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A Novel Chimeric Anti-PA 
Neutralizing Antibody for 
Postexposure Prophylaxis and 
Treatment of Anthrax
Siping Xiong1,3, Qi Tang3, Xudong Liang4, Tingting Zhou2, Jin Yang3, Peng Liu2, Ya Chen1,3, 
Changjun Wang2, Zhenqing Feng1,3 & Jin Zhu2,3

Anthrax is a highly lethal infectious disease caused by the bacterium Bacillus anthracis, and the 
associated shock is closely related to the lethal toxin (LeTx) produced by the bacterium. The central 
role played by the 63 kDa protective antigen (PA63) region of LeTx in the pathophysiology of anthrax 
makes it an excellent therapeutic target. In the present study, a human/murine chimeric IgG mAb, 
hmPA6, was developed by inserting murine antibody variable regions into human constant regions 
using antibody engineering technology. hmPA6 expressed in 293F cells could neutralize LeTx both 
in vitro and in vivo. At a dose of 0.3 mg/kg, it could protect all tested rats from a lethal dose of LeTx. 
Even administration of 0.6 mg/kg hmPA6 48 h before LeTx challenge protected all tested rats. The 
results indicate that hmPA6 is a potential candidate for clinical application in anthrax treatment.

The bacterium Bacillus anthracis, which primarily affects livestock but can also infect humans, is the 
causative agent of anthrax, a zoonotic disease and bioterrorism threat1,2. B. anthracis spores can be used 
as bioterror agents in biological warfare. This threat has spurred significant efforts toward the develop-
ment of countermeasures for anthrax, including anthrax vaccines and therapeutics3. However, vaccines 
are effective only for prevention4. Currently, therapeutic antibodies that target the anthrax toxin are 
under development and are designed to protect against the disease.

B. anthracis secretes a tripartite toxin comprising a protective antigen (PA), lethal factor (LF), and 
edema factor (EF)5. This is an A-B (or “binary”) bacterial toxin. PA is the “B” subunit, which is responsi-
ble for cell surface binding, while LF and EF are A subunits responsible for the enzymatic activity of the 
toxin6,7. PA combined with LF or EF constitutes the lethal toxin (LeTx) or edema toxin (EdTx), respec-
tively8. The first step in cellular intoxication involves binding of an 83 kD form of PA (PA83) to specific 
cell surface receptors (ANTXR19 and ANTXR210). Following receptor binding, PA83 is cleaved after the 
Arg-Lys-Lys-Arg sequence at amino acid position 167 by a furin-family protease. This results in a 63 kDa 
form (PA63) that spontaneously oligomerizes to either a heptamer or an octamer11–13. Dissociation of 
the 20 kDa form (PA20) from PA83 allows PA63 to bind to either or both EF and LF. Then, oligomeric 
PA63-receptor complexes translocate LF or EF into the cytosol, where they promote intoxication14.

Previous studies have shown that PA63 inserts stably and irreversibly into lipid bilayers to form 
ion-permeable channels15,16. Other research has shown that the protease cleavage site deletion or muta-
tion in PA83 prevents EF and LF binding17,18, and that for cells treated with lysosomotropic agents, the 
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ability of PA to mediate the actions of EF or LF is blocked19. Nasal immunization of mice with a mix-
ture of PA63, LF, and a poly-γ -d-glutamic acid conjugate have been shown to exhibit strong antibody 
responses against all three antigens20. Thus, PA63 seems to be an ideal target fragment for antibody 
generation and selection.

Since passive immunization with protective antibodies can provide immediate and extensive protec-
tion independent of the host response, it is an attractive option to enhance the current postexposure 
treatment of anthrax. Especially with regard to biodefense, it is considered the primary available thera-
peutic measure21. During the past 10 years, extensive research has focused on development of therapeutic 
antibodies to target the main virulence factors of anthrax, namely, PA, LF, EF, and capsule22–31. Among 
these, PA plays a central role in the pathophysiology of anthrax and is an excellent therapeutic target. 
Further, PA63 is the most important part of PA.

