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ABSTRACT

Rice is the most important staple food crop and
a model grass for studies of bioenergy crops. We
previously published a genome-scale functional net-
work server called RiceNet, constructed by integrat-
ing diverse genomics data and demonstrated the use
of the network in genetic dissection of rice biotic
stress responses and its usefulness for other grass
species. Since the initial construction of the network,
there has been a significant increase in the amount
of publicly available rice genomics data. Here, we
present an updated network prioritization server for
Oryza sativa ssp. japonica, RiceNet v2 (http://www.
inetbio.org/ricenet), which provides a network of 25
765 genes (70.1% of the coding genome) and 1 775
000 co-functional links. Ricenet v2 also provides two
complementary methods for network prioritization
based on: (i) network direct neighborhood and (ii)
context-associated hubs. RiceNet v2 can use genes
of the related subspecies O. sativa ssp. indica and
the reference plant Arabidopsis for versatility in gen-
erating hypotheses. We demonstrate that RiceNet
v2 effectively identifies candidate genes involved in
rice root/shoot development and defense responses,
demonstrating its usefulness for the grass research
community.

INTRODUCTION

Rice is a most widely consumed staple food crop. Rice not
only serves as a major food source, but is also an excel-
lent model for the study of other monocotyledonous plant
species including many cereals and bioenergy crops due to
its desirable attributes as a model crop: compact genome
size, well annotated genome, abundant functional genomics

data and well-established methods for genetic transforma-
tion.

Although rice is the first crop to have its genome com-
pletely sequenced (1), knowledge about gene-to-trait as-
sociation is still scarce (2). Forward genetics approaches,
map-based cloning strategies and other methods have led
to the identification of genes encoding important rice
traits. However, most of the genetic components underly-
ing rice traits are still unknown. Recent advances in whole
genome microarrays of rice have accumulated vast amount
of functional genomics data related to the important traits
(3). More recently, resequencing-based population genetics
studies have generated an unprecedented amount of data on
genetic variants, associated with important traits (4).

Genes that contribute to the important phenotypes often
function as a group rather than individually. This modu-
lar or pathway nature of biological processes provides an
opportunity of identifying trait-associated genes based on
guilt-by-association principle (5,6). Functional gene net-
works have been demonstrated to serve as powerful ap-
proach for generating holistic models of pathways in many
organisms including plants (2,7). We previously constructed
a genome-scale functional network server for rice, called
RiceNet, and demonstrated its usefulness in identifying
genes that are involved in biotic stress responses (8). With
the remarkable growth of the availability of rice genomics
data since the initial construction of RiceNet, we have up-
dated the network and generated an effective web-based
network analysis server to improve genetic dissection of rice
traits.

In this paper, we present an improved network prioriti-
zation server for Oryza sativa ssp. japonica genes, RiceNet
v2 (http://www.inetbio.org/ricenet), in which substantially
larger amount of data, improved machine learning algo-
rithms and network analysis methods were incorporated.
RiceNet v2 increases the coverage of genome and the num-
ber of co-functional links, potentially improving prediction
power for trait-associated genes. RiceNet v2 also includes
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two complementary network prioritization algorithms. In
addition to O. sativa ssp. japonica genes, the web-server can
use O. sativa ssp. indica genes and Arabidopsis genes, en-
abling researchers to use prior knowledge derived from a re-
lated subspecies or a reference model plant to guide search
of novel candidate genes in the network. This enhanced net-
work and gene prioritization method will facilitate effective
hypothesis generation about the function of the estimated
37K rice genes.

