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ABSTRACT: Although a standard genome-wide significance level has been accepted for the testing of association between
common genetic variants and disease, the era of whole-genome sequencing (WGS) requires a new threshold. The allele
frequency spectrum of sequence-identified variants is very different from common variants, and the identified rare genetic
variation is usually jointly analyzed in a series of genomic windows or regions. In nearby or overlapping windows, these
test statistics will be correlated, and the degree of correlation is likely to depend on the choice of window size, overlap,
and the test statistic. Furthermore, multiple analyses may be performed using different windows or test statistics. Here we
propose an empirical approach for estimating genome-wide significance thresholds for data arising from WGS studies, and we
demonstrate that the empirical threshold can be efficiently estimated by extrapolating from calculations performed on a small
genomic region. Because analysis of WGS may need to be repeated with different choices of test statistics or windows, this
prediction approach makes it computationally feasible to estimate genome-wide significance thresholds for different analysis
choices. Based on UK10K whole-genome sequence data, we derive genome-wide significance thresholds ranging between
2.5 × 10−8 and 8 × 10−8 for our analytic choices in window-based testing, and thresholds of 0.6 × 10−8–1.5 × 10−8 for a
combined analytic strategy of testing common variants using single-SNP tests together with rare variants analyzed with our
sliding-window test strategy.
Genet Epidemiol 38:281–290, 2014. C© 2014 Wiley Periodicals, Inc.
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Introduction

Complex-trait genetic association studies aim to identify ro-
bust associations between genotype and phenotype in order
to enhance our understanding of the underlying biological
processes contributing to the trait of interest. The field of
complex-trait genetics has thus far focused on the study of
common (minor allele frequency [MAF] ≥ 0.05) variants
through candidate gene studies and, in recent years, through
genome-wide association scans (GWAS). The candidate gene
study era was unsuccessful in identifying many reproducible
associations, partly due to the liberal thresholds used to de-
clare statistical significance, and the issue of multiple testing
became even more pronounced with the advent of GWAS. To
guard against lenient significance thresholds, a genome-wide
significance level was estimated, based on a Bonferroni cor-
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rection for the number of independent (i.e., uncorrelated)
common variants across the genome: 5×10–8 [Dudbridge
and Gusnanto, 2008; Gao et al., 2008; Pe’er et al., 2008].
Adherence to this threshold has served the field well, with
a very high proportion of genome-wide significant signals
withstanding replication.

Common-frequency variants explain only a small pro-
portion of complex-trait heritability. Following advances in
large-scale genotyping and next-generation sequencing tech-
nologies, low-frequency (0.01 < MAF < 0.05) and rare (MAF
< 0.01) variants are increasingly becoming the the focus of
genetic association studies, as they are hypothesized to have
larger effect sizes, more readily interpretable functions and
possible translational potential. Whole-exome sequencing
(WES) and whole-genome sequencing (WGS) studies iden-
tify almost all sequence variation in the targeted genomic
regions, and the variants identified are often extremely rare
or unique; hence, the number of variants observed increases
with sample size.

Analysis of WGS and WES studies usually includes not
only single-variant tests, but also region-based tests, which
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aggregate information across multiple rare variants in order
to boost power lost to the combination of low frequency and
modest sample size. Numerous region-based tests for rare
genetic variation have been proposed. These rely on the ini-
tial definition of an interesting region or “functional unit,”
which is intuitive for WES but can be defined in various
different ways for WGS (e.g., genes only, regulatory regions,
sliding windows with or without overlap). Calculations to
estimate the significance thresholds then need to be based
not only on the correlations between single-point (variant-
specific) tests but also on the dependence between window-
based tests. Although rare variants are known to display lower
levels of linkage disequilibrium than common variants, for
test statistics applied to regions or windows, especially par-
tially overlapping windows, the dependence structure is not
well understood.