In the present study, we developed murine IgG neutralizing antibodies that directly target PA63. Then, 
we selected an ideal antibody from among these and genetically recombined it to form human/murine 
chimeric IgG (coded “hmPA6”). hmPA6 could specifically bind to PA63 and protect J774A.1 cells against 
LeTx challenge in vitro. Further, it protected Fischer 344 rats (F344) from LeTx after challenge.

Results
ELISA.  ELISA was performed to test the binding sensitivity of hmPA6 to PA63. hmPA6 recognized 
rPA63 in a dose-dependent manner, and the graph of hmPA6 concentration and absorbance at 450 nm 
was a hyperbolic curve (Fig. 1).

Western blot.  Western blot analysis showed that hmPA6 could specifically recognize rPA63 (Fig. 2). 
No reaction was seen with the negative control.

Immunoprecipitation.  Immunoprecipitation was performed using PA83, which could be split to 
active PA63 using trypsin. A protein of about 63 kDa was detected on SDS-PAGE, and its sequence 
matched that of the B. anthracis protective antigen in the Swiss-Prot database (Fig. 3A,C,D). A 63 kDa 
membrane protein was also detected using a commercial anti-PA antibody (Fig. 3B), and this protein did 
not reaction with any other antibodies.

Kinetics of binding.  The equilibrium dissociation constant (Kd) for hmPA6 was determined by 
BiaCoreX100 analysis. The rate constants kon and koff were evaluated directly from the BiaCoreX100 
sensogram. The Kd was also determined using the BiaCoreX100. One striking feature of hmPA6 is its 
very slow off rate, which may explain its high affinity of 1.438 ×  10−10 M (Fig. 4).

Figure 1.  ELISA. rPA63 was used to coat ELISA plates. The wells were then incubated with serial dilutions 
of hmPA6, and the bound antibody was detected by the addition of peroxidase-conjugated goat anti-human 
antibody followed by tetramethylbenzidine substrate. OD450 =  optical density at 450 nm.
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In vitro LeTx neutralization assay.  The ability of hmPA6 to protect against LeTx was assessed in 
J774A.1 cells. hmPA6, PA83, and different concentrations of LF were simultaneously added to cells. 
Cell viability test results indicated that hmPA6 could completely neutralize LeTx. At 10 μ g/mL LF 
and 0.1 μ g/mL PA83, > 80% of the hmPA6-treated cells remained viable, while only 26% of the con-
trol IgG antibody-treated cells remained viable. At 0.01 μ g/mL LF and 0.1 μ g/mL PA83, 100% of the 
hmPA6-treated cells were viable, while only 50% (Fig. 5) of the control cells were.

Protection of F344 rats.  F344 rats were injected hmPA6 antibody via the tail vein either before 
or after LeTx injection. The survival time of group III was significantly (P <  0.001) longer than that in 
groups I and II. Until the last observation, all group IV rats were alive (Fig. 6A). Rats injected hmPA6 
5 min before LeTx showed similar results. A dose of 45 μ g antibody protected the rates from death 
(Fig.  6B), although some symptoms, such as accelerated breathing and lethargy, were observed in one 
rat. hmPA6 injection before or after LeTx administration protected all rats from developing anthrax 
(Fig. 6C).

The prophylactic function of hmPA6 was tested by injection of the antibody at different times before 
LeTx injection. In the groups that received prophylaxis 5 min to 48 h before LeTx injection, 6 rats 
remained alive (Fig.  6D). When hmPA6 was injected before PA, it protected rats from anthrax death 
regardless of LF injection time (Fig. 6E).

Tissue pathology and immunohistochemical analysis.  The lung of the rats were pathologically 
and immunohistochemically examined. H&E staining showed that the local tissue of rats injected only 
LeTx showed greater alveolar exudation (Fig.  7c) than untreated control rats (Fig.  7a). However, the 
group that received LeTx +  45 μ g hmPA6 (Fig.  7b) showed no significant differences from untreated 
control rats.

Since anthrax receptors were expressed in some cells including alveolar epithelial cells, cell binding to 
PA could be positive. When rats were injected with LeTx, the cells could dectect PA. Further, the posi-
tive staining was mainly localized to the membrane. A strong positive reaction was found in the group 
injected only LeTx (Fig. 7f), while a weak positive reaction was found in the group injected LeTx +  45 μ g 
hmPA6 (Fig. 7e). The untreated control group showed a negative reaction (Fig. 7d).

Discussion
This study revealed two major findings: First, the human/murine chimeric antibody hmPA6 can neu-
tralize LeTx in vivo and can be used for prohylaxis before LeTx is released in the blood. Second, since 
immunization with PA63 produces neutralizing antibody, it can be used to immunize animals. In the 
present study, we developed four murine mAbs that could well neutralize LeTx in vitro, and one clone 
was selected to form a human/mouse chimeric antibody known as hmPA6. This antibody showed excel-
lent neutralization both in vitro and in vivo.

Figure 2.  Western blot. M, molecular weight marker (NEB, USA); lane 1, lysates of rPA63 recombinant 
bacteria; lane 2, lysates of E. coli BL21.
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The current status of therapeutic mAbs was directed against the major virulence factors: PA, LF, EF 
and capsule. Although LF could induce cell death, its effective result in vivo was unsatisfactory. PA was 
the critical factor which recognized cell membrane receptors. Then PA was cleaved to active PA63 by 
Furin which induced LF or EF into cells. Our strategy was to get antibody against active PA63. To immu-
nize the mice, we used PA63, which is formed by the dissociation of PA20 from PA83, instead of PA83, 
because although PA63 is a part of PA83, these factors may have different structures and expose LF- or 
EF-binding sites. These differences may in turn lead to the production of completely different antibodies 
against anthrax in vivo. In the present study, we showed that PA63 could induce neutralizing antibodies, 
as proven through in vitro and vivo experiments. On the other hand, it was difficult to obtain active PA63 
based on present methods. We screened out positive clones by active PA63 in a different way. Based on 

Figure 3.  Immunoprecipitation (IP). A. 10% SDS-PAGE of IP. B. Western blot of IP. M, molecular weight 
marker (NEB, USA); lane 1, eluate of hmPA6 +  a mixture of PA63 and PA83 from protein-A Sepharose; 
lane 2, hmPA6; lane 3, PA83; lane 4, eluate of anti-TLR4 chimeric IgG +  a mixture of PA63 and PA83 
from protein-A Sepharose. C and D. MS spectra of fragment ions from the 63 kDa protein. Five major 
(m/z =  870.539, 1267.709, 1479.797, 2034.010, and 2190.020) ions were detected. MS with protein database 
search: matched peptides are shown in red and boldface.

Figure 4.  Affinity and kinetic assay. hmPA6 affinity and kinetics assays showed five curves with different 
concentrations of anti-PA IgG ranging from 5 to 80 nmol/L; Kd =  1.438 ×  10−10 M with PA83 at 25 μ g/mL.
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traditional ELISA, we coated plates with alive J774A.1 cells overninght at cell culture condition. Then 
PA83 was added into wells incubated about 2 h. The negative control was cells without PA83 adding. The 
rest of ELISA procedures was as normal. In this screening system, the active PA63 was more closed to 
in vivo state and could oligomerize to heptamer. In all, more diversity antibodies was generated in the 
immunization stage and more effective antibodies was obtained in the screening system.