NETWORK CONSTRUCTION

RiceNet v2 was constructed by machine learning of di-
verse types of large-scale genomics data. Detailed de-
scription of network construction methods can be found
in Supplementary Online Methods. Component genes of
RiceNet v2 were derived from 36 736 O. sativa ssp. japon-
ica non-TE element protein coding genes annotated by Os-
Nipponbare-Reference-IRGSP-1.0 (9). Twenty-one com-
ponent networks inferred from different data types are sum-
marized in Table 1. Comparisons between RiceNet v2 and
the previous network, RiceNet v1, in terms of data sources
and analysis methods for component networks are summa-
rized in Supplementary Table S1. In summary, the major
differences from the previous network are (i) improved algo-
rithms to infer co-functional links from gene neighborhood
(10), (i1) new associalogs from the latest networks for other
species (7,11,12), (iii) substantially larger amount of expres-
sion data derived from Gene Expression Omnibus (GEO)
database (13) for co-expression links and (iv) associalogs
of new co-expression networks for human, fly (Drosophila
melanogaster) and zebrafish (Danio rerio). The gold stan-
dard co-functional gene pair used for network training
was generated by pairing O. sativa ssp. japonica genes that
share the same pathway annotations by at least one of the
following four databases: (i) KEGG (Kyoto Encyclopedia
of Genes and Genomes) (14), (ii) Gene Ontology biologi-
cal process (GO-BP) annotated by Biofuel Feedstock Ge-
nomics Resource (BFGR) (15), (iii) MapMan (16) and (iv)
RiceCyc (17). Genes annotated for broad pathway concepts
were excluded from gold standard gene pairs (see Supple-
mentary Online Methods), because they generate excessive
number of gene pairs for the pathways, potentially leading
to biased training (18). These processes generated a gold
standard set of 591 664 positive and 58 416 152 negative
gene pairs. Bayesian statistics framework measured likeli-
hood of two paired genes to participate in the same pathway
using the gold standard pathway gene pairs as for the previ-
ous network (8). The 21 component networks with log like-
lihood scores were then integrated into a single network by
the weighted sum method described for RiceNet v1 (8). The
final integrated RiceNet v2 contains 25 765 genes (70.1% of
coding genome) connected by 1 775 000 co-functional links.
Edge information of the integrated RiceNet v2 and all of
the 21 component networks is available from the web-sever
download page of http://www.inetbio.org/ricenet/.

NETWORK ASSESSMENT

RiceNet v2 covers 7388 more rice genes and maps ~1.2 mil-
lion more co-functional links than RiceNet v1. If network
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Figure 1. Network assessment using a set of validation gene pairs based on
agriGO biological process (BP) annotations. (a) Precision-recall analysis to
compare RiceNet vl and RiceNet v2. The precision of co-functional links
were measured by odds ratio (OR). RiceNet v2 shows substantially higher
OR than RiceNet v1 for high scored network links. (b) A box-and-whisker
plot of network prediction powers for 336 agriGO BP terms with more
than four annotated genes, measured by area under the curve from ROC
analysis. RiceNet v2 shows significantly higher prediction power for the
processes than RiceNet vl (P = 1.11 x 10", Wilcoxon signed rank test).
To avoid network size effect on prediction power, we used only top 588 221
links of RiceNet v2 to match the size of RiceNet vl during analysis.

accuracy has been maintained or augmented, an increase in
network information is expected to improve the prediction
power of the network. To access network accuracy, we used
the GO-BP annotations from the agriGO database (19),
which is independent from both RiceNet v2 and RiceNet
vl training data. We excluded the top 20 largest GO-BP
terms to avoid biased assessment towards those terms, re-
sulting in a total of 267 187 positive gene pairs and 16 549
913 negative gene pairs for network validation. The gene
pairs for validation have ~11% and ~6% overlap with gold
standard positive gene pairs for training RiceNet v2 and
RiceNet vl1, respectively, confirming independence of val-
idation data from the original training data. We assessed
network performance using precision-recall analysis, where
network precision for the given genome coverage is mea-
sured by odds ratio (OR):

OR = (#positive gene pairs in network) / (#negative gene pairs in network)
- #total positive gene pairs / #total negative gene pairs

We find RiceNet v2 shows substantially higher OR
among higher ranked gene pairs than RiceNet vl (Fig-
ure la).