Therefore, in association studies of sequencing data, the
number and frequency of variants tested are very different
from the GWAS era, and the choice of potential test statistics
is large. Therefore, it is currently unclear what the respec-
tive WES and WGS genome-wide significance thresholds
should be. Although a simple and commonly used signifi-
cance threshold for WES is simply (0.05/#genes), it is likely
that the thresholds which accurately control the type 1 er-
ror should be study-specific, taking into account the analysis
choices as well as key study design parameters including the
size of the sequenced regions and the sample size, in order to
identify the total number of independent tests carried out.

We define genome-wide significance using the definition
of family-wise error; our goal is to control the probability of
making one or more false discoveries at level α. The family-
wise error rate, α, can be capped by testing at a significance
level, αc, which has been adjusted for the number of indepen-
dent tests performed, such that αc = 1 – (1 – α)(1/me) ≈ α/me,
where me is the number of independent tests performed,
which will be smaller than the actual number of tests, m,
due to dependence between test statistics. In particular, for
window-based analysis of WGS data, we would like to under-
stand the magnitude of the correlations between nearby test
statistics and the genomic distance over which correlations
extend; this has not been previously explored in detail.

We use two approaches for understanding the dependence
structure and for estimating the effective number of inde-
pendent tests, one based on correlations and one using sim-
ulations. Association analysis of sequencing studies usually
includes both single-variant tests at markers with MAF large
enough to enable good power, as well as window-based tests
for rare genetic variation. We therefore study dependence
patterns for the combination of both types of tests. The re-
sulting understanding will allow us to estimate the effective
number of independent tests, me, for a complete analytic
strategy, after estimating and adjusting for the correlations.

It is unlikely that window-based tests located on separate
chromosomes or far apart on the same chromosome will
display much correlation. Therefore, here we study the be-
havior of the effective number of independent tests as a func-
tion of the size of a genomic region under analysis. Notably,

we propose a strategy of predicting or extrapolating from
results obtained on one subset of the genome to genome-
wide analysis, in order to make the computations efficient
and feasible. Finally, we recommend reasonable significance
thresholds for a plausible WGS study analytic plan employing
both single-point analysis of common variants and a specific
sliding-window implementation of region-based tests of rare
variants, for the detection of complex-trait associations.

Methods

Dataset

Performance and results are illustrated with an in-
terim release of sequencing data from the UK10K project
(www.uk10k.org), where almost 10,000 individuals are un-
dergoing WGS. The UK10K project is the largest WGS study
to date generating data one order of magnitude deeper com-
pared to the 1000 Genomes Project. Sequencing data on chro-
mosome 3 were obtained, consisting of 2,577,674 genetic
variants in 2,432 individuals. There were 23,096 sites where
no minor alleles were observed after data cleaning; these vari-
ants were excluded. Rare genetic variants were defined using
three thresholds MAF <0.005, MAF <0.01, and MAF <0.05
leading to 1,779,499 variants for MAF <0.005, 1,853,923 vari-
ants for MAF <0.01, and 2,046,466 for MAF <0.05.

Windows for analysis were defined to contain 50 rare vari-
ants, where rare is defined using MAF less than 0.005, 0.01,
or 0.05, and adjacent windows overlapped by 25 variants.
This choice was derived from earlier WES analysis of UK10K
data where a maximum of 50 variants were allowed in a sin-
gle window for analysis. Because the genome-wide window
definitions are independent of genomic annotations, tiling
windows that overlap by half were chosen in order to include
the same variants in two different sets. The windows, there-
fore, vary in genomic length depending on the number of
sequence variants identified and the MAF threshold used to
define rarity; there were 71,179 windows for MAF <0.005,
74,156 windows for MAF <0.01, and 81,858 for MAF <0.05
along chromosome 3.