Anthrax, whether resulting from natural or bioterrorist-associated exposure, is a constant threat to 
human health23, and the low incidence of anthrax suggests that large-scale vaccination may not be the 
most efficient means of controlling this disease. Passive immunization with protective antibodies is there-
fore considered the primary available biodefense measure21, especially in bioterrorist-associated expo-
sure. In the present study, hmPA6 was found to provide good protection in rats challenged with anthrax 
virulence factors. In the in vitro experiment, hmPA6 maintained 100% cell viability with 0.01 μ g/mL LF 
and 0.1 μ g/mL PA83, while non-correlated IgG maintained only 50% cell viability. Further, with 10 μ g/mL 
LF and 0.1 μ g/mL PA83, hmPA6 maintained > 80% cell viability, while the control antibody maintained 
only 26%. Moreover, in previous study, they often used F344 rats challenged with LeTx (Table 1) before 
tested with B. anthracis spores. Therefore F344 rats was injected with LeTx vial tail vain. The hmPA6 with 
a Kd of 0.14 nM protected all rats from death at a concentration of 0.3 mg/kg (45 μ g per rat). However, 
in a previous study, 1.5 mg/kg raxibacumab (of human origin) with a Kd of 2.78 nM was administered 
24 h before anthrax lethal toxin administration in F344 rats24. We also tested an hmPA6 concentration of 
0.6 mg/kg (90 μ g per rat) administered 48 h before LeTx injection; this dose also protected all rats. Our 
findings indicate that hmPA6 may be used as a prophylactic. Other humanized or chimeric mAbs have 
been examined in other animal model, but the affinity found in the present study is the same as or better 
than those found previously32,33. Murine mAbs against PA have been developed, but our chimeric mAb 
maintains a balance between the high-affinity murine component and the low-immunogenicity human 
component. Other mAbs of human origin are available but are difficult to produce and are expensive32. 
The chimeric mAb hmPA6 is produced in 293F cells, and the method of production is very convenient.

In the in vivo test in the present study, irrespective of whether LF was injected before or after hmPA6, 
the antibody protected the rats from death provided that it was administered before or simultaneously 
with PA. This finding indicated that hmPA6 could not prevent LF from binding PA63. Further, no mor-
phological changes were observed in the rats of only injection LeTx, probably because the time between 
injection and sacrifice was very short (only about 90 mins), and no histological changes occurred in this 
period. The IHC analysis showed a strong positive result in the group injected only LeTx. However, the 
group that received LeTx +  45 μ g hmPA6 showed a weakly positive reaction. These findings indicate 
that hmPA6 prevents PA from binding to cell receptors. However, further experiments are required to 
validate this hypothesis.

Future studies should focus on detailed characterization of this mAb (specificity, toxicity studies, 
autoantigen testing, etc.). Second, epitope mapping and structure function analysis of hmPA6 should 
be performed. In the in vivo experiment in the present study, we demonstrated that hmPA6 could not 
interfere with LF binding to PA. Further experimentation is needed to determine the exact mechanism 
by which hmPA6 neutralizes LeTx. Lastly, more animal tests are required, for example, in which animals 
are challenged with anthrax spores.

In summary, we reported a human/murine chimeric IgG, namely, hmPA6, which can specifically iden-
tify PA with high affinity, neutralize LeTx, and protect macrophages and F344 rats from anthrax-related 
death. We also showed that PA63 is a good immunogen. From our findings, we believe that once hmPA6 
is further characterized, it can be used alone or in combination with other neutralizing mAbs for treat-
ment of anthrax.

Figure 5.  J774A.1 cell survival with hmPA6 treatment. Serially diluted LF was incubated with PA83 
and different antibodies for 3 h. Using the AQ assay, cell viability was determined and plotted as survival 
percentage.
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Materials and Methods
Mouse mAb development.  Recombinant PA63 protein (rPA63) was expressed in Escherichia coli 
BL21 by using the pColdII vector and purified by affinity chromatography. Six BALB/c mice aged 7 weeks 
were intraperitoneally (ip) immunized with rPA63 and adjuvant as described previously34. After immuni-
zation, the mouse spleen showing the best titer was removed, and splenocytes were extracted and fused 
with SP2/0 myeloma cells using hybridoma technology35. Positive clones were screened by ELISA using 
active PA63-coated 96-well plates, and subcloning was conducted based on standard protocols. Clonal 
expansion was conducted with Hybridoma-SFM (Gibco,USA). The cell supernatant was then removed 
and purified by affinity chromatography with protein G (GE, USA) according to the manufacturer’s 
purification system.

Figure 6.  In vivo LeTx neutralization assay in F344 rats. A. Mean survival time. LeTx and the 
antibody were simultaneously injected via the tail vein. Group I, 0 μ g hmPA6 +  30 μ g LeTx; group II, 
15 μ g hmPA6 +  30 μ g LeTx; group III, 30 μ g hmPA6 +  30 μ g LeTx; group IV, 45 μ g hmPA6 +  30 μ g LeTx. 
***P <  0.001. B. Different concentrations of the antibody were injected, and LeTx was injected 5 min later via 
the tail vein. C. For each rat, 45 μ g antibody was injected before (− 5 min), after (5 min), or simultaneously 
(0 min) with LeTx. D. For each rat, 90 μ g antibody was injected at different times before LeTx injection. E. 
Group I, PA (30 μ g) was injected 5 min after LF (30 μ g) +  hmPA6 (45 μ g); group II, PA (30 μ g) was injected 
5 min before LF (30 μ g) +  hmPA6 (45 μ g).
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All experiments involving animals were performed in accordance with the protocols approved by the 
Animal Care and Use Committee of the National Institute of Allergy and Infectious Diseases, National 
Institutes of Health, USA.

Construction of human/mouse chimeric antibody expression vector.  Total RNA was extracted 
from the PA6 hybridoma cells using the TRIzol reagent (Invitrogen), and cDNA was synthesized using 
reverse transcriptase SuperScript II according to the manufacturer’s instructions. Eukaryotic vectors were 
constructed by separately cloning PA6 heavy and light variable regions into pTH and pTL, which respec-
tively include constant regions of IgG1 heavy and light chains. Murine variable regions of the heavy (VH) 
and light chains (VL) were first amplified by PCR using PA6 cDNA as the template. To obtain VH and VL 
nucleotide sequences, these chains were cloned into the pMD-18T vector. PCR primers were designed 
using the In-FusionR HD Cloning Kit (Clontech), and VH and VL were amplified from right-sequenced 
pMD-18T vectors by using these primers. Finally, VH and VL were separately cloned into linearized pTH 
and pTL vectors, respectively, by infusion PCR using the In-FusionR HD Cloning Kit. The recombinant 

Figure 7.  Tissue pathological and immunohistochemical analysis. a–c. H&E (100× ). d–f. IHC (100× ). a 
and d. Untreated control rats. b and e. LeTx +  45 μ g hmPA6. c and f. LeTx alone.

mAb In vivo neutralization Reference

Anti-LF LF8 Athymic nude mouse1 29

9A11 Balb/C mouse1 28

10G3, 2E7, 3F6 F344 rat1 37

5B13B1, 3C16C3 F344 rat1 30

IQNLF A/J mouse1 22

LF10E F344 rat and A/J mouse1 38

LF11H F344 rat1 38

Anti-PA Abthrax F344 rat1, rabbit2 and monkey2 24

AVP-21D9 F344 rat1 and rabbit2 25

IQNPA A/J mouse2 22

MDX 1303 Rabbit2 and monkey2 26

Table 1.   Other monoclonal antibodies in vivo test. 1Animals challenged with LT. 2Animals challenged 
with B. anthracis Ames spores.
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pTH/PA6 VH and pTH/PA6 VL vectors were sequenced by Genescript. Sequences were further analyzed 
using the VBASE2 database (http://www.vbase2.org/).

Antibody expression and purification.  The recombinant vectors were simultaneously trans-
fected into FreeStyle™  293-F Cells (293F) using 293fectin with the FreeStyle™  293 Expression System 
(Invitrogen). Six days after transient transfection, the cell supernatant was harvested and purified by 
affinity chromatography with protein A (GE, USA) in accordance with the manufacturer’s purification 
system. The purity of the chimeric antibody (hmPA6) was examined by 10% SDS-PAGE and Coomassie 
blue staining.

ELISA.  Ninety-six-well enzyme immunoassay plates were coated overnight at 4 °C with 50 μ L of rPA63 
antigen (2 μ g/mL) diluted in 50 mM sodium carbonate buffer (pH 9.6). The plates were blocked and serial 
two-fold dilutions of hmPA6 were added to the wells (3 wells for each concentration) as the primary anti-
body. The plates were incubated at 37 °C for 1 h and then washed 3 times with 300 μ L of PBS containing 
0.05% Tween 20 (PBST). Subsequently, goat anti-human IgG–HRP conjugate (Sigma) was added as the 
secondary antibody and incubated at 37 °C for 30 min. After color development, the absorbance values of 
the wells were detected at 450 nm. Non-correlated IgG1 was used as the control. The absorbance values 
at 450 nm of hmPA6 were plotted using GraphPad Prism software version 5.0 (GraphPad Software, Inc., 
La Jolla, CA, USA).

Western blot analysis.  The cell lysates of rPA63 recombinant bacteria and E. coli BL21 were sep-
arately run on a 10% SDS-PAGE gel and then transferred onto a nitrocellulose membrane (Bio-Rad). 
The membrane was blocked with PBS containing 5% dry milk at 4 °C overnight and then incubated for 
1 h at RT with 1:2000 diluted hmPA6 from 1 mg/mL stock. After it was washed 3 times with PBST, the 
membrane was incubated with a 1:4000 diluted secondary HRP-conjugated goat anti-human antibody 
(Sigma) for an additional 30 min at RT. Following the same washing procedure, the signal was detected 
using ECL Western Blot Substrate (Pierce) according to the manufacturer’s instructions.

Immunoprecipitation.  A mixture of PA63 and PA83 was prepared by incubating PA83 [20 mM Tris 
(pH 8.0) and 150 mM NaCl] with 0.5 μ g/mL trypsin (Sigma) for 30 min at 22 °C, followed by addition of 
10 μ g/mL soybean trypsin inhibitor (Sigma)14. Then, the mixture was incubated with 5 μ g of hmPA6 at 
4 °C and rotated for 3 h. Next, 50 μ l protein-A Sepharose (Invitrogen, USA) was added and incubated at 
4 °C. The immune complexes that formed were washed 3 times with PBST. Subsequently, 50 μ L elution 
buffer was added to separate these antibody-antigen complexes from protein-A Sepharose. As a negative 
control, another anti-TLR4 chimeric antibody (generated by our lab) was created using the same proto-
col. The protein complexes were isolated by running two 10% SDS-PAGE gels; one was transferred onto 
a nitrocellulose membrane, and the other was stained with Coomassie blue. The nitrocellulose mem-
brane was blocked at 4 °C overnight, incubated with 1:5000 diluted rabbit polyclonal anti-PA antibody 
(Pierce, USA) for 1 h at RT, washed with PBST 3 times, and reacted with 1:4000 diluted goat anti-rabbit 
IgG-HRP conjugate (Sigma) for an additional 30 min at RT. The membrane was washed 3 times with 
PBST, and the hybridization signal was detected using ECL Western Blot substrate. The target bands on 
SDS-PAGE gel were subjected to mass spectra identification with an ABI 4700 proteomics analyzer and 
MALDI-TOF/TOF mass spectrometer (Applied Biosystems, Framingham, MA). The mass spectra were 
then searched within the Swiss-Prot database using the MASCOT search engine (http://www.matrix 
science.com; Matrix Science, UK).

Affinity and kinetic assay of antibody.  The Biacore X100 System (GE, USA) was used to ana-
lyze the affinity and kinetics of the hmPA6 antibody. PA83 was diluted to 25 μ g/mL with acetate buffer 
(10 mM NaAc, pH 4.5) and immobilized on the surface of a CM5 sensor chip (GE, USA) to capture 
purified mAb, which was diluted in running buffer (10 mM HEPES, 150 mM NaCl, 5 mM EDTA-Na2, 
0.05% P20; pH 7.4) to achieve different concentrations ranging from 5 to 80 nmol/L. The association time 
was set up at 180 s and the dissociation time, at 600 s, followed by regeneration with 50 mM glycine–HCl 
(pH 2.2). Sensograms were evaluated using the Biacore X100 evaluation software.

