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ABSTRACT

Drosophila melanogaster (fruit fly) has been a popu-
lar model organism in animal genetics due to the high
accessibility of reverse-genetics tools. In addition,
the close relationship between the Drosophila and
human genomes rationalizes the use of Drosophila
as an invertebrate model for human neurobiology
and disease research. A platform technology for
predicting candidate genes or functions would fur-
ther enhance the usefulness of this long-established
model organism for gene-to-phenotype mapping. Re-
cently, the power of network prioritization for gene-
to-phenotype mapping has been demonstrated in
many organisms. Here we present a network prior-
itization server dedicated to Drosophila that covers
∼95% of the coding genome. This server, dubbed Fly-
Net, has several distinctive features, including (i) pri-
oritization for both genes and functions; (ii) two com-
plementary network algorithms: direct neighborhood
and network diffusion; (iii) spatiotemporal-specific
networks as an additional prioritization strategy for
traits associated with a specific developmental stage
or tissue and (iv) prioritization for human disease
genes. FlyNet is expected to serve as a versatile
hypothesis-generation platform for genes and func-
tions in the study of basic animal genetics, develop-
mental biology and human disease. FlyNet is avail-
able for free at http://www.inetbio.org/flynet.

INTRODUCTION

Drosophila remains an important model organism even af-
ter a century of research. Numerous biological processes
that have been evolutionary conserved across species, such
as embryogenesis and canonical cell signalling pathways,
have been genetically dissected in Drosophila. Approxi-
mately half of Drosophila protein sequences have mam-
malian homologs (1), and ∼75% of known human dis-
ease genes have Drosophila orthologs (2). Drosophila there-

fore is expected to be an effective model for human dis-
ease research. Indeed, several recent studies have utilized
Drosophila to identify genes associated with human diseases
and traits (3–5).

Several reverse-genetics resources are available for
Drosophila. These resources are based on the transposon
insertion mutant libraries and RNA interference (RNAi)
of both cell-based and organismal systems (6–9). However,
unbiased genome-wide screens are costly and suffer from
high false discovery rates. Reverse-genetics screens for
Drosophila phenotypes become more efficient through
systematic gene prioritization. One increasingly popular
approach for gene prioritization is network prioritization,
which is based on the functional closeness to the known
phenotype genes within the gene networks. The concepts
underlying network prioritization as well as its efficacy
for gene-to-function and gene-to-phenotype mapping have
recently been reviewed (10–12).

Here we present a network prioritization server for
Drosophila dubbed FlyNet. Although network prioritiza-
tion servers exist for multiple organisms, to the best of our
knowledge FlyNet represents the first network prioritiza-
tion server dedicated to Drosophila. FlyNet is highly accu-
rate and can effectively predict gene-to-phenotype associa-
tions. This Drosophila-specific server further benefits from
using Drosophila-specific information, such as the gene ex-
pression atlas, across cell types and developmental stages.
Such information can help users generate more reliable hy-
potheses relevant to the spatiotemporal context and se-
lect more confident candidates. FlyNet also can prioritize
Drosophila genes for human diseases with an option for
the integration of human genetic evidence, such as genome-
wide association studies (GWAS) and de novo mutation
screens.

NETWORK CONSTRUCTION

The procedure that we used to construct our network con-
sists of three major steps: (i) inferring co-functional gene
pairs from various data sources; (ii) benchmarking net-
works inferred from individual data sources to assign likeli-
hood scores for network links and (iii) integrating all com-
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ponent networks using a modified naive Bayesian approach.
The FlyNet gene network was constructed based on genome
build release 5.54 from FlyBase (13). A set of gold-standard
functional gene pairs was generated based on the Gene On-
tology Biological Process (GO-BP) (14) and MetaCyc path-
way terms (15). The co-functional links in FlyNet were
inferred from Drosophila-derived data with the following
computational algorithms: co-citation (CC) of gene names
among PubMed abstracts; co-expression (CX) of genes in
53 experimental series comprising 1873 microarray sam-
ples in the Gene Expression Omnibus (GEO) database (16);
domain co-occurrence (DC) between proteins (17); func-
tional links by genomic context based on gene neighbor-
hood (GN) (18) and phylogenetic profile similarity (PG);
protein–protein interactions via high-throughput assays
(HT) and literature-based links (LC) from the iRefWeb
meta-database version 13 (19). Additional links were in-
ferred from published (17,20,21) and unpublished networks
for other organisms. A total of 21 component networks were
incorporated into FlyNet, and are summarized in Table 1
and Supplementary Table S1. These networks were bench-
marked against the gold-standard gene pairs using a log-
likelihood score scheme and then integrated into a single
network, FlyNet, using a weighted sum method, as has been
described for other published networks (17,20,21). Detailed
information and methodologies are described in the Supple-
mentary Online Methods. The integrated FlyNet gene net-
work contains 13 119 genes (∼95% of the coding genes) and
779 484 links.