Test Statistics

For the genetic variants on chromosome 3 only, all SNPs
with MAF greater than each chosen threshold were analyzed
individually, and window-based tests were used to analyze
variants with MAF less than the threshold. Windows were
analyzed with SKAT [Wu et al., 2011], a simple burden test
[Price et al., 2010], and SKAT-O [Lee et al., 2012]. For the
burden test, we fit linear regressions between the phenotype
and the total count of minor alleles across all variants in
the window with MAF less than the chosen threshold. The
popular SKAT test is sensitive to increased variance of the
phenotype associated with the presence of rare genetic vari-
ants, and SKAT-O is a combined test that finds the optimal
combination of the SKAT statistic and a burden test. These
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tests represent several of the most commonly used window-
based tests, and have demonstrated good power across a range
of allelic architectures. Single-marker tests were performed
with linear regression on the minor allele count, leading to a
F1,N–2 test, for a sample size of N.

Expected Correlations Under the Null Hypothesis

The expected correlation between pairs of SKAT [Wu et al.,
2011] statistics (Ti, Tj) can be analytically derived for a given
set of genotypes, under the null hypothesis. The SKAT test
statistic is

T =
(y – μ̂)′K (y – μ̂)

2σ̂2
,

where y is a vector of phenotypes, μ̂ is the predicted mean of
y under null hypothesis, K = (GW) (GW)′ is the SKAT kernel
matrix, which depends on the genotype matrix G, assumed
to be centered, and a choice of variant weights W. Let Ti and
Tj be two SKAT test statistics. Let e = y – μ̂ and Qi = e′Kie,
where Ki = (Gi Wi) (Gi Wi)′. Under the null hypothesis, e ∼
N(0, σ2I) and σ̂2 → σ2. Hence, the correlations under the
null can be calculated as

cor(Ti, Tj ) → cor(Q i, Q j ) = cor(e ′K ie, e ′K j e)

=
tr(K i K j )√

tr
(
K 2

i

)
tr

(
K 2

j

) .

Expected correlations between burden tests can also be
written analytically. For the genotype matrix G within a win-
dow, let x be the count of the number of minor alleles at rare
variants in the window (or the row sum of G). For a simple
linear regression test, the burden test statistic is given by

T =
(y – μ̂)′(H – 1

n 11′)(y – μ̂)

σ̂2
,

where n is the sample size, H is the hat matrix of the regression
test, and 1 is a vector of ones. Let Ti and Tj be two burden
test statistics, and let Pi = Hi – 1

n 11′. The correlations under
the null can be calculated as

cor(Ti, Tj ) → cor(e ′Pie, e ′Pj e) = tr(Hi Hj ) – 1.

Obtaining an explicit expression for correlation between the
SKAT-O statistics is not straightforward. Therefore, we have
calculated expected correlations between window-based test
statistics for burden and SKAT tests only. These calculations
were performed for the genotype data on chromosome 3 from
UK10K, using the sets of windows defined for rare variant
thresholds of MAF = 0.01 and MAF = 0.05.

Estimators of the Effective Number of Independent Tests,
Based on the Eigenvalues From a Singular Value
Decomposition of the Matrix of Correlations Between Test
Statistics

Several different approaches have been proposed for es-
timating the effective number of independent tests given a
correlation matrix [Chen and Liu, 2011; Cheverud, 2001;

Dudbridge and Gusnanto, 2008; Gao et al., 2008; Li and Ji,
2005; Li et al., 2012; Moskvina and Schmidt, 2008; Patterson
et al., 2006]. Some estimators are based on the eigenvalues
of the correlation matrix, and others can be derived directly
from the correlations without the need to calculate the eigen-
values [Chen and Liu, 2011; Cheverud, 2001; Moskvina and
Schmidt, 2008]. Most of these methods have been used for
single-SNP tests; we explored their performance using the
calculated correlations between window-based burden and
SKAT tests. We found particularly good performance from
two of the eigenvalue-based methods, where results agreed
well with those from simulations (described below) [Li and
Ji, 2005; Li et al., 2012].