The improved accuracy for the high scoring network links
of RiceNet v2 is expected to improve functional predictions
based on guilt-by-association. To test this, we measured net-
work prediction power based on receiver operating charac-
teristic (ROC) analysis, which can be summarized into an
area under curve (AUC) score. In this analysis setting, we
prioritize all genes of the network by direct connections to
the known genes for a phenotype, called guide genes. If the
network is predictive for a phenotype, known phenotype
genes might be modular and the member genes would be
highly ranked by high interconnectivity, resulting in a high
AUC score. From analyzing prediction power for 336 GO-
BP terms by agriGO annotations, we observed significant
increase in AUC score distribution by RiceNet v2 (P =1.11
x 107%, Wilcoxon signed rank test) (Figure 1b).
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Table 1. Summary of 21 component networks and RiceNet v2

# Genes (coding genome

(Network Code) Description coverage,%o) # Links
(AT-CC) Co-citation of Arabidopsis thaliana orthologs among full-text articles from 4492 (12.2) 65497
PubMed Central

(AT-CX) Co-expression of 4. thaliana orthologs across microarray experiments 11 309 (30.8) 426 000
(AT-HT) Protein-protein interactions between A. thaliana orthologs measured by 2075 (5.6) 6715
high-throughput experiments.

(AT-LC) Protein-protein interactions between A. thaliana orthologs from literature 1043 (2.8) 2951
(CE-CC) Co-citation of Caenorhabditis elegans orthologs among full-text articles 3011 (8.2) 102 000
from PubMed Central

(CE-CX) Co-expression of C. elegans orthologs across microarray experiments 3923 (10.7) 100 000
(DM-CX) Co-expression of Drosophila melanogaster orthologs across microarray 4338 (11.8) 166 000
experiments

(DM-HT) Protein-protein interactions between D. melanogaster orthologs measured 2932 (8.0) 12 000
by high-throughput experiments.

(DR-CX) Co-expression of Danio rerio orthologs across microarray experiments 4574 (12.5) 159 000
(HS-CX) Co-expression of Homo sapiens orthologs across microarray experiments 2772 (7.5) 50 349
(HS-HT) Protein-protein interactions between H. sapiens orthologs measured by 2864 (7.8) 30 000
high-throughput experiments

(HS-LC) Protein-protein interactions between H. sapiens orthologs from literature 4300 (11.7) 73 000
(OS-CX) Co-expression of O. sativa genes across microarray experiments 21 745 (59.2) 597 180
(OS-GN) Genomic neighborhood of O. sativa orthologs among prokaryotic genomes 5259 (14.3) 246 000
(OS-LC) Protein-protein interactions between O. sativa genes from literature 103 (0.3) 172
(OS-PG) Phylogenetic profile similarity between O. sativa genes 2218 (6.0) 38 000
(SC-CC) Co-citation of Saccharomyces cerevisiae orthologs among MEDLINE 3890 (10.6) 91 000
abstracts

(SC-CX) Co-expression of S. cerevisiae orthologs across microarray experiments 3819 (10.4) 204 000
(SC-GT) Similarity of genetic interactions between S. cerevisiae orthologs 3449 (9.4) 136 000
(SC-HT) Protein-protein interactions between S. cerevisiae orthologs measured by 4318 (11.8) 273 000
high-throughput experiments

(SC-LC) Protein-protein interactions between S. cerevisiae orthologs from literature 4121 (11.2) 113 000
(RiceNet v2) full integrated network 25765 (70.1) 1775 000

A WEB SERVER FOR GENE PRIORITIZATION

Network-assisted gene prioritization for phenotypes of in-
terest has proven effective in tackling genetic dissection
of complex traits in many organisms (20). The previous
RiceNet web server provided only a single method of gene
prioritization, based on network direct neighborhood anal-
ysis. RiceNet v2 provides two complementary methods of
network-based gene prioritizations (Figure 2), which bet-
ter utilizes network information from publicly available rice
gene-to-phenotype association mapping (described below).
In addition, the new web server can accept input guide
genes from Arabidopsis and the rice subspecies, O. sativa
ssp. indica. This feature allows RiceNet v2 to harness ‘ho-
mologous guide genes’ from the most intensively studied
model plant, Arabidopsis, as well as the other major rice
subspecies.

