form of raw or minimally processed vegetables and fruits has re-
cently increased, the ecology of enteric pathogens outside their
human and animal hosts is less well understood (7).

Which Functions Could Pathogens Have Inside Plants?

Plant microbiota, i.e., microbial communities associated with a
particular plant, play an important role in plant growth and
health. Microorganisms can support nutrient uptake and produce
a broad range of phytohormones or influence the latter. Another
important function is the involvement of plant-associated bacte-
ria in pathogen defense (276). Resistance against leaf pathogens is
often encoded in the plant genome but may also be mediated by
plant-associated microorganisms (295). It is more difficult to find

FIG 3 Colonization of endosphere tissues by clinical bacterial strains. Volume renderings are shown for confocal laser scanning micrographs for FISH analyses
of stained Stenotrophomonas maltophilia cells (red signal) within the emerging lateral root of a tomato plant (beige signal) (A to C) and stained Escherichia coli
cells (red signal) invading a lettuce leaf via a stoma (green signal) (D and E). (Panels A to C reprinted from reference 370 with kind permission from Springer
Science and Business Media. Panel E reprinted from reference 371.)
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resistance genes against soilborne pathogens. Cook et al. (296)
suggested that antagonistic rhizobacteria fulfil this function.

Another hypothesis is that bacteria associated with the human
diet, such as Enterobacteriaceae, act as stimuli for our immune
systems. Recently, Hanski et al. (297) showed that declining envi-
ronmental biodiversity is associated with reduced microbial di-
versity on human skin and enhanced allergic disposition, as
shown through significant interactions with Enterobacteriaceae.
Furthermore, they showed a positive association between the
abundance of Acinetobacter organisms and interleukin-10 expres-
sion in peripheral blood mononuclear cells of healthy human in-
dividuals. Interleukin-10 is an anti-inflammatory cytokine and
plays a central role in maintaining immune tolerance to harmless
substances (298). The endotoxin derived from Gram-negative
bacteria, such as Enterobacteriaceae, is known to have allergy-pro-
tective and immune-modulatory potentials (299). If plants are a
natural reservoir of Enterobacteriaceae, then these bacteria must
have been a “natural” part of our diet for a long time. Taking into
account how many vegetables and fruits are eaten by people
worldwide, these outbreaks seem to be more an accident than the
norm, particularly considering that, traditionally, food was not
processed and sterilized before being eaten. Therefore, the func-
tion of the plant-associated microbiome as an immune stimulant
or “natural vaccination” was suggested by Berg et al. (300).

THE PLANT BIOME AND MULTIPARTITE INTERACTIONS

Our increasing understanding of the structure and complexity of
microbial communities in various environments has led to com-
parisons between the microbiota associated with humans and
those associated with plants, particularly with roots (301, 302).
Plant roots have been suggested to be analogous to the human gut,
as they are the primary organs interacting with the environment
and mediating signal exchange and communication between
plants and microorganisms. Microbiota of both animals and
plants have important functions for host health by protecting
against pathogens (247, 303) as well as regulating host gene ex-
pression and nutrient uptake and providing metabolic capacities
(304). The plant microbiome can be considered an extension of
the host phenotype (302, 305), and the plant secretory machinery
has been suggested to play an important role in establishing an
extended phenotype with microbial life (306).

Determinants of Endophyte Community Structures

The composition of endophyte communities is governed by biotic
and abiotic factors. Most importantly, the plant, i.e., the host ge-
notype and developmental stage, as well as the environment from
which endophytes originate (such as soil for root endophytes and
air for foliar fungal endophytes), contribute to community assem-
bly; however, the magnitudes of the effects may differ between
distinct systems. Few studies have attempted to evaluate the ex-
tents to which these parameters shape the endosphere micro-
biome. Rasche et al. (307) investigated potato-associated bacterial
endophyte communities colonizing the lower stem sections of
plants grown under greenhouse conditions. Different varieties,
including genetically modified plants, were grown in contrasting
soil types, and plants were sampled at different vegetation stages.
In addition, the experiment included a pathogen (Pectobacterium
atrosepticum) treatment. Molecular community analysis showed
that the soil type was the most important driver of bacterial com-
munity composition, followed by the plant developmental stage.