NETWORK ASSESSMENT

To assess the compatibility of the fly gene networks with
fly biological pathways, we employed the FlyReactome
database (22), which is independent from the gold-standard
data set that was used for the network training. FlyReac-
tome contains only expert-curated Drosophila core path-
ways and reactions. Gene pairs that share pathway terms
and those that do not share pathway terms generated 1305
positive and 14 365 negative gene pairs, respectively, for val-
idation. The accuracy of the networks for the given coverage
of the positive gene pairs was analyzed by a precision-recall
curve. The performance of FlyNet in the retrieval of core
pathway links was superior to other fly gene networks from
STRING (23), FunCoup (24) and GeneMANIA (25) (Fig-
ure 1A).

Because functionally associated genes tend to share loss-
of-function phenotypes, we expected that the more accurate
networks would include a higher percentage of gene pairs
that share RNAi phenotypes. We generated 316 924 posi-
tive and 7 107 807 negative gene pairs that share or do not
share, respectively, RNAi phenotypes from the GenomeR-
NAi database (26). Compared with other network servers,
FlyNet contained a higher percentage of gene pairs that
share RNAi phenotypes for the given genome coverage
of the network nodes (Figure 1B). Among the 21 compo-
nent networks, the highest percentage of gene pairs in Fly-
Net originated from the co-expression network of fly genes
(DM-CX) (Supplementary Figure S1). To determine the
possibility of circular reasoning when predicting published
RNAi phenotypes, we also assessed FlyNet with the co-

citation links (DM-CC) excluded. We found that links de-
rived from the DM-CC have no significant effect on the per-
formance of FlyNet, as assessed by the RNAi phenotype
data (Supplementary Figure S2). We measured the overlap
between the FlyNet training data and the two validation
data sets to confirm their independence. We found that only
33.5% of the FlyReactome and 1.2% of the GenomeRNAi
positive gene pairs overlapped with the network training
data. Therefore, the higher accuracy of FlyNet compared
with other fly gene networks may be attributed, at least in
part, to the network construction procedure, which is max-
imally optimized to the Drosophila biology. Taken together,
we conclude that FlyNet is a highly accurate and compre-
hensive functional gene network that can effectively recon-
struct both core pathways and phenotypes in Drosophila.

NETWORK PRIORITIZATION OPTIONS

Distinctive features of the FlyNet web server

In addition to FlyNet, there are currently two other pub-
licly available fly network prioritization servers: GeneMA-
NIA and FunCoup. However, these two servers are not
dedicated to Drosophila. In addition, compared with these
servers, FlyNet has several distinctive features that enable
more versatile hypothesis generation for Drosophila-based
studies: (i) FlyNet can prioritize both genes (gene prioriti-
zation) and functional annotations (function prioritization);
(ii) FlyNet can use two complementary network prioritiza-
tion algorithms, direct neighborhood and network diffusion,
compared with other publicly available network prioritiza-
tion servers, which provide only one or the other algorithm
for use; (iii) FlyNet can utilize a spatiotemporal-specific
network (STN) as an additional prioritization strategy for
traits associated with a specific developmental stage or tis-
sue and (iv) FlyNet can prioritize Drosophila genes not only
for Drosophila traits (Fly prioritizer) but also for human dis-
ease (Human prioritizer).

Fly prioritizer–function prioritization

This option prioritizes functional annotations based on
GO-BP terms and GenomeRNAi phenotypic terms for a
query gene. The functional annotation terms are ranked by
the sum of the network edge weight scores (i.e. the sum of
the log-likelihood scores in FlyNet) from the query gene to
all neighbor genes annotated by each annotation term. We
used all 5434 Kyoto Encyclopaedia of Genes and Genomes
(KEGG) (27) pathway terms for 2690 fly genes to assess
the predictive power of the function prioritization option in
FlyNet. The KEGG pathway database was chosen, because
the data are well structured and highly curated, and was
not used to train FlyNet. We prioritized the KEGG terms
for the 2690 genes and counted the number of retrieved
terms that were correct among the top-ranked predictions.
We found that 4510 (83.0%) KEGG terms were correctly re-
trieved within the top 10 candidates and 4812 (88.6%) were
retrieved within the top 20 candidates, whereas only 1460
(26.9%) and 1953 (35.9%) terms, respectively (Figure 2A),
were retrieved by random prediction. These results indicate
that FlyNet can effectively predict novel functional annota-
tions for a query gene.
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Table 1. Summary of the 21 component networks for FlyNet

Code Description # Genes # Links

DM-CC Co-citation of two fly genes across Medline and PubMed Central 6027 503 475
DM-CX Co-expression of two fly genes in high-dimensional gene expression data from the GEO

database (16)
11 718 275 033

DM-DC Co-occurrence of protein domains between two fly genes (17) 4407 7604
DM-GN Chromosomal proximity between bacterial orthologs of two fly genes in bacterial genomes

(18)
1979 15 820

DM-HT Protein–protein interactions (PPIs) identified by high-throughput assays in iRefWeb
database (19)

7759 25 519

DM-LC Protein–protein interactions (PPIs) identified by small-scale experiments collected via
literature curation in iRefWeb database (19)

1202 2226

DM-PG Phylogenetic profile similarity between two fly genes 3357 80 506
AT-CC Orthology transfer of co-citation links in an A. thaliana network (21) 1747 17 501
AT-CX Orthology transfer of co-expression links in an A. thaliana network (21) 1105 9455
AT-HT Orthology transfer of high-throughput PPI in an A. thaliana network (21) 1013 2823
AT-LC Orthology transfer of literature curated PPI in an A. thaliana network (21) 856 1977
CE-CX Orthology transfer of co-expression links in a C. elegans network (20) 1434 17 497
DR-CX Orthology transfer of co-expression links in a D. rerio network 3223 55 515
HS-CX Orthology transfer of co-expression links in a H. sapiens network 3366 32 482
HS-HT Orthology transfer of high-throughput PPI in a H. sapiens network 2741 12 520
HS-LC Orthology transfer of literature curated PPI in a H. sapiens network 5254 50 488
SC-CC Orthology transfer of co-citation links in a S. cerevisiae network (17) 2449 48 473
SC-CX Orthology transfer of co-expression links in a S. cerevisiae network (17) 1674 18 488
SC-GT Orthology transfer of genetic interactions in a S. cerevisiae network (17) 1254 6482
SC-HT Orthology transfer of high-throughput PPI in a S. cerevisiae network (17) 1622 18 300
SC-LC Orthology transfer of literature-curated PPI in a S. cerevisiae network (17) 2016 16 481
FlyNet Integrated network 13 119 779 484

Figure 1. The assessment of FlyNet using gene pairs derived from (A) FlyReactome annotations and (B) GenomeRNAi phenotype terms. The precision
of the gene pairs was measured every 1000 pairs, which were sorted by the network edge weight scores. For the assessment by GenomeRNAi, the coverage
of the fly genome was used, because the number of gene pairs by the RNAi phenotype is so large (316 924) that the recall for the majority of the gene pairs
is not feasible.

Fly prioritizer–gene prioritization

This option prioritizes fly genes for a given function, path-
way and phenotype that are specified by user-input genes.
Because these user-input genes guide the search for new can-
didates in the network, these genes are called guide genes.
Upon prioritization, the rank of each fly gene is deter-
mined from its association with the guide genes. FlyNet
can use two complementary network algorithms to mea-

sure the association of each fly gene with the guide gene:
direct neighborhood and network diffusion. Network diffu-
sion algorithms propagate guide gene information through-
out the entire network, whereas direct neighborhood algo-
rithms propagate guide gene information only to directly
connected neighbours. These algorithms are complemen-
tary, and therefore it is advantageous to use both algorithms
for prioritization. FlyNet uses the sum of the edge weight
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Figure 2. Fly prioritizer analyses. (A) The assessment of function prioritization using 5434 KEGG annotations for 2690 fly genes. The number of correctly
predicted KEGG terms (y-axis) for the given top rank (x-axis) was assessed for FlyNet and random networks. (B) The results of the STN enrichment
analysis for three GO-BP terms: compound eye development, sensory perception of smell and spermatogenesis. The logarithm of the number of unique
network neighbors for each developmental stage or tissue type was calculated for all guide genes and represented as bar graphs. The codes for the four
developmental stages are: EB, embryo; LV, larvae; PP, pupae and AD, adult. The codes for the 10 tissue types are: AG, accessory gland; CC, carcass; CN,
central nervous system; DS, digestive system; FB, fat body; HD, head; ID, imaginal disc; OV, ovaries; SG, salivary gland and TT, testes. (C) A heat map
of the STN scores for spermatogenesis after sorting for the most enriched tissue type, the accessory gland (AG). (D) The assessment of gene prioritization
for 389 RNAi phenotypes derived from the GenomeRNAi database. (E) The discovery rates for the top 50, 100 and 200 novel candidate genes by FlyNet
with three independent RNAi screens for the Imd pathway based on the Imd pathway genes annotated by the FlyReactome database. The discovery rate
by random chance is ∼1.6%, which is indicated by the red dotted line.

scores for the direct neighborhood algorithm and Gaussian
smoothing for the network diffusion algorithm, the latter of
which is also used in GeneMANIA (25). Based on the pri-
oritized genes, FlyNet first measures the retrieval power for
the guide genes to estimate the prediction power of FlyNet
for the given traits depicted by these guide genes. The pre-
diction power is assessed by receiver operating characteris-
tic (ROC) analyses and summarized as an area under the
ROC curve (AUC) score. The traits with high AUC scores
are more likely to benefit from network prioritization.

One distinctive feature of FlyNet is the use of STN as
an additional strategy to predict genes for traits associated
with a specific developmental stage or tissue. If the known

genes for a trait (i.e. guide genes) generally have more net-
work neighbors in a specific developmental stage or tissue
type, then novel candidate genes with the same spatiotem-
poral specificity in network neighbors are more likely to be
confident candidates. For this analysis, we first constructed
networks for each of the four developmental stages and
10 tissue types in Drosophila by filtering the FlyNet edges
for genes with a BPKM (i.e. bases per kilobase per million
mapped bases) > 1, based on the recent Drosophila tran-
scriptome data from the modENCODE project (28). We
then compared the networks to identify specific network
links for each of four developmental stages. We also com-
pared the networks to identify specific network links for
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each of 10 tissue types. The resultant 14 STNs are summa-
rized in Supplementary Table S2, and their edge informa-
tion can be downloaded from the FlyNet server. To mea-
sure the functional spatiotemporal specificity for each gene,
we counted the number of network neighbors across the 14
STNs. This method provides an opportunity to further se-
lect candidate genes based on the STN neighbors. For exam-
ple, genes annotated by the GO-BP terms ‘compound eye
development’, ‘sensory perception of smell’ and ‘spermato-
genesis’ exhibit the highest number of STN neighbors for
the central nervous system (CN), head (HD) and accessory
gland (AG), respectively (Figure 2B). Users also can visual-
ize a heat map that displays the number of STN neighbors
across the 14 spatiotemporal contexts for guide genes and
candidate genes; an example for spermatogenesis is shown
in Figure 2C. If users click the tissue most enriched for STN
neighbours (e.g. the AG for spermatogenesis), all the genes
are sorted by the number of STN neighbours. As expected,
the top-ranked genes are highly enriched for guide genes
(highlighted in red), which have many AG-specific network
neighbours.

The gene prioritization module also provides several ad-
ditional analysis results: (i) the visualization of a network of
guide genes and a network of a combined set of guide genes
and candidate genes using Cytoscape web (29); (ii) the lists
of guide genes and candidate genes and (iii) a gene set anal-
ysis for guide genes, candidate genes or their combined set
with GO-BP, KEGG, BioCyc and GenomeRNAi terms us-
ing the hypergeometric test. In particular, we adapted RE-
VIGO (30) to effectively summarize and visualize redun-
dant information in the GO-BP terms.

To assess the predictive power of FlyNet for fly gene pri-
oritization, we performed an ROC analysis for 389 RNAi
phenotypes from the GenomeRNAi database (31). We
confirmed that the predictive power of FlyNet is signifi-
cantly higher than random models (P = 8.08e-34, Wilcoxon
signed-rank test) (Figure 2D). We also assessed the predic-
tive power of FlyNet using multiple guide gene sets for the
same pathway derived from independent RNAi screens. We
collected three gene sets for the ‘Imd pathway’, which were
derived from three independent screens by Gesellchen et al.
(32) (21 genes), Kleino et al. (33) (eight genes) and Valanne
et al. (34) (30 genes), and submitted each of these three sets
for gene prioritization. The validation of the three predic-
tion results by the 22 ‘Imd pathway’ genes annotated in Fly-
Reactome demonstrated discovery rates of 14–22% and 9–
12% for the top 50 and 100 candidates, respectively (Fig-
ure 2E). These results represent 88–138 fold and 56–75 fold
enrichment, respectively, compared with the expected dis-
covery rate by random chance (i.e. 22 Imd pathway genes
represent ∼0.16% of the 13 942 genes in the fly genome).

