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Abstract

This paper introduces semiparametric relative-risk regression models for infectious disease data. 

The units of analysis in these models are pairs of individuals at risk of transmission. The hazard of 

infectious contact from i to j consists of a baseline hazard multiplied by a relative risk function 

that can be a function of infectiousness covariates for i, susceptibliity covariates for j, and pairwise 

covariates. When who-infects-whom is observed, we derive a profile likelihood maximized over 

all possible baseline hazard functions that is similar to the Cox partial likelihood. When who-

infects-whom is not observed, we derive an EM algorithm to maximize the profile likelihood 

integrated over all possible combinations of who-infected-whom. This extends the most important 

class of regression models in survival analysis to infectious disease epidemiology. These methods 

can be implemented in standard statistical software, and they will be able to address important 

scientific questions about emerging infectious diseases with greater clarity, flexibility, and rigor 

than current statistical methods allow.
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1 INTRODUCTION

Infectious diseases are an important threat to human health and commerce, and 

understanding the transmission of disease is crucial to the design of public health 

interventions. The statistical analysis of infectious disease data is complicated by the fact 

that infections are inherently dependent, especially when they are transmitted directly from 

person to person (Becker, 1989; Andersson and Britton, 2000). Epidemiologists have dealt 

with this problem in three ways. The most common approach is to model susceptibility to 

disease using standard statistical methods such as logistic or Cox regression, ignoring 

disease transmission. A second approach is to use chain binomial models (Rampey et al., 

1992), which estimate the probability of escaping infectious contact from infected members 

SUPPLEMENTARY MATERIALS
Supplementary material available online at the Journal of the American Statistical Association website includes:

Appendices for Section 2 Outline of sufficient conditions for consistency and asymptotic normality (Appendix A) and derivation of 
the asymptotic variance of baseline hazard estimates (Appendix B).

Simulation code for Section 3 Python module used for the simulations, including statistical analyses in R.

HHS Public Access
Author manuscript
J Am Stat Assoc. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
J Am Stat Assoc. 2015 March 1; 110(509): 313–325. doi:10.1080/01621459.2014.896807.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of groups such as households, classrooms, or hospital wards. The third approach is to model 

the spread of disease as a branching process where infectees are the o spring of their 

infectors (Wallinga and Teunis, 2004; White and Pagano, 2008). The time between the 

infections of an infector and an infectee is called a generation interval. In this approach, the 

generation intervals are assumed to be independent and identically distributed (iid).

To understand transmission, it is crucial to separate the e ects of covariates on infectiousness 

and susceptibility from their association with exposure to infected people (Rhodes et al., 

1996). Regression models that ignore transmission cannot do this. When disease 

transmission is modeled as a branching process, uninfected people do not exist and cannot 

be exposed to infected people. The failure to account for uninfected person-time and 

competing risks of infection cause several problems with this approach (Svensson, 2007; 

Kenah et al., 2008). The assumption that generation intervals are iid is di cult to relax, 

making estimation of covariate e ects di cult (Kenah, 2013). Chain binomial models are a 

statistically sound response to the problem of dependence and can be used to estimate 

covariate e ects. However, their use is limited in two ways: First, they are not implemented 

in standard statistical software—a problem solved partially by the publicly-available 

package TranStat (www.epimodels.org/midas/transtat.do). Second, they use discrete time. 

Since infectious disease data are usually recorded by the day or week, this is not unnatural. 

However, continuous-time models corrected for ties may o er a more flexible modeling 

framework.

Kenah (2011) extended parametric methods from survival analysis to infectious disease data 

by modeling the contact interval. In the ordered pair ij, the contact interval τij is the time 

between the onset of infectiousness in i and the first infectious contact from i to j, where 

infectious contact is a contact sufficient to infect a susceptible individual. It is right-censored 

if the infectious period of i ends before i makes infectious contact with j or if j is infected by 

someone other than i. These methods solve the problem of dependence by treating ordered 

pairs of individuals, not the individuals themselves, as the units of analysis. Kenah (2013) 

showed that the contact interval distribution could be estimated nonparametrically by 

adapting the Nelson-Aalen estimator from standard survival analysis. These methods assume 

a homogeneous population where the contact interval distribution is the same for all pairs ij 

in which transmission from i to j is possible. They are unable to estimate covariate e ects on 

transmission, which is a primary goal of vaccine trials, outbreak investigations, and many 

other studies of infectious disease.

The goal of this paper is to extend the methods of Kenah (2013) to develop a relative-risk 

regression model similar to that of Cox (1972). This model will allow semiparametric 

estimation of the e ects of covariates on the hazard of infectious contact in pairs of 

individuals. For the ordered pair ij, the covariate vector can include infectiousness covariates 

for i, susceptibility covariates for j, and pairwise covariates. This semiparametric regression 

model will allow many of the most important scientific questions in infectious disease 

epidemiology to be addressed with greater clarity, flexibility, and rigor.
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1.1 Stochastic S(E)IR epidemic model

Consider a closed population of n individuals assigned indices 1 . . . n. Each individual is in 

one of four states: susceptible (S), exposed (E), infectious (I), or removed (R). Person i 

moves from S to E at his or her infection time ti, with ti = ∞ if i is never infected. After 

infection i has a latent period of length εi, during which he or she is infected but not 

infectious. At time ti + εi, i moves from E to I, beginning an infectious period of length i. At 

time ti + εi + li, i moves from I to R. Once in R, i can no longer infect others or be infected. 