Gene prioritization based on network direct neighborhood

In this option, novel genes for a particular phenotype are
prioritized by strength of their direct connection to known
genes governing the phenotype, namely ‘guide genes’ (Fig-
ure 2a). In this case, only direct neighborhoods of guide
genes are considered as new candidates. RiceNet v2 uses the
sum of edge weight scores (i.e. sum of log likelihood scores)
of all direct connections to the guide genes for prioritiza-
tion, and lists the top 100 novel candidate genes. A full list
of candidate genes with ranks and other relevant informa-
tion is downloadable as a text file. We also provide paralogs
of candidate genes derived from Plant Genome Duplica-

e Guide gene

Figure 2. Schematic figures of two complementary network prioritization
methods included in RiceNet v2. (a) Gene prioritization based on net-
work direct neighborhood. Candidate genes are ranked by total connec-
tion score (sum of edge weight scores) to the all direct neighbors of guide
genes (black node marked by G), which are already known to be involved
in a query phenotype. Darker gray nodes represent more likely candidate
genes. (b) Gene prioritization based on context associated hub. Each pre-
defined subnetwork (enclosed by the gray rounded rectangle) comprises a
central hub (black node marked by H) and its connected neighbor genes.
If the subnetwork neighbor genes significantly overlap with DEGs from a
query phenotype context (enclosed by the dotted rounded rectangle), the
subnetwork hub gene is assigned as a context-associated hub, which is a
new candidate for the phenotype.

o Subnetwork hub gene

tion Database (PGDD) (21) to inform users about potential
functional back-up effect during mutant phenotype assay.

Gene prioritization by context associated hubs

For many rice traits, known associated genes (i.e. guide
genes) are scarce, due to the technical difficulties in func-
tional validation. The lack of guide genes is therefore cur-



rently the biggest hurdle in efficiently utilizing the network,
which prioritizes genes based on guilt-by-association prin-
ciple. An alternative approach to study gene-to-phenotype
association is use of genes that show altered expression in
a phenotype-relevant context. For example, biotic or abi-
otic stress changes expression of many rice genes. Identifica-
tion of differentially expressed genes (DEGs) between con-
trol and trait-relevant conditions is relatively easy, and we
already have trait-associated DEGs for many rice traits in
public databases. Genome-wide expression profiling upon
stress condition may elucidate some stress response regula-
tors among DEGs. However, many of the DEGs are simply
a consequence of an altered cell state upon stress response
rather than actual stress response regulator. In addition,
many regulators do modulate other genes without chang-
ing their expression levels significantly upon stress condi-
tion. RiceNet v2 can prioritize genes for stress response us-
ing DEGs from specific stress conditions. Assuming regu-
lators are functionally associated with many target genes,
we first selected 13 174 genes with more than 50 connected
neighbors by RiceNet v2. Then, we defined subnetworks for
each of the 13 174 genes and their neighbors. If a central hub
gene of a subnetwork modulates stress response, many of its
subnetwork neighbors could be also DEGs. Hence, we mea-
sured statistical overlap between DEGs and neighbors of
each selected subnetwork. The hub genes having neighbors
that significantly overlap with DEGs are dubbed context-
associated hubs (Figure 2b), which could be novel candidate
genes for stress response.

Use of functional information derived from Arabidopsis or a
related subspecies of rice

RiceNet v2 can use genes of O. sativa ssp. indica and Ara-
bidopsis. Users can submit guide genes using the Rice Infor-
mation System (RIS) (22) gene ids. O. sativa ssp. japonica
orthologs of O. sativa ssp. indica genes are pre-mapped by
BLASTYp (23) bidirectional best hits. Because the genomes
of the two rice subspecies are highly conserved, we adopted
a strict orthology threshold (E-value < 1 x 10 for both di-
rectional hits) to avoid spurious orthologous relationships.
Network prioritization is carried out for only homologous
genes between two subspecies. The RiceNet v2 web server
also accepts Arabidopsis genes. Orthology mapping between
O. sativa ssp. japonica and Arabidopsis genes is less strin-
gent, including inparalogs (24). The orthologous guide genes
enables the user to benefit from the extensive functional in-
formation for both rice subspecies and from Arabidopsis.