Let m be the number of tests performed in a chosen ge-
nomic region or section, and let λi, i = 1, . . . m be the
eigenvalues of the matrix of correlations for all tests in this
region. The two methods we have used for calculating the
effective number of independent tests, me, are the method of
Li and Ji [2005]

me =
∑m

i=1
(I (λi ≥ 1) + (λi – 	λi
))

and the method of Li et al. [2012], which is known to give
estimates slightly smaller than Li and Ji [2005],

me = m –
∑m

i=1
(I (λi > 1)(λi – 1)).

Simulation Design

Calculation of correlations and eigenvalues becomes com-
putationally infeasible for large numbers of tests. Hence, we
also undertook a complementary approach based on simu-
lation of phenotypes, also using the WGS data from chro-
mosome 3 in the UK10K project. One thousand sets of nor-
mally distributed phenotypes were generated (under the null
hypothesis of no association), and both single-marker (lin-
ear regression) and window-based tests (SKAT, burden, and
SKAT-O) were performed across the chromosome 3 data for
each set of phenotypes.

Calculating the Predicted Effective Number of Independent
Tests From Simulated Data, and Predicting the Significance
Threshold Genome Wide by Extrapolation

For each simulated phenotype, we calculated and stored
all single-SNP test P-values and all window test P-values for
MAF thresholds of 0.005, 0.01, and 0.05. We then partitioned
the chromosome into a series of sections of equal size, rang-
ing from 1,024 equally sized sections up to the entire length
of chromosome 3. For example, for a MAF threshold of 0.01,
the smallest sections contained m = 72 or 73 window tests
each (74,156/1,024). For each section, we calculated the min-
imum P-value for the window tests, for the single-SNP tests,
and for both windows and single SNPs combined, for each of
the 1,000 simulations. The fifth percentile of the minimum
P-values was identified within each section, and then the
–log10(P) values for this percentile were averaged across all
sections containing the same number of tests. These numbers
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Figure 1. Correlations between 2,000 adjacent window-based tests statistics for SKAT and burden tests and for two different MAF thresholds.
Because windows were defined to contain the same number of rare variants, the boundaries of the windows vary with MAF. Regions have been
aligned so that the genomic region captured in the bottom row is contained within the genomic region at the top. The axes are the window numbers,
counted from the 5′ end of chromosome 3. Left column: SKAT tests. Right column: burden tests. Top row: MAF threshold = 0.01; bottom row: MAF
threshold = 0.05. Gray: correlation > 0.1; yellow: correlation > 0.35; blue: correlation > 0.5; red: correlation > 0.75.

are then empirical estimates of the (–log of the) necessary sig-
nificance thresholds for FWER = 5%, for genomic pieces of
varying sizes corresponding to the different sections; equiva-
lently, these are empirical estimates of 0.05/me (after antilog
transformation), where me is the effective number of inde-
pendent tests.

We then fit linear regressions predicting the empirical
thresholds as a function of –log10(0.05/m), for m tests. To esti-
mate the number of tests that would be performed genome-
wide, we assumed that the density of variants is approxi-
mately equally distributed across all chromosomes. Because
the whole genome is approximately 15.6 times longer than
chromosome 3, we therefore created a new point on the x-
axis at x* = –log10(0.05/(15.6mmax3)), where mmax3 is the total
number of tests on chromosome 3 (e.g., mmax3 = 74,156 for
window tests and MAF threshold = 0.01). Let the predicted
value from the linear regression be y* = b0 + b1x*; hence, the
predicted significance threshold is therefore αc = 10–(y*) and
the effective number of independent tests genome-wide is
predicted to be m∗

e = 10(y∗+log10(0.05)).

Results

Results Based on Correlations

Figure 1 displays heat maps of the genotype-based corre-
lations calculated for a section of chromosome 3 containing
2,000 windows or 50,000 rare variants. Two different MAF
thresholds are shown, for both burden and SKAT statistics.
It can be seen that although correlations of 0.1 or more often
extend across almost 1,000 windows, there are few substantial
correlations that extend further than this. Also, correlations
between windows are demonstrably more evident for SKAT
tests than for burden tests. When comparing the two MAF
thresholds, it can also be seen that the correlations are larger
for the MAF threshold of 0.05 vs. 0.01. Because our win-
dows were defined to contain 50 rare variants, each differ-
ent MAF threshold induces a different set of window defini-
tions. The two rows of Figure 1 show an overlapping genomic
region—the genomic region covered by the panels for MAF
<0.05 is contained within the genomic region for MAF <0.01.
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Figure 2. Estimates of significance thresholds as a function of the number of window tests, comparing estimates derived from the correlation
matrices (the methods of Li et al., and Li and Ji) with estimates from simulations. Results are shown for MAF threshold = 0.05 and 0.01 and for
SKAT and burden tests. The horizontal axis is −log10(0.05/m), for m tests; the maximum value corresponds to −log10(0.05/2,000), because the largest
matrices we used were 2,000 × 2,000. Dots are the means of the estimated values of −log10(0.05/me) across all sections of chromosome 3 of the
same size, and linear regressions have been fit to each series points. The gray line is the line of equality, y = x.

Supplementary Figure S1A–C shows similar results for three
additional regions of chromosome 3.

In Figure 2, multiple testing corrected significance thresh-
olds, estimated by several different methods, are displayed
for genomic regions of varying sizes up to 2,000 adjacent
windows. Each panel shows mean values of –log10(0.05/me)
plotted against the Bonferroni equivalent (using m instead
of me). The means are averages of the estimated values for
all genomic sections of the same size. For each method of
estimation, the estimated values of me increase linearly with
the number of tests performed, m, and furthermore all esti-
mates are below the diagonal line, implying that the effective
number of independent tests is smaller than the total number
of tests performed, as expected.

Examining the estimates derived from expected correla-
tions between SKAT and burden tests, it can be seen that the
stronger dependence between SKAT statistics (as was seen
in Fig. 1) leads here to less stringent significance thresholds
for SKAT-based analysis, compared to burden tests. When
comparing MAF thresholds, the dependence is stronger for

MAF < 0.05, leading also to less severe penalties for multiple
testing. Furthermore, it can be seen that the different meth-
ods for estimating me lead to slightly different estimates; the
method of Li et al. [2012] is more conservative than the result
of Li and Ji [2005].

Results Based on Simulations

The utility of the correlation-based estimates of me is some-
what limited by the size of the matrix for which it is feasible
to calculate the eigenvalues or store the full matrix of corre-
lations; computations became difficult for genomic regions
larger than approximately 2,000 windows. In addition, theo-
retical correlations were not available for SKAT-O, and fur-
thermore, the expected correlations may be somewhat differ-
ent from the true correlations, which depend on phenotype
data. Therefore, we undertook a complementary approach,
also using the WGS data from chromosome 3 in the UK10K
project, where phenotypes were simulated under the null
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Figure 3. Estimates of genome-wide significance thresholds for window-based tests of rare variants, derived from simulations, for three MAF
thresholds and three test statistics. The horizontal axis is −log10(0.05/m), for m tests on chromosome 3. Each point is the mean of −log10 of the
estimated FWER at 5% for disjoint sections of chromosome 3 of the same size, and ±1.96*(SD) at each point. A linear regression was fitted to the
points in each panel, and the gray line is the line of equality, y = x.

hypothesis and both single-marker and window-based tests
were performed across the chromosome. This enabled us to
empirically study the behavior of the minimum P-value for
genomic sections of larger size.

In Figure 3, the estimated significance thresholds for
window-based tests derived from simulations are displayed
for three different MAF thresholds, and for three different
test statistics for genomic sections increasing in length up to
the entire length of chromosome 3. As in Figure 2, it is clear
that there is a linear relationship between the average esti-
mated significance threshold and the Bonferroni threshold
(on the –log10 scale) as the size of the genomic region ana-
lyzed increases. However, for a genomic region of a chosen
size, there can be quite a lot of variability in the estimated
significance thresholds, especially for smaller sