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ABSTRACT

IMP (Integrative Multi-species Prediction), originally
released in 2012, is an interactive web server that
enables molecular biologists to interpret experimen-
tal results and to generate hypotheses in the con-
text of a large cross-organism compendium of func-
tional predictions and networks. The system pro-
vides biologists with a framework to analyze their
candidate gene sets in the context of functional net-
works, expanding or refining their sets using func-
tional relationships predicted from integrated high-
throughput data. IMP 2.0 integrates updated prior
knowledge and data collections from the last three
years in the seven supported organisms (Homo sapi-
ens, Mus musculus, Rattus norvegicus, Drosophila
melanogaster, Danio rerio, Caenorhabditis elegans,
and Saccharomyces cerevisiae) and extends func-
tion prediction coverage to include human disease.
IMP identifies homologs with conserved functional
roles for disease knowledge transfer, allowing biol-
ogists to analyze disease contexts and predictions
across all organisms. Additionally, IMP 2.0 imple-
ments a new flexible platform for experts to gener-
ate custom hypotheses about biological processes
or diseases, making sophisticated data-driven meth-
ods easily accessible to researchers. IMP does not
require any registration or installation and is freely
available for use at http://imp.princeton.edu.

INTRODUCTION

Biologists using modern experimental methods are generat-
ing massive amounts of genome-scale data. However, there
continues to be a substantial gap between the avalanche of
genomic data, which are abundant but not reliable, and our

limited biological knowledge, which can only be discovered
through careful, small-scale techniques. This disparity has
been exacerbated with the development and popularity of
next-generation technologies, such as RNA-seq, which en-
able genome-wide measurements at unprecedented resolu-
tion and cost (1). A paucity of biological knowledge (i.e.
experimentally validated gene function) limits the cover-
age and accuracy of computational methods that require
prior knowledge to learn novel biology, even when large-
scale genomic data are available (2). Thus, these methods
are limited to performing well on processes and pathways
that are already well characterized in an organism. IMP (In-
tegrated Multi-species Prediction) was originally developed
to address the growing need to interpret and analyze results
from genome-wide studies and generate hypotheses for ex-
perimental follow-up in the context of integrated functional
gene networks, even when prior knowledge is limited in an
organism or for a specific biological context (3).

IMP is an exploratory tool that provides a high-quality,
interactive interface for functional prediction and interro-
gation. Researchers can incorporate IMP into their analysis
workflow in several ways. For example, biologists can over-
lay their genes from a high-throughput experiment onto
IMP’s functional gene networks, expanding or contract-
ing the network and identifying enriched, unifying func-
tional themes. Alternatively, researchers can generate spe-
cific functional hypotheses by querying IMP’s collection of
gene-pathway predictions, identifying candidate genes for
a biological context of interest. In all of these analyses,
IMP systematically applies a previously developed network-
based method that identifies functionally similar homologs
to transfer annotations (i.e. gene-pathway membership) be-
tween organisms. This more specific homology detection
method extends beyond simple annotation transfer by se-
quence similarity and enables accurate gene pathway pre-
dictions, even for processes that have few or no experimental
annotations in an organism (2).
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There are several successful web servers that allow re-
searchers to analyze their gene sets in the context of gene
networks (4-6), however, they are either constrained by the
availability of prior knowledge in an organism and biologi-
cal process of interest or limited to sequence-based transfers
of input data (7,8). IMP is unique in its systematic incorpo-
ration of a functional genomics-based homology transfer
of prior knowledge (9) in all of its analyses, improving the
accuracy and coverage of functional interrogation (2).

IMP has been continuously maintained and developed
since the original publication and here we describe major
updates to the server. We have extensively updated the gene
networks and functional predictions across all seven organ-
isms, adding publicly available gene expression experiments
from the subsequent years, and updating the already in-
cluded data sources. Additionally, we extend IMP’s func-
tional coverage to include human diseases, allowing biolo-
gists to analyze disease contexts and predictions in human
and across model organisms. Human disease gene knowl-
edge is transferred to other organisms and predictions are
made using each organism’s gene network. By exploring dis-
ease gene predictions across the model organisms, biologists
can find candidate genes to serve as targets for follow-up in
human and in potential animal models for their disease of
interest.

Additionally, we have created a flexible tool that furthers
the original goal of the web server: to enable biologists to
analyze their experimental results in the context of massive-
scale integrated data compendia. We developed a prediction
platform that allows biologists to bring their larger experi-
mental result (for example, a list of hundreds of genes iden-
tified as over-expressed in a microarray experiment) and run
a sophisticated machine-learning method for classification.
This tool can be used to answer many pertinent questions,
for example, identifying additional candidate disease genes
from a microarray experiment, or additional players in a bi-
ological process of interest. Such an analysis might other-
wise be infeasible due to biologists’ limited computational
resources or expertise. The software is maintained and ex-
ecuted on IMP’s servers and only requires a list of genes
from the user. Genome-wide results are available by email,
if provided, or directly on the web server.

IMP SYSTEM DATA UPDATES

IMP is a flexible tool that can be used to answer diverse
biological questions posed in the form of a biological con-
text (a process or a disease), a single gene, or a set of genes
of interest. These questions can be broad and exploratory,
for example, determining the shared pathways among a
set of genes that are co-expressed in an mRNA experi-
ment. Alternatively, researchers can generate specific exper-
imentally testable hypotheses, such as identifying functional
partners of a gene of interest or possible pathways that the
gene participates in. As an exploratory tool, IMP provides
interactive visualizations of gene-gene functional relation-
ships, gene-process predictions and cross-organism network
alignments. IMP is both a collection of gene-pathway pre-
dictions that users can query for specific targeted results and
a suite of user-driven tools that can be customized for broad
discovery.
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All of IMP’s diverse analyses leverage an organism’s
functional gene network, which integrates thousands of
genome-wide experiments from an array of public data
sources (10-13) and describes whether genes participate
in similar biological processes. These networks are con-
structed using previously described methods (2,6,14) and
have been extensively updated in the subsequent years since
IMP was originally released. We use a new expert-curated
set of Gene Ontology (GO) terms (15) to define the gold
standard for learning gene-gene functional relationships
and have updated the standard to include the latest experi-
mental annotations. IMP networks now integrate 3540 data
sets, a 49% increase in the number of data sets from IMP’s
original release (3), and include over 70 000 experimental
conditions. In addition to adding gene expression experi-
ments from the last three years, IMP networks have been
updated with the most recent releases of popular functional
genomic databases. For example, BioGRID (10) has been
updated to include 196 909 additional protein—protein in-
teractions, an increase of 78% from the original networks.
A complete list of data sources is available directly on the
web server.

DISEASE PREDICTIONS

Biologists can query IMP with a gene set or biological con-
text of interest to retrieve putative gene-pathway assign-
ments. We have extended IMP’s biological contexts to in-
clude human diseases, in addition to GO biological pro-
cesses. Biologists can now analyze disease contexts and pre-
dictions across organisms. IMP applies the same machine-
learning method for predicting genes to biological processes
(2,3) as it does to diseases, which uses a functional network
as input to a Support Vector Machine (SVM) to classify
genes (Figure 1). We showed previously that this method
is accurate and competitive among state-of-the-art meth-
ods in predicting genes to biological processes (2,3). Dis-
ease gene predictions are inferred directly in human—from
disease genes curated by Online Mendelian Inheritance
in Man (OMIM) (16) and using the human functional
network—and in the six model organisms. The disease pre-
dictions inferred in the other organisms leverage biologi-
cal knowledge from human by transferring OMIM knowl-
edge using our previously described method to identify the
appropriate homologs for gene annotation transfer (2,9).
These human-transferred gene-disease annotations are then
used as training data for prediction with the organisms’
functional network, and the subsequent gene predictions
are specific to that organism. By applying a model organ-
ism’s functional network to predict disease genes, IMP can
help biologists address an important challenge in the study
of human disease: identifying the best model system for a
given disease and the appropriate orthologs for a disease of
interest.

Using IMP, users search by Disease Ontology (DO) (17)
term or by gene to retrieve gene-disease predictions. OMIM
disease genes are mapped to DO, using the mapping pro-
vided by DO, to leverage the unified naming and hierar-
chical structure of the ontology. Figure 2 shows queries for
hypertrophic cardiomyopathy (HCM) in both human (Fig-
ure 2A) and mouse (Figure 2B). Many of the top genes in



WI130 Nucleic Acids Research, 2015, Vol. 43, Web Server issue

Integrate diverse genomic data into B Transfer disease gene annotations
from human to other organisms

functional networks

C Predict additional disease genes
using the organism specific network

Gene
human A
Bayesian
integration
mouse

[l Hypertrophic cardiomyopathy

2

Figure 1. A schematic for IMP disease knowledge transfer and prediction. (A) IMP constructs a functional network for each of seven organisms by
integrating heterogeneous genomic data. (B) Disease-gene annotations from human are transferred to the functionally similar homologs in other organisms.
(C) Additional disease genes are predicted using the human-transferred disease genes in the organism-specific functional networks.

the human query are known to be involved in the disease
(highlighted rows), and the others are potential disease can-
didates. For example, the second novel gene prediction is
TRIM63, which encodes an E3 ubiquitin ligase and plays
a role in the atrophy of skeletal and cardiac muscle (18,19).
The gene has recently been suggested (independent of IMP)
as a candidate for HCM with several mutations observed in
patients with the disease (20).