Recently, a thorough investigation making use of next-generation
sequencing technologies investigated root-associated micro-
biomes of eight diverse, inbred Arabidopsis accessions, cultivated
in two different soil types (308). Although the developmental
stage had less of an effect on structures of the microbial commu-
nities in that study, the effect of the soil environment was more
pronounced than that of the plant genotype. Ding et al. (309)
studied bacterial leaf endophyte communities associated with dis-
tantly related plant species grown under natural conditions. In
their study, the host species was the main factor shaping the com-
munity composition, followed by sampling dates and sampling
locations. Generally, genetically related plants seem to host more
similar bacterial endophyte communities, although host effects
have repeatedly been reported (8, 76, 307, 308, 310–313). Never-
theless, the host phylogenetic distance alone does not explain bac-
terial microbiota diversification (314). The host effect on bacterial
communities can be explained by the fact that many or most bac-
terial endophytes enter the plants via roots. Different plant species
and varieties are characterized by different root exudation pat-
terns, which are likely to attract different microorganisms colo-
nizing the rhizoplane and subsequently gaining entry into the
plant. In addition, plant physiology and chemical or physical char-
acteristics are likely to play a major role. This is evidenced by the
finding of different bacterial communities in different plant tis-
sues (315, 316).

Microbiota Associated with Plant Reproductive Organs

Seed transmission is well known for fungal endophytes. Recently,
it was suggested that bacterial endophytes may also be transmitted
via seeds. Johnston-Monje and Raizada (227) showed that seed
endophyte diversity was conserved to a certain extent in maize
seeds, from wild ancestors to modern varieties, across boundaries
of evolution, ethnography, and ecology. Seed bacterial endophyte
communities have been reported to be quite independent from
the soil environment (317), suggesting that vertical transmission
of bacterial endophytes might also contribute to the establishment
and fitness of the host. The frequency of vertical transmission of
bacterial endophytes along host generations is a matter of debate.
Hardoim et al. (107) reported that up to 45% of the seed-borne
bacterial community was transmitted vertically from two consec-
utive generations in rice plants. It is interesting that in insect-
pollinated plants, such as apple plants, flower-associated bacterial
communities were dominated by taxa that are rare in plants (318).
This indicates that bacterial endophytes associated with reproduc-
tive organs of allogamous plants may have an origin different from
that of bacterial endophytes associated with other organs and
might derive from the air or from feeding insects. Some of these
endophytes might be transmitted via seeds. The flowering and
pollination properties of the host genotype likely influence the
community composition of bacterial endophytes transmitted via
seeds.

Grasses have very specific interactions with fungi, with many
endophytes being transmitted vertically via host seeds, and com-
munities are therefore greatly dependent on the host genotype
(110, 319). Other fungal endophytes are transmitted via spores
colonizing plant leaves or may derive from members of the soil
environment colonizing roots (117, 285). Although the interac-
tion between plant hosts and horizontally transmitted endophytes
is less specific than the symbiosis between Neotyphodium/Epichloë
and grasses, host genotype specificity has frequently been reported
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for horizontally transmitted endophytes (320–323). Similarly to
what has been described for bacterial endophytes, specific fungal
communities colonize plant tissues representing distinct niches
(324, 325). Above- and below-ground plant tissues seem to obtain
their fungal endophytes from different sources. Root fungal endo-
phytes are likely to derive from the soil environment (326),
whereas fungal endophytes colonizing above-ground tissues are
transmitted via spores in the air (327). Bacterial and fungal endo-
phyte communities greatly differ between different plant develop-
mental stages (307, 324), again indicating the tight interaction
between endophytes and host physiology.

Multitrophic Interactions

The plant biome comprises the plant and multiple fungal and
bacterial players, including both pathogens and mutualists, and is
characterized by a dense network of multitrophic interactions,
which are still poorly understood. Particularly in the case of tight
interactions between the plant host and endophytes, signaling and
recognition processes are highly important, inducing molecular,
physiological, and morphological changes (328). However, plant-
associated microorganisms may also influence plant pathways and
phenotypes more generally. Quambusch et al. (329) reported dis-
tinct endophytic communities for easy- and difficult-to-propa-
gate cherry genotypes, indicating the need for a specific micro-
biome, or at least specific microbiome components, for plant
growth in general. The interaction of endophytes with their plant
host may also affect its relationship with other microbes.

It is well known that endophytes may directly antagonize plant
pathogens, which might be detectable in confrontation assays.
Nevertheless, antimicrobial effects may also be induced by more
sophisticated chemical communication. Combès et al. (168) dem-
onstrated that Paraconiothyrium variabile, a fungal foliar (needle)
endophyte, showed direct antagonism toward the phytopathogen
Fusarium oxysporum; however, extracts of pure cultures did not
show any effects. Only dual cultures of endophyte and pathogen
led to competition-induced metabolite production. Oxylipins
were identified as the induced metabolites, and their production
was also associated with decreased mycotoxin production by the
Fusarium pathogen. It is evident that chemical signaling and cross
talk between endophytes and host plants are complex (330), and
this example illustrates the importance of chemical communica-
tion not only between endophytes and plants but also between
microorganisms. However, we are at the very beginning of under-
standing multitrophic metabolic interactions, which probably in-
volve diverse chemical compounds produced by either the plant
or microorganisms within the framework of their interaction
(175, 183). Chemical interactions may also occur between fungal
endophytes and endofungal bacteria. Hoffman and Arnold (331)
reported that filamentous fungal endophytes frequently harbor
diverse endohyphal bacteria, with mostly unknown importance.
The same authors also recently found that such an endohyphal
bacterium, a Luteibacter sp., greatly enhances IAA production
from a foliar fungal endophyte, although the bacterium does not
show IAA production when grown in pure culture under standard
laboratory conditions (332). Another example of endofungal bac-
terial activity is toxin (rhizoxin) production by the fungus Rhizo-
pus microsporus, which is responsible for rice seedling blight, but
the actual toxin producer is the endofungal bacterium Burkhol-
deria endofungorum (333, 334).

Bacteria might also play important roles in the interactions of

AMF with plants and may represent examples of the evolution of
multipartner associations. Representatives of the Mollicutes and
“Candidatus Glomeribacter,” a group of Burkholderia-related
Gram-negative species, have been demonstrated to live in hyphae
and spores of AMF (335, 336). Relationships of these so-called
mycorrhiza helper bacteria with AMF are close, and these bacteria
most likely contribute to colonization and formation of the my-
corrhizal structures in plant roots (337, 338). Another example of
tripartite interactions is provided by a virus-infected fungal endo-
phyte of Curvularia protuberata, which systemically colonizes the
geothermal grass Dichanthelium lanuginosum (119, 339, 340) and
increases its tolerance to high temperatures. The host plant and
the endophyte can tolerate temperatures only as high as 40°C
when grown separately, but in symbiosis, the plant-fungus com-
bination is able to grow at soil temperatures as high as 65°C.

Endophytes can be prone to phage infections, and in principle,
phages infecting endophytes can modulate bacterial and fungal
endophytic communities (339, 341, 342). Several studies indicate
that phages can play important roles in microbial community
structuring (343, 344). Phages infecting endophytes of horse
chestnut were more virulent for endophytes of the same trees than
those of other trees, indicating selective forces on endophytic
communities and that their phages can be tree specific. These ex-
amples demonstrate that neither plants nor individual endophytes
act independently but that multiple organisms interact and influ-
ence the performance of the plant (biome).

Interactions between Endophytes and Pathogens/Pests

Endophytes may increase the defense against herbivores, includ-
ing insects that transmit pathogens (319, 345). Deterrence of her-
bivores is known to be mediated via in planta production of bio-
logically active alkaloids in grasses by endophytes, which can
reduce arthropod feeding and, consequently, damage to the host
(346). However, in relation to wild grasses, Faeth and Saari (347)
reported that herbivore abundance and species richness may be
even greater on endophyte-infected plants with high alkaloid con-
tents than on endophyte-free plants; they argued that herbivores
may develop detoxification pathways. Endophyte infection in
grasses has also been tested for reducing aphid-transmitted virus
infections (348). Endophyte infection and alkaloid production re-
sulted in reduced aphid feeding, as expected, but no effect on virus
titers could be observed. Nevertheless, the impact of virus infec-
tion on the host was reduced in endophyte-infected plants, indi-
cating that the endophyte induced a host response, which was
probably responsible for this effect. The interactions between
plants, endophytes, aphids, and viruses were also influenced by
the host and endophyte genotypes (348) as well as by abiotic fac-
tors, such as temperature (349).

The endosphere microbiome composition is affected by patho-
gen infection (49, 350–353), potentially leading to effects on
microbial functioning. Some studies reported a reduction of bac-
terial (351) and fungal (353) diversity in diseased or pathogen-
containing plants. Douanla-Meli et al. (353) compared culturable
fungal endophyte communities of healthy and yellowing citrus
leaves. The latter showed higher levels of colonization by fungal
endophytes but lower levels of richness than healthy leaves. Phy-
toplasma infection of grapevines resulted in a reduction in diver-
sity of bacterial endophyte communities (351). On the other
hand, Reiter et al. (49) found a higher diversity of bacterial potato
endophytes due to the presence of Pectobacterium atrosepticum;
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however, no disease symptoms were observed. Rasche et al. (307)
reported that the extent to which P. atrosepticum affected the
structure of bacterial endophytic communities depended on the
plant genotype and on the soil environment. The various findings
can be explained by the use of different plant hosts and pathogens
and by the severity of disease. Pathogens induce a cascade of reac-
tions leading to the synthesis of stress metabolites, including ROS
or phytoalexins, and a range of stress signals, and these may pro-
vide a habitat with different physiological characteristics. Such an
altered habitat is likely to support a differently structured endo-
phyte community showing different functional characteristics. In
addition, endophytes or rhizosphere bacteria that induce a sys-
temic response in plants, such as Methylobacterium strains tested
by Ardanov et al. (354), were reported to affect endophyte com-
munities. The resulting bacterial community structures correlated
with resistance or susceptibility to disease caused by Pectobacte-
rium atrosepticum, Phytophthora infestans, and Pseudomonas sy-
ringae in potato and by Gremmeniella abietina in pine (354).