In vitro LeTx neutralization assay.  The in vitro LeTx neutralization assay was performed as 
described previously29. Briefly, murine macrophage J774A.1 cells cultured in DMEM containing 10% 
fetal bovine seru and 1% penicillin/streptomycin were seeded in 96-well plates to 70% confluence. LF 
was diluted serially in complete medium containing PA and hmPA6. This mixture was applied to the cells 
(3 wells for each dilution) at the following final concentrations: LF, 0.01 ~ 10,000 ng/mL; PA, 0.1 μ g/mL; 
and hmPA6, 4 μ g/mL. The plates were then incubated for 3 h at 37 °C. Untreated cells and cells treated 
with only LeTx acted as the controls. Cell viability was determined using the AQ assay (Promega, MI) 
according to the manufacturer’s instructions.

In vivo LeTx neutralization assay.  The in vivo LeTx neutralization assay was performed using 
female Fischer 344 (F344) rats weighing between 130 and 160 g. Every rats of each group (n =  6) were 
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injected via the tail vein with a mixture of PA +  LF (LeTx) and different amounts of hmPA6 antibody 
prepared in sterile PBS. Each rat was administered 300 μ L of the mixture.

Further, the rats were also treated with different concentrations of the antibody 5 min before expo-
sure to LeTx. For this experiment, they were injected intravenously with PBS or 15, 30, or 45 μ g of the 
antibody before receiving an intravenous injection of LeTx (30 μ g PA +  30 μ g LF). Additionally, double 
the complete protection dose of antibody (90 μ g) was injected to test its prophylactic ability. The rats 
were inoculated with 90 μ g antibody followed by LeTx administration after different times, from 5 min 
to 48 h. Two additional experiments were conducted with F344 rats. One group received PA (30 μ g) 
injection 5 min after LF +  hmPA6 (30 μ g +  45 μ g, respectively), while the other received 30 μ g PA 5 min 
before LF +  hmPA6 (at the same doses). After injection of LeTx, signs of malaise and death were checked 
for every 30 min for the first 8 h and then at 16 h and 24 h, followed by twice-daily checks for 1 week.

Tissue pathology and immunohistochemical examination.  The lungs of the F344 rats were 
embedded in paraffin wax at the Department of Pathology, Nanjing Medical University (Jiangsu, China), 
using routine methods. Sections (5 μ m) were deparaffinized with xylene and then dehydrated in decreas-
ing concentrations of alcohol. Some sections were treated with H&E staining and examined by light 
microscopy to determine the pathological features of the lung tissues.

For the remaining sections, endogenous peroxidase activity was blocked by incubation with 3% 
hydrogen peroxidase in Tris-buffered saline. Some of these tissue sections were then incubated with rab-
bit polyclonal anti-PA primary antibody (Pierce, USA), followed by the EnVision HRP complex (DAKO, 
Carpinteria, CA). They were then counterstained with hematoxylin QS (Vector Laboratories, Burlingame, 
CA). The results were analyzed according to the IHC score (IHS) as described previously36. Briefly, the 
IHS was determined by evaluation of both staining density and intensity. Multiplication of the intensity 
and percentage scores yielded the final IHS. Samples with IHS ≤ 3 were considered weakly positive, while 
those with IHS ≥ 6 were considered strongly positive. The IHC results were evaluated by two independ-
ent investigators blinded to the rat groups. In cases of conflict, a pathologist reviewed the cases, and a 
consensus was reached.

Statistical analysis of survival data.  Kaplan Meier analysis was used for evaluation of survival. 
Survival data were analyzed using the GraphPad Prism version 4 statistical analysis software (San Diego, 
CA). A t-test was used to compare the mean survival time between groups. A two-tailed log rank test 
was used to determine the statistical significance of differences between groups. A P value of < 0.05 was 
considered statistically significant.
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