Figure 2B shows the same query for HCM in mouse.
These gene predictions, which leverage human disease
knowledge transferred to mouse, are potentially informa-
tive as a mouse model for the disease. In fact, the most confi-
dently predicted gene, Csrp3, was a target in the first model
for dilated cardiomyopathy with hypertrophy in a geneti-
cally manipulatable organism. Csrp3-deficient mice repro-
duce the same morphologic and clinical features of the dis-
ease as in human (21). The Csrp3 mouse model serves as a
valuable resource for understanding the pathophysiology of
heart failure and for identifying potential therapies for the
disease (22,23). Thus, in these example use cases, IMP inde-
pendently, and in a data-driven predictive fashion, identifies
a candidate human gene for HCN and a mouse gene that is
already a model for understanding human HCM.

PLATFORM FOR CUSTOM PREDICTIONS

Many biological questions cannot be posed as a predefined
gene set, such as a GO biological process or OMIM disease,
or expressed as a small gene set (i.e. <50 genes), requiring
more advanced and flexible data-mining techniques. For ex-
ample, a researcher with results from a genetic screen may
be interested in identifying additional candidate genes. Al-
ternatively, a biologist may want to combine her private ex-
perimental result with public gene pathway annotations to
make customized predictions. Most biologists lack the com-
putational resources or expertise to implement and support
the necessary machine learning software and data compen-
dia for such an analysis. With IMP 2.0, we provide a flexi-
ble platform for researchers to run state-of-the-art machine
learning methods and pose customized, sophisticated bio-
logical questions.

Users provide a gold standard, in the form of a set of
relevant genes, or use IMP provided gene sets, which in-
clude GO biological process and DO terms. IMP uses the
same previously described and validated method for pre-
dicting GO function (2,3), which applies a SVM with fea-
tures constructed from the organism of interest’s functional
gene network for classification. The SVM classifies all genes
in the genome based on its pattern of functional relation-
ships with the provided genes of interest, up-weighting the
parts of the network that are informative for membership in
the gene set. This method has been previously shown to be
accurate in predicting genes to biological processes and phe-
notypes, with corresponding estimates of prediction perfor-
mance (2,24).

Figure 3 shows the schematic for running a custom IMP
function prediction. A user starts an analysis by specifying
an organism and her genes of interest, either manually, from
a user-saved gene set, or pre-defined by IMP. Pre-defined
gene sets can be from GO or DO, and can include anno-
tations transferred from other organisms by selecting the
corresponding checkbox. Figure 3A shows the input for
an analysis of five user-provided breast cancer genes. These
genes are treated as positive examples for classification, with
random negative gene examples selected by IMP for classi-
fication. The researcher runs the analysis on IMP’s servers
using the human functional gene network (Figure 3B). Each
gene in the genome is assigned a probability based on its
five-fold cross-validated SVM result, and results are sent by
email, if provided, or viewed directly on the server though
a result-specific URL (Figure 3C). Performance is evalu-
ated as the area under the receiver-operator curve (AUC)
and provided with the genome-wide prediction results. As
we continue to update IMP’s collection of functional net-
works in the future, the prediction performance of this tool
is expected to improve even further, and we encourage biol-
ogists to rerun their analyses. With these features, IMP en-
ables biologists to both pose complex biological questions
and easily run sophisticated machine-learning tools to help
answer them.
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Figure 2. Disease result pages for ‘hypertrophic cardiomyopathy’ in IMP. (A) Querying ‘hypertrophic cardiomyopathy’ in human returns a list of genes
predicted to be involved in the disease, sorted by probability. IMP applies known hypertrophic cardiomyopathy genes in human (from OMIM) to predict
additional genes from the human functional network. (B) The same disease query can be performed in mouse, returning predicted mouse genes. These
predictions were learned using human disease genes transferred to mouse with the mouse functional network.

SUMMARY

IMP is a flexible, user-friendly web server that serves as
an intuitive and accessible resource for molecular biologists
who want to leverage heterogeneous biological big data col-
lections to explore predictions of gene function and dis-
ease association in human and model organisms. The de-
scribed updates add substantial value to IMP as a unique re-
source and suite of analysis tools for biological researchers.

In the future, we plan to continue to add additional organ-
isms (Arabidopsis thaliana) and additional data sources for
our functional gene networks. We continue to develop ad-
ditional tools that leverage our cross-organism collection of
networks and predictions with the goal of making complex
tools and analyses accessible to biological researchers.
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Figure 3. Diagram for submitting custom user predictions. (A) The input form for entering a gene set of interest. Genes can be pasted, selected from a saved
gene set, or chosen from a pre-defined set. (B) IMP applies an SVM with the provided gene set as positive examples and predicts additional genome-wide
genes likely to be functionally related. (C) The output is a list of genome-wide genes, ranked by their probability of functional relationship with the provided

gene set. This result can be emailed to the user or accessed directly on the web server.
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