Interactions between Endophytes and Other Symbionts

In addition to the interactions between endophyte communities
and phytopathogens, endophytes interact with other symbiotic
microorganisms. Foliar fungal endophyte species composition
was reported to be altered by AMF colonization (355). Wearn et al.
(324) suggested that there is competition or antagonism between
AMF and root endophytes, as they found negative correlations
between mycorrhizal colonization and the presence of endophytes
in roots of herbaceous grassland species. Some studies suggest that
AMF colonization of grasses may be affected by the production of
alkaloids or other allelopathic compounds by fungal endophytes
(356–358). However, different AMF species or strains may be-
have/interact differently with plants and endophytes. For grasses,
Larimer et al. (359) reported that Glomus mossae enhanced endo-
phyte growth through increased tiller production, and in return,
G. mossae showed higher colonization levels. On the other hand,
colonization by another AMF species, Glomus claroideum, de-
clined in endophyte-infected plants. In Pinus sylvestris, the inter-
action between a bacterial endophyte and an ectomycorrhizal
fungus was shown to be species dependent, as endophytic Methy-
lobacterium extorquens enhanced the growth of pine seedlings
with one fungal species but decreased the growth when coinocu-
lated with another ectomycorrhizal fungus (360).

In conclusion, the plant biome is characterized by multiple and
complex interactions between the plant, the associated microbi-
ota, i.e., endophytes with different functions, including patho-
gens, and the environment. The plant phenotype not only is de-
termined by the response of the plant to the environment but also
is regulated by the associated microbiota, the response of the mi-
crobiota to the environment, and the complex interactions be-
tween individual members.

CONCLUDING REMARKS

Technological developments, especially with respect to “-omics”
technologies, will revolutionize our concepts on endosphere mi-
crobiomes. At present, we are better able to distinguish between
properties specific to phytopathogens, endophytes, and other mi-
croorganisms from soil and plant habitats. This will allow us to
better understand mutualists and pathogens, because from an
ecological perspective, the boundaries between both groups are
not always clear. Furthermore, microbial groups previously

thought to be distinctive of other environments, such as human
pathogens in warm-blooded animals, have been demonstrated to
thrive in plants. Genomics will teach us how microbial groups
from other environments adapt to plant environments and will
reveal the minimal genetic requirements for successful penetra-
tion and internal colonization of plants. Novel technologies will
also allow us to investigate multiple interactions between micro-
bial groups associated with plants and the plant host itself. Now-
adays, we have a better capacity to analyze impacts of invading
microorganisms on the whole endophytic community composi-
tion and functioning, and vice versa. We can also better explain the
resilience of plants upon invasion by potentially deleterious mi-
croorganisms by the functioning and complexity of the endo-
phytic communities. We must learn more, however, about the still
unknown roles of endophytes, particularly the so-called commen-
sal endophytes. This group, which causes no apparent effects on
plant performance but lives on the metabolites produced by the
host, is presumably the most dominant functional group among
endophytes by quantity (2, 361). We expect to find hidden func-
tions within this group and to learn more about the complexity of
microbial interactions within plants, including the consequences
for the host plant. We also need to learn more about the interac-
tions between endophytes and plants as well as the mechanisms
employed by all partners. It will be highly relevant to elucidate the
physiological conditions present in endophytes and plants during
colonization, as it can be expected that an endophyte will have
different characteristics inside the plant compared to growth in
the soil or in the lab. Similarly, research is needed to better under-
stand under which conditions and by which mechanisms micro-
organisms exhibit harmful, beneficial, or neutral effects on plant
performance. By implementing new technologies and multidisci-
plinary approaches, our understanding of endophyte biology and
ecology will consistently evolve further, leading to a better knowl-
edge of the plant holobiome.
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