The states and notation are illustrated at the top of Figure 1. The latent period is a 

nonnegative random variable, the infectious period is a strictly positive random variable, and 

both have finite mean and variance.

An epidemic begins with one or more persons infected from outside the population, which 

we call imported infections. The methods in this paper require that the set of imported 

infections is known. For simplicity, we assume that epidemics begin with one or more 

imported infections at time 0 and there are no other imported infections.

After becoming infectious at time ti + εi, person i makes infectious contact with j ≠ i at time 

, where the infectious contact interval  is a strictly positive random variable 

with  if infectious contact never occurs. Since infectious contact must occur while i is 

infectious or never,  or . We define infectious contact to be a contact 

sufficient infect a susceptible person, so tj ≤ tij for all i ≠ j. The infectious contact interval is 

illustrated at the bottom of Figure 1.

For each ordered pair ij, let Cij = 1 if infectious contact from i to j is possible and Cij = 0 

otherwise. These Cij could be the entries in an adjacency matrix for a static contact network. 

We assume that the infectious contact interval  is generated in the following way: A 

contact interval τij is drawn from a distribution with hazard function λij(τ). If τij ≤ li and Cij 

= 1, then . Otherwise, . In this paper, we assume the contact intervals in all 

ordered pairs ij are independent and have finite mean and variance.

1.2 Observation and censoring

Our population has size n, and we observe the times of all S → E (infection), E → I (onset 

of infectiousness), and I → R (removal) transitions in the population between time 0 and 

time T . For all ordered pairs ij such that i is infected, we observe Cij. We first consider the 

case where who-infects-whom is observed and then consider the more realistic case where it 

is not.

We assume that we can observe τij only if j is infected by i at time ti+εi+τij. Clearly, τij can 

be observed only if Cij = 1. We also have right-censoring of τij:

1. Since infectious contact can occur only while i is infectious, τij can be right-censored by 

the infectious period li of i. Let  indicate whether i remains infectious at 

infectious age τ.

Kenah Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Since j is susceptible to infection by i only if he or she has not been infected by anyone 

else, τij can be right-censored by ti′j − ti − εi for i′ ≠ i. Let  indicate 

whether j remains susceptible at infectious age τ of i.

Let T denote the time at which observation ends. Then τij can be right-censored by the end 

of observation at infectious age T − ti − εi of i. Let  indicate whether 

observation is ongoing when i reaches infectious age τ.

Since , , and  are left-continuous,

(1)

is a left-continuous process that indicates the risk of an observed infectious contact from i to 

j at infectious age τ of i. The assumptions made in the stochastic S(E)IR model above ensure 

that  and  independently censor τij. We also require that T is a stopping time 

with respect to the observed data such that, for all i,  independently censors τij for each 

j exposed to infectious contact from i. The possible censoring scenarios are illustrated in 

Figure 2.

1.3 Transmission trees and infectious sets

Following Wallinga and Teunis (2004), let vj denote the index of the person who infected 

person j, with vj = 0 for imported infections and vj = ∞ for persons not infected prior to the 

end of observation. The transmission tree is the directed network with an edge from vj to j 

for each j such that tj ≤ T . It can be represented by a vector v = (v1, . . . , vn). Let 

 denote the set of possible infectors of person j, which we call the 

infectious set of j. Let  denote the set of all v consistent with the observed data. A 

can be generated by choosing a  for each non-imported infection j.

2 METHODS

Kenah (2013) described the nonparametric estimation of the contact interval distribution for 

a homogeneous population. Here, we consider a semiparametric relative-risk model like that 

of Prentice and Self (1983). Let

(2)

where λ0(τ) is an unspecified baseline hazard function,  is a relative risk 

function, β0 is an unknown b × 1 coefficient vector, and Xij(τ) is a b × 1 predictable 

covariate process taking values in a set . The covariates Xij(τ) can include individual-level 

covariates predicting the infectiousness of i or the susceptibility of j as well as pairwise 

covariates (e.g., membership in the same household) that predict the hazard of infectious 

contact from i to j.

We assume that r has continuous first and second derivatives, r(0) = 1, and ln r(βTX) is 

bounded on . Letting r(x) = exp(x) gives us a loglinear relative risk regression model like 
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that of Cox (1972), and letting r(x) = 1 + x gives us a linear relative risk regression model. 

To fit these semiparametric models, we adapt the nonparametric estimators from Kenah 

(2013) to account for the relative risk function.

2.1 Who-infects-whom is observed

Let Nij(τ) = 1τij ≤τ indicate whether an observed infectious contact from i to j has occurred 

by infectious age τ in i, and let . Note that we must observe who-

infected-whom in order to calculate N(τ).

Let . Given β, the Breslow estimator (Breslow, 1972) of Λ0(τ) is

(3)

where

(4)

The Breslow estimator has two desirable properties. First,  is an unbiased estimator 

of Λ0(τ). Let

(5)

Then for all τ such that Y (τ) > 0,

(6)

is a mean-zero martingale when β = β0. Second,  maximizes the log likelihood

(7)

over all step functions Λ(τ). Substituting  into l(β, Λ) profile likelihood

(8)

where . The first term is similar to the log partial likelihood from Cox 

(1972) and the second term does not depend on β. Dropping the second term, let

(9)
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be the log partial likelihood for β. This derivation of the partial likelihood as a profile 

likelihood follows that of Johansen (1983). Let  denote the value of β that maximizes pl(β), 

and let  denote the corresponding Breslow estimate of the baseline 

cumulative hazard.

2.2 Partial likelihood score process

We can rewrite pl(β) as a sum of stochastic integrals:

(10)

The corresponding score process is

(11)

where

(12)

is the expected value of  over the risk set at u when each pair is 

weighted by its hazard of infectious contact at u. By the Doob-Meyer decomposition, there 

is a mean-zero martingale Mij(u) for each ij such that

(13)

Expanding equation (11) using this decomposition and simplifying, we get

(14)

Since it is a sum of integrals of predictable processes with respect to martingales, U(β0, τ) is 

a mean-zero martingale.

2.3 Observed and expected information

Let  for a column vector v. Since the Nij(τ) do not jump simultaneously in 

continuous time, the predictable variation process of U(β0, τ) is

(15)

where
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(16)

is the variance of  over the risk set at u when each pair ij is weighted by 

its hazard of infectious contact at u.

Let  be the observed information. Then

(17)

Expanding I(β0) via the Doob-Meyer decomposition (13) and simplifying, we get

(18)

The second term has expectation zero, so I(β0) is an unbiased estimate of Var(U(β0, ∞)).

Another estimate Var(U(β0, ∞)) is obtained by substituting the increments of the Breslow 

estimator (3) for λ0(u) du in equation (15). This gives us the estimated expected information

(19)

Expanding  using the Doob-Meyer decomposition and simplifying, we get

(20)

where . The second term has expectation zero, so  is also 

an unbiased estimate of the variance of U(β0, ∞).  may be a better estimator of 

Var(U(β0, ∞)) than I(β0) because it is guaranteed to be positive semidefinite (Prentice and 

Self, 1983) and it depends only on aggregates over risk sets (Aalen et al., 2009).

When r(x) = exp(x) as in the Cox model,  for all β. For general r(x), I(β0) and 

 are asymptotically equivalent under weak regularity conditions (see Appendix A 

online).

Kenah Page 7

J Am Stat Assoc. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 Large-sample estimation of β0 and Λ0(τ)

Appendix A, available online, outlines sufficient conditions for the asymptotic normality of 

U(β0, τ) and  as m → ∞, where m is the number of pairs ij at risk of transmission. Under 

these conditions, hypothesis tests and confidence intervals for β0 can be obtained using 

score, Wald, or likelihood ratio statistics. These conditions are very similar to those for the 

standard Cox model (Prentice and Self, 1983) except for the additional requirement that both 

the number of susceptibles and the number of pairs be large such that each susceptible is 

exposed to a number of infectors < < m. When a given susceptible j is infected, all pairs ij 

are censored. If there were many pairs but few susceptibles, each susceptible would be 

exposed to a very high hazard of infection and most pairs would be censored very quickly. 

To take an extreme case, imagine a single susceptible exposed to m infecteds. The number 

of pairs at risk of transmission is m but the susceptible will be infected almost immediately 

when m is large. After this, there are no more pairs at risk of transmission and we can learn 

nothing further about β0 or Λ0(τ).

Given  the Breslow estimator of . Its variance is 

consistently estimated by

(21)

which is derived in Appendix B.1.  can be replaced by . Using the martingale 

central limit theorem and a log transformation, we get the approximate pointwise 1 − α 

confidence limits

(22)

Point and interval estimates for the baseline survival function can be obtained using the 

relationship S0(τ) = exp (− Λ0(τ)

2.5 Who-infects-whom is not observed

When we do not observe who-infected-whom, we do not know which contact intervals are 

observed and which are censored. It impossible to calculate the partial likelihood pl(β) or the 

Breslow estimate . In this section, we show how an EM algorithm similar to that of 

Kenah (2013) can be used to obtain consistent and asymptotically normal estimates of β0 

and Λ0(τ).

Given β, λ(τ), and the observed information, the probability that j was infected by i is

(23)
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and the infectors of different infected persons can be chosen independently (Kenah et al., 

2008). The probability of a transmission network v = (v1, . . . , vn) given β, λ(τ), and the 

observed data is

(24)

Note that the last two equations assume a continuous contact interval distribution, so 

simultaneous infectious contacts have probability zero.

Let plv(β) be the log partial likelihood that we would have calculated had we observed the 

transmission network v. Given a coefficient vector β* and a baseline hazard function λ*(τ), 

the expected log likelihood is

(25)

where Ñij(τ|β*, λ*) = pij(β*, λ*)1τ≥tj−ti−εi. Now let N(τ|v) be the value of N(τ) that we would 

have calculated had we observed the transmission network v. The corresponding Breslow 

estimate is

(26)

The marginal Breslow estimate given β* and λ* (τ) is

(27)

where .

For the relative risk function r(x) = exp(x), the expected log partial likelihood  is 

the log partial likelihood of a weighted Cox regression model (Therneau and Grambsch, 

2000) with two copies of each pair ij: an uncensored copy with weight pij(β* , λ*) and a 

censored copy with weight 1 − pij(β* , λ*). The baseline hazard estimate from this model is 

the marginal Breslow estimate , where .

2.6 EM algorithm

When who-infects-whom is not observed, the semiparametric regression model can be fit 

using the ECM algorithm of Meng and Rubin (1993), which is an extension of the EM 

algorithm of Dempster et al. (1977). In each iteration, we first estimate β0 using the expected 

log partial likelihood and then calculate the marginal Breslow estimator of Λ0(τ). We use 

these new estimates to re-weight the possible v. The entire process is described in Algorithm 

1.
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Algorithm 1 ECM algorithm for semiparametric estimation of β0 and Λ0(τ).

To show that this is an ECM algorithm, we must show that the CM1 and CM2 steps are 

conditional maximizations of the expected log likelihood. The CM1 step is a conditional 

maximization by definition, so it remains to show that the CM2 step is a conditional 

maximization. Given a coefficient vector β* and a hazard function λ*, the expected log 

likelihood is

(28)

Differentiating with respect to dΛ(tj − ti − εi) for each i and j shows that, for a fixed β, l̃β*,λ* 

(β, Λ) is maximized over all step functions Λ(τ) by setting

(29)

exactly as in the marginal Breslow estimator . Therefore, Algorithm 1 is an 

ECM algorithm. When it is known that β = 0, it reduces to the EM algorithm in Kenah 

(2013). Therefore, the convergence of both β(k) and Λ(k)(τ) should be monitored.

2.7 Large-sample estimation of β0

Let  denote the estimate of β0 to which the ECM algorithm converges, and let  denote 

the corresponding estimate of λ0(τ). Let Uv(τ, β) and Iv(β) denote the score and the observed 

information that we would have calculated had we observed the transmission network v. 

Using the methods of Louis (1982), the observed information is

(30)

where  denotes an expectation taken under the assumption that the true coefficient 

vector is β and the true baseline hazard function is λ(τ). The first term in (30) is

(31)

where . This is the observed information matrix from a weighted 

regression model where each ij has an uncensored copy with weight  and a 

censored copy with weight 1 − . To evaluate the second term in (30), let

(32)
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be the expected score contribution from all pairs with j as a susceptible. Since 

, each infected person j has only one infector in any v, and the infectors 

of different individuals can be chosen independently, we have

(33)

2.8 Large-sample estimation of Λ0(τ)

Let  be the marginal Breslow estimate obtained after convergence of the ECM 

algorithm. Appendix B.2, available online, derives the variance estimate

(34)

(35)

where Ñ.j(u) = Σi≠j Ñ.j(u). Using the martingale central limit theorem and a log 

transformation, we get the approximate pointswise 1 − α confidence limits

(36)

Point and interval estimates for the baseline survival function can be obtained using the 

relationship S0(τ) = exp (− Λ0(τ)

3 SIMULATIONS

The performance of the methods from Section 2 was tested with a series of 12000 network-

based epidemic simulations. All epidemics took place on a Watts-Strogatz small-world 

network (Watts and Strogatz, 1998), which mimics the high clustering and low diameter of 

real human contact networks. Starting with a ring of 50000 nodes, each node was connected 

to its 10 nearest neighbors and each edge was rewired to a randomly chosen node with 

probability 0.1. A new contact network was built for each simulation.

All epidemic models were written in Python 2.7 (www.python.org) using the packages 

NetworkX 1.6 (networkx.lanl.gov), NumPy 1.6, and SciPy 0.9 (www.scipy.org). Statistical 

analysis was done in in R 2.15 (www.r-project.org) via the Rpy2 2.2 package 

(rpy.sourceforge.net). The code for the models is available as Online Supplementary 

Information.

Kenah Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.python.org
http://www.scipy.org
http://www.r-project.org
http://rpy.sourceforge.net


3.1 Transmission model

The transmission model had a latent period of zero and an exponential infectious period with 

mean one. The baseline contact interval distribution was Weibull(α, γ), where α is the shape 

parameter and γ is the rate parameter. 6000 simulations had a Weibull(0.5, 0.2) distribution, 

which has Λ0(τ) = (0.2τ)0.5. The other 6000 had a Weibull(2, 0.6) distribution, which has 

Λ0(τ) = (0.6τ)2. These distributions gave a basic reproduction number (expected number of 

infectious contacts made by a typical infectious person) R0 ≈ 3 in a null model.