Human prioritizer–human disease prioritization

Drosophila models have been used for the study of neurode-
velopmental disorders, cancer and other human diseases
(5,35,36). Fly genes and fly mutants are valuable resources
in human disease research studies. Therefore, we developed
FlyNet to prioritize Drosophila genes not only for fly traits
(Fly prioritizer) but also for human diseases (Human priori-
tizer). The human prioritizer attempts to identify novel hu-

man disease genes that can be used to construct a human
disease model in the fly, which may allow for genetic screens
of disease gene modulators and may identify new thera-
peutic targets. The human prioritizer option uses the same
methods as the fly prioritizer, including the direct neighbor-
hood algorithm, with an additional step for orthology map-
ping between fly and human genes. Users may submit ei-
ther fly genes or human genes as guide genes. For example,
disease-associated fly genes derived from ‘FlyBase human
disease alleles’ or human disease genes from ‘OMIM mor-
bidmap’ (37) can be used as guide genes. These genes are
available from the web server, and users can submit these
genes with a simple click.

To assess the predictive power of the human priori-
tizer for disease genes, we tested various neurodevelop-
mental disease genes derived from the OMIM database.
We submitted human OMIM genes for autism, epilepsy
and schizophrenia as guide genes. To validate the resultant
novel candidate genes for each neurodevelopmental disease,
we used 138 human orthologs of X-chromosome fly genes
whose associations with human neurological diseases were
reported by a recent mutagenesis screen (5). By random
chance, the discovery rate for identifying these 138 genes
out of 1710 human orthologs of X-chromosome fly genes
is 8.1%. In contrast, we observed a discovery rate of 32–
64% for the top 50 candidate genes for the diseases, which
represents a 4–8-fold enrichment due to the network pri-
oritization (Figure 3A). We also used de novo mutations
in autism (480 human genes), epilepsy (204 human genes)
or schizophrenia (695 human genes) collected from vari-
ous studies (see Supplementary Online Methods) to assess
the network prioritization for the same three neurodevelop-
mental disorders. Because there is a significant overlap of
genes between these neurological diseases (38), we used the
union of these three gene sets (800 genes) to assess the pre-
diction for each disorder. We observed a discovery rate of
34–45% for the top 100 candidate genes for these three dis-
orders, which represents a 4.2–5.6-fold enrichment due to
the network prioritization compared with random expecta-
tion (i.e. 800 genes represent 8.1% of the 9857 human or-
thologs in the fly genome) (Figure 3B).

Human genetics studies have revealed that human dis-
ease is associated with multiple genes. In particular, thou-
sands of genes associated with heritable disorders have been
identified via GWAS and de novo mutation screens. We
hypothesized that the integration of genetic evidence with
network evidence may give rise to more confident candi-
date genes, which then could be validated experimentally.
Therefore, the FlyNet server implements an option to fil-
ter novel candidates with network prioritization using sup-
port genes, which generally are derived from human genet-
ics studies. FlyNet currently provides support genes derived
from many human GWAS and de novo mutation screens,
and these genes can be submitted as support genes with a
simple click. Users also can submit their own support genes.
If a user chooses this option, then the report page will dis-
play two separate lists of candidate genes: (i) first-tier can-
didate genes, which represent the intersection of support
genes with the neighbors of guide genes (i.e. the intersection
of candidates by human genetic evidence with candidates
by network evidence) and (ii) second-tier candidate genes,
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Figure 3. Human prioritizer analyses. Novel candidate genes for autism, epilepsy and schizophrenia were predicted by FlyNet, and top-ranked genes were
validated using (A) 138 neurological disease genes identified from a recent mutagenesis screen for X-chromosome fly genes and (B) 800 genes with de novo
mutations for autism, epilepsy or schizophrenia. The discovery rates for the top 50, 100 and 200 candidates are represented on the bar graph, and the
expected discovery rates by random chance are indicated by the dotted lines.

which include all candidates from the network prioritiza-
tion. The first-tier candidates, which are supported by both
network and genetic evidence, are more likely to be promis-
ing candidates than those supported by network evidence
only. If users need only a handful of candidates with high
confidence, then this option may be useful.

CONCLUSIONS

FlyNet is a freely available network prioritization server
dedicated to the Drosophila community. A functional gene
network of Drosophila genes was constructed with ma-
chine learning procedures optimized for the Drosophila bi-
ology. We demonstrated that FlyNet can effectively pre-
dict gene functional links, function/pathways, genes for
pathways/phenotypes and human disease genes. FlyNet is
a distinctive network prioritization server because it pri-
oritizes genes as well as functions, uses two complemen-
tary network algorithms and STN and can predict human
disease genes. Therefore, FlyNet is a versatile hypothesis-
generation server for Drosophila biologists who study basic
animal genetics as well as human diseases.
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Supplementary Data are available at NAR Online.
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