CASE STUDIES

As described above, rice genes annotated with experimen-
tal evidences are scarce. For example, as of January 2015,
there are only eight rice genes annotated for root devel-
opment by Gramene GO-BP with a GO evidence code of
IMP (inferred from mutant phenotype), while 60 Arabidop-
sis genes are annotated for root development with IMP.
Similarly, only one rice gene is annotated, but 19 Arabidop-
sis genes are annotated for shoot system development by
GO-BP with IMP. Therefore, it is a useful strategy to prior-
itize novel rice genes for root or shoot development using
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Figure 3. Validation of new candidate rice genes for root or shoot develop-
ment based on network direct neighborhood method. Due to the lack of
known rice genes for the traits, 60 and 19 Arabidopsis genes known for root
and shoot development were submitted as guide genes, respectively. We
validated new candidate genes using tissue specific expression atlas data,
assuming genes for root development more actively express in root and
genes for shoot development more actively express in shoot. We observed
that top 100 candidate genes by RiceNet v2 show significantly higher ex-
pression levels than random genes in both target tissues: P = 1.3 x 10712
(Wilcoxon rank sum test) for expression of root development gene candi-
dates in root cells (left two box plots) and P = 7.2 x 10™* (Wilcoxon rank
sum test) for expression of shoot development gene candidates in shoot
cells (right two box plots).

Arabidopsis orthologs for the equivalent traits. The likeli-
hood of the new candidates could be validated by tissue-
specific expression data. This approach assumes that genes
for root development are expressed more actively in root
cells and that genes for shoot development are more actively
expressed in shoots. To test this approach we submitted 60
Arabidopsis genes demonstrated to control root develop-
ment to the RiceNet v2 server, which returned 6012 new
candidate rice genes for the phenotype. For validation, we
employed a transcriptome atlas of rice cell types (25) (GEO
accession: GSE13161), which provides expression profiles
for 40 distinct cell types from rice shoot, root and germi-
nating seed at several developmental stages. We compared
expression levels of the top 100 candidates and 100 random
genes, and observed significantly higher expression levels of
top candidates from root cells (P = 1.3 x 1072, Wilcoxon
rank sum test) (Figure 3, left). We performed a similar anal-
ysis for shoot system development using the 19 Arabidopsis
genes known to be involved in shoot system development as
guide genes. RiceNet v2 server returned 2680 new rice can-
didate genes for the shoot system development. From com-
parison of expression levels between top 100 candidates and
100 random genes, we observed that top candidates show
significantly higher expression levels than random ones in
shoot cells (P = 7.2 x 10, Wilcoxon rank sum test) (Fig-
ure 3, right).
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To test effectiveness of the prediction based on context-
associated hubs, we prioritized genes for stress responses. We
submitted 189 DEGs (P < 0.01) for Xa21 mediated immune
response (GEO accession: GSE22112) (26) to the RiceNet
v2 web server and identified 183 context-associated hubs (P
< 0.01, Fisher’s exact test) as new candidate genes. To val-
idate the predictions, we measured enrichment of 834 an-
notated genes by two Gramene (17) GO-BP terms related
to defense response—defense response, defense response to
bacterium—among predicted 183 genes, and found signif-
icant enrichment of the annotated defense response genes
among the new candidates (P = 1.09 x 10, Fisher’s exact
test). Conversely, we did not observe significant enrichment
of defense response genes among 189 DEGs (P =0.81). No-
tably, the top 183 hub genes of RiceNet v2 did not show any
overlap with the 834 annotated defense response genes, indi-
cating that the observed prediction power did not stem from
intrinsic information of network structure. Users can repro-
duce these case studies by submitting example gene sets to
RiceNet v2 web server.

CONCLUSIONS

RiceNet v2 is an updated network prioritization web-server
for rice. When compared with the previously published net-
work server, RiceNet vl, RiceNet v2 is substantially im-
proved in terms of both genome coverage and network
accuracy, leading to enhancement in prediction power.
RiceNet v2 provides two complementary network priori-
tization algorithms based on: (i) network direct neighbor-
hood and (i) context-associated hubs, facilitating efficient
generation of testable hypothesis. In addition, RiceNet v2
now accepts guide genes from both O. sativa ssp. indica
and Arabidopsis genes. This element allows user to build
on the extensive prior knowledge of these genomes. We will
continue to improve the rice gene network by incorporat-
ing sequencing-based gene expression data, the amount of
which will rapidly grow in the coming years (27).
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