In the transmission model, each person i had an infectiousness covariate  and a 

susceptibility covariate . Each pair ij connected by an edge had a pairwise covariate 

. All covariates were independent Bernoulli(.5) random variables. For a connected pair 

ij, the hazard of infectious contact from i to j at infectious age τ of i was

(37)

For each parameter β, there were 4000 simulations where its true value was chosen from a 

uniform distribution on (−1, 1). Of these, 2000 simulations used the Weibull(0.5, 0.2) 

baseline hazard and 2000 used the Weibull(2, 0.6) baseline hazard. Of the 2000 simulations 

for each baseline hazard, 1000 had the other two β set to 0 and 1000 had the other two β set 

to 1.

Each simulated epidemic began with a single person infected at time 0. Data from the next 

1000 infections was used to fit two regression models, one using information on who-

infected-whom as in Section 2.1 and one using an EM algorithm as in Section 2.5. The EM 

algorithm used a minimum of 2 and a maximum of 25 iterations. At each iteration, a 

weighted Cox model was run using the last parameter estimates as the initial parameter 

estimates. Convergence was defined as a change less than 0.002 in the expected log 

likelihood (tighter convergence criteria yielded nearly identical parameter estimates). After 

convergence, a Cox model was run using the final weights and initial parameters βinf = βsus 

= βpair = 0.

After each simulation, we recorded the true value, estimate, and 95% confidence interval 

endpoints for each in the model and the baseline hazard at the 10th, 25th, 50th, 75th, and 90th 

percentiles of all censored and observed contact intervals. We also recorded the α and γ of 

the baseline hazard function and the number of EM iterations.

3.2 Results

Figure 3 shows good agreement between the estimated and true βinf, βsus, and βpair for both 

(who-infects-whom observed) and  (who-infects-whom unobserved). Table 1 shows 

excellent 95% confidence interval coverage probabilities for all combinations of baseline 

hazards and parameters. The  estimates had slightly lower coverage probabilities than the 

estimates. The lower right panel of Figure 3 shows that this was achieved with relatively few 

iterations. The median number of iterations was 6, and 98% of simulations required ≤ 10 

iterations. Only 2 out of 12000 simulations failed to converge within 25 iterations.
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Figures 4 and 5 show good agreement between the estimated and true base-line hazard for 

both  (who-infects-whom observed) and  (who-infects-whom unobserved). The 

smoothed means show almost no bias in  or . Table 2 shows good 95% 

confidence interval coverage probabilites for both base-line hazards and all percentiles 

except for α = 2 at the 10th and 25th percentiles. When α = 2, the baseline hazard of 

infectious contact is λ0(τ) = 1.2τ. At low values of τ, the hazard of infectious contact is very 

small, so almost all of the contact intervals will be censored. Since the percentiles are 

calculated for all censored and observed contact intervals, there may be too few observed 

intervals at the 10th and 25th percentiles when α = 2 for the large-sample normal 

approximation to be valid.

Figure 6 shows the widths of the confidence intervals when who-infects-whom is not 

observed in terms of the width of the confidence interval when who-infects-whom is 

observed for βinf, βsus, βpair, and Λ0(τ). For βinf and βpair, the precision gained by observing 

who-infects-whom is roughly equivalent to a 20-40% increase in sample size. The baseline 

hazard plays an important role in how much precision is gained, with a larger gain for α = 

0.5 than for β = 2. There is no gain in precision for βsus because observing who-infects-

whom does not add to our knowledge of who was infected. Seeing who-infects-whom only 

slightly improves the precision of baseline hazard estimates.

Observing who-infects-whom allows point estimates that are closer to the truth and interval 

estimates with better coverage probabilities. However, the EM algorithm can recover a great 

deal of information when who-infects-whom is not observed, making the iterative regression 

model of Section 2.5 a promising tool for infectious disease epidemiology.

4 DATA ANALYSIS

To show how the methods of Section 2 can be applied, we will look at the effect of antiviral 

prophylaxis and age on the transmission of pandemic influenza A(H1N1) in Los Angeles 

County in 2009. The Los Angeles County Department of Public Health (LACDPH) 

collected household surveillance data between April 22 and May 19 according to the 

following protocol (Sugimoto et al., 2011):

1. Nasopharyngeal swabs and aspirates were taken from individuals who reported to the 

LACDPH or other health care providers with acute febrile respiratory illness (AFRI), 

defined as a fever ≥ 100°F plus cough, core throat, or runny nose. These specimens were 

tested for influenza, and the age, gender, and symptom onset date of the AFRI patient were 

recorded.

2. Patients whose specimens tested positive for pandemic influenza A(H1N1) or for 

influenza A of undetermined subtype were enrolled as index cases. Each of them was given 

a structured phone interview to collect the following information about his or her household 

contacts: age, gender, type of contact (household, intimate, in-home daycare, non-home 

daycare), and high risk status (pregnant, child on long-term aspirin therapy, immuno-

suppressed, or history of a chronic cardiac, pulmonary, renal, liver, or neurologic condition). 

The interviewer also recorded whether prophylactic antiviral medication was being taken by 
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the household contacts. They were asked to report the symptom onset date of any AFRI 

episodes among their household contacts.

3. When necessary, a follow-up interview was given 14 days after the symptom onset date of 

the index case to assess whether any additional AFRI episodes had occurred in the 

household, including their illness onset date.

There were 58 households with a total of 299 members. There were 99 infections, of which 

62 were index cases (4 of the 58 households had co-primary cases) and 27 were household 

contacts with an AFRI. For simplicity, we assume these were all influenza A(H1N1) cases 

and that all household members were susceptible to infection.

Our natural history assumptions were adapted from Yang et al. (2009) and are identical to 

those in Kenah (2013). In the primary analysis, we assumed an incubation period of 2 days, 

a latent period of 0 days, and an infectious period of 6 days. Under these assumptions, a 

person j with symptom onset at time  was infected at time  and will stop 

being infectious at time . Under these assumptions, person j can transmit 

infection on days tj + 1 to tj + 6. In a sensitivity analysis, we vary the latent period from 0 to 

1 days, and the infectious period from 5 to 7 days.

We modeled influenza transmission within households, not between households or from 

outside the observed households. In each household, infected household members who had 

no possible infector within the household according to our natural history assumptions were 

assumed to be imported infections. We assumed that any infected household member could 

infect any susceptible household member. We used the regression model of Section 2.5 to 

estimate influenza transmission hazard ratios for the following covariates:

• ageinf = 0 if the infectious person is < 18 years old and 1 otherwise,

• agesus = 0 if the susceptible is < 18 years old and 1 otherwise,

• prophsus = 0 if the susceptible is not on antiviral prophylaxis and 1 otherwise.

Since antiviral prophylaxis was initiated after the initial case in each household, it was 

considered only as a susceptibility covariate. All statistical analysis was done in R 2.15 

(www.r-project.org).

4.1 Results

There were 114 people aged < 18 years and 185 aged ≥ 18 years, with no missing age data. 

There were 91 people taking antiviral prophylaxis and 152 not taking prophylaxis, with 

missing prophylaxis data for 56 people. When who-infects-whom is not observed, a 

complete-case analysis requires the removal of all rows corresponding to infectious-

susceptible pairs ij where  and any member of  is missing data. Otherwise, the 

remaining members of  get too much credit for the infection of j.

In the main analysis, there were 70 people infected from outside the household (i.e., no 

possible infector in the household), 16 with 1 possible infector, 7 with 2 possible infectors, 4 

with 4 possible infectors, and 2 with 8 possible infectors, giving us 116 × 27 × 44 × 82 = 
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2097152 possible transmission trees. The pairwise data contains 443 infectious-susceptible 

pairs with a total of 2455 pair-days at risk of infection. Of these, 16 × 1 + 7 × 2 + 4 × 4 + 2 × 

8 = 62 rows represent possible infection events. All models used the Efron approximation 

(Efron, 1977) for the partial likelihood with tied failure times.

The top panel of Table 3 shows the results of seven models. All of the models including 

prophylaxis suggested that antiviral prophylaxis reduced the hazard of infectious contact by 

about 60%, with low p-values. Hazard ratio point estimates for the main effects of age in all 

models suggest that adults are more infectious and less susceptible than children. However, 

evidence for this result is very weak. Only one of the age effects was statistically significant 

in univariable models, and none were significant in any multivariable model. Multivariable 

and stratified models with interaction terms for age and antiviral prophylaxis suggest a 

stronger effect of antiviral prophylaxis on transmission to and from adults than on 

transmission to and from children. However, the evidence for this result is also weak; these 

coefficients had high p-values and wide confidence intervals. The bottom panel of Table 3 

shows the results of a sensitivity analysis using the multivariable model without interaction. 

Varying the latent and infectious periods has little effect on the results of the model.

Figure 7 shows estimates of the cumulative transmission probability based on the 

multivariable and stratified models without interaction. The results of the two models are 

similar, but the stratified model showed lower probabilities of transmission from children 

and higher probabilities of transmission from adults. All four panels clearly show the 

estimated effect of antiviral prophylaxis. All curves show bigger jumps on the first four days 

after infection than on days 5 and 6, which is consistent with the results of Kenah (2013). 

Comparing the top and bottom rows shows that children are estimated to be less infectious 

than adults. Comparing the left and right columns shows that children are estimated to be 

more susceptible than adults. As noted above, these differences are not statistically 

significant.

This data analysis has been intended primarily to illustrate the flexibility of the regression 

modeling framework for analyzing transmission data. There are several important 

limitations of the analysis itself. With only 29 within-household transmissions, the large-

sample normal approximations may not hold and there is limited power to estimate the 

effects of age and antiviral prophylaxis. The age classification is crude, so it may not 

accurately capture the effects of age. The prophylaxis variable was missing for many pairs 

and was binary, allowing no consideration of the timing of prophylaxis relative to exposure. 

Analyses of the household transmission of influenza A(H3N2) found greater child-to-child 

than adult-to-adult transmission (Addy et al., 1991). In our analysis of influenza A(H1N1), 

children appeared less infectious and more susceptible than adults, but these differences 

were not statistically significant. If not due to random noise, such a result could reflect a 

difference between the H3N2 and H1N1 subtypes of influenza A or a bias caused the failure 

to account for infection from outside the household. In any case, this analysis shows that the 

model needs to be extended to model infection from outside the household and to handle 

missing data.
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5 DISCUSSION

The semiparametric relative-risk regression model proposed here has several important 

advantages over the chain binomial model. It can be fit using standard statistical software 

with parameter interpretations that resemble the Cox model. Standard software can be used 

to convert the results into curves representing the cumulative probability of transmission in 

pairs of individuals with specific characteristics. It does not make any parametric 

assumptions about the baseline hazard of infectious contact, and it allows many of the same 

extensions as the Cox model, including stratification, interaction, and time-dependent 

covariates. This flexibility and ease of use will make it an important tool for infectious 

disease epidemiology. To realize this potential, there are several limitations that remain to be 

addressed.

We assumed that the set of imported infections is known. The chain binomial model handles 

unknown imported infections by including a per-time-unit probability of escaping infection 

from outside the household. In the semipara-metric regression model, this could be achieved 

by fitting two models in each step of the EM algorithm: a pairwise contact interval model 

within the household and an individual-level model in absolute time for infection from 

outside the household. At each step, the weights would be recalculated based on covariates, 

coefficient estimates, the baseline hazard of the contact interval distribution, and the 

baseline hazard of infection from outside the household.

We assumed that infection times, latent periods, and infectious periods were all observed. 

We can usually observe only the clinical course of the disease, so these times must be 

imputed. In Section 4, we had missing data on covariates. Simple missing data (such as 

antiviral prophylaxis) could be handled by extending the EM algorithm to calculate the 

expected log likelihood over the possible values of the missing data as well as who-infected-

whom. More complex missing data (such as infection and removal times) could be handled 

using data augmentation in a profile sampler (Lee et al., 2005), getting a posterior 

distribution for the model coefficients while treating the baseline hazards as a nuisance 

parameter.

We assumed that all possible infectors of each person were observed. Unobserved infectors 

could occur because of incomplete contact tracing or asymptomatic infection. The possible 

bias caused by unobserved sources of infection needs to be studied, and methods for 

controlling it analytically or assessing its severity in a sensitivity analysis need to be 

developed.

We assumed a static contact network where the Cij were binary and constant. In reality, 

people are exposed to close contacts at home, at work, at school, and at other locations in a 

dynamic process. The extension of these methods to dynamic contact networks is possible 

but nontrivial. We could allow Cij(τ) to be a time-dependent process in the infectious age τ 

of i. The contact interval distribution would then be defined as the distribution of the contact 

interval that would occur if Cij(τ) = 1 for all τ. For estimation, we would have to observe the 

process Cij(τ) for each ij.
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Some of our assumptions must be relaxed to capture the natural history of complex diseases. 

We assumed an SEIR framework best suited to acute, immunizing diseases that spread 

directly from person to person. Many foodborne and waterborne diseases, pneumococcal 

and meningococcal diseases, and other infectious diseases of major public health importance 

do not fit easily into this framework. To extend the proposed regression model to complex 

diseases, we could allow individuals to experience multiple events (e.g., first infection, 

second infection) or to experience different types of events (e.g., colonization, infection, 

relapse). We assumed that contact intervals were independent of infectious periods even 

though both are a ected by the same host-pathogen interaction. In some cases, there may be 

a covariate process X(τ) such that Ii(τ) and  are conditionally independent given 

X(τ−). Otherwise, infectious contact and the infectious period must be modeled as a 

multivariate survival process.

Several technical issues need further attention. The smoothing step is crucial to the fitting 

the regression model when who-infects-whom is not observed. Here, we used cubic 

smoothing splines because they were convenient and worked well. However, these do not 

guarantee that the smoothed hazard function is monotonically increasing and lack a 

convenient interpretation in terms of the likelihood. A penalized likelihood estimator that 

guarantees monotonicity, such as that of Anderson and Senthilselvan (1980), would be more 

consistent with the EM algorithm. Model diagnostics, goodness-of-fit tests, and small-

sample methods for point and interval estimation need to be developed, and a more rigorous 

study of the model asymptotics needs to be done.

Despite these limitations, the semiparametric relative-risk regression model presented here is 

a powerful new framework for the analysis of infectious disease transmission data. Placing 

statistical methods for infectious disease epidemiology on the broad and deep theoretical 

foundation of survival analysis will help clarify study design and causal inference for 

communicable diseases and allow statistical methods to develop in concert with advances in 

molecular biology. Ultimately, these improvements may lead to more efficient vaccine trials 

and a better-informed public health response to future outbreaks and epidemics.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Notation for the stochastic SEIR model natural history (top) and infectious contact process 

(bottom). In the bottom diagram, the infectious contact interval  is equal to the contact 

interval τij because τij ≤ li. Otherwise, we would have  and no infectious contact from 

i to j would occur.
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Figure 2. 
The three censoring processes for the contact interval τij. The onset of infectiousness in i 

occurs at time ti + εi, and the infection of j occurs at tj. At the top, τij is censored because 

. In the middle, τij is observed if  and censored 

otherwise. At the bottom, τij is censored because .
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Figure 3. 

The top two panels and the bottom left panel show  (black circles) and  (gray circles) 

versus true β for βinf, βsus, and βpair. The bottom right panel shows a histogram of the 

number of EM iterations required for convergence.
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Figure 4. 

 and  versus true Λ0(τ) for the 6000 simulations with a Weibull(0.5, 0.2) 

baseline contact interval distribution. For each simulation and each estimator, a circle is 

shown for the 10th, 25th, 50th, 75th, and 90th percentiles of all possible contact intervals. The 

smoothed means were calculated using cubic smoothing splines.
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Figure 5. 

 and  versus true Λ0(τ) for the 6000 simulations with a Weibull(2, 0.6) baseline 

contact interval distribution. For each simulation and each estimator, a circle is shown for 

the 10th, 25th, 50th, 75th, and 90th percentiles of all possible contact intervals. The smoothed 

means were calculated using cubic smoothing splines.
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Figure 6. 
The width of 95% confidence intervals when who-infects-whom is not observed divided by 

its width when who-infects-whom is observed for βinf, βsus, βpair, and Λ0(τ). The solid gray 

lines show smoothed means for α = 0.5 and dashed gray lines show smoothed means for α = 

2. The smoothed means were calculated using cubic smoothing splines.
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Figure 7. 
Household transmission of 2009 pandemic influenza A(H1N1) in Los Angeles County. Each 

panel shows separate curves for susceptible contacts with (gray lines) and without (black 

lines) antiviral prophylaxis. The solid lines are based on the multivariable model, and the 

dotted lines are based on the model stratified by ageinf.
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Table 1

Hazard ratio 95% confidence interval coverage probabilities in simulations. Each probability is based on the 

results of 1000 simulations.

Baseline hazard Parameter: βinf

βsus=βpair=0 βsus=βpair=1

β inf β inf β inf β inf

α = .5 .952 .937 .937 .945

α = 2 .955 .952 .957 .941

Baseline hazard Parameter: βsus

βinf = βpair = 0 βinf = βpair = 1

β sus β sus β sus β sus

α = .5 .951 .950 .939 .939

α=2 .952 .948 .945 .946

Baseline hazard Parameter: βpair

βinf = βsus = 0 βinf = βsus = 0

β pair β pair β pair β pair

α = .5 .942 .927 .955 .946

α=2 .942 .929 .951 .951
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Table 2

95% confidence interval coverage probabilities in simulations. Each probability is based on the results of 6000 

simulations.

Baseline hazard Quantile α = .5 α=2

Λ̂0(τ)
Λ
~

0(τ)
Λ̂0(τ)

Λ
~

0(τ)

10% .949 .938 .957 .875

25% .949 .940 .951 .905

50% .950 .941 .955 .934

75% .949 .936 .949 .939

90% .949 .941 .953 .939
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Table 3

Hazard ratios with 95% con dence intervals and p-values for different models of the 2009 pandemic inuenza 

A(H1N1) household surveillance data from Los Angeles County. Likelihood ratio p-values comparing models 

with and without interaction terms are also given. The multivariable and stratied models without interaction 

were used as the final models.

Main effects Interactions

ageinf agesus prophysus Variables HR (p-value)

Regression model

Univariable 1.53 (0.66, 
3.54) p = .

321

0.41 (0.20, 
0.85) p = .

016

0.43 (0.18, 1.02) 
p = . 057

Multivariable 1.78 (0.69, 
4.62) p = .

234

0.69 (0.29, 
1.64) p= .

399

0.41 (0.17, 0.98) 
p = . 046

Multivariable + interaction 1.59 (0.32, 
7.84) p = . 

570

0.63 (0.14, 
2.73) p= .

532

0.04 (0.00, 9.62) 
p = . 253

ageinf:agesus ageinf :prophsus agesus :prophsus 0.66 (p = .71) 
9.28 (p= .45) 
2.72 (p = .36) 
LR p = .101

Stratified strata 0.69 (0.29, 
1.64) p = . 

401

0.41 (0.17, 0.99) 
p = . 047

Stratified + interaction strata 0.52 (0.29, 
1.64) p = .

219

0.23 (0.05, 1.16) 
p = . 075

ageinf :prophsus 2.37 (p = .38) 
LR p = .353

Sensitivity analysis (multivariable model without interaction)

Latent period 1 day 1.44 (0.64, 
3.26) p = .

378

0.83 (0.36, 
1.93) p = . 

670

0.35 (0.15, 0.80) 
p = .013

Infectious period 5 days 1.59 (0.60, 
4.20) p = . 

348

0.64 (0.27, 
1.55) p = .

322

0.45 (0.18, 1.07) 
p = .073

7 days 1.45 (0.62, 
3.40) p = .

378

0.89 (0.38, 
2.04) p = . 

670

0.34 (0.17, 0.87) 
p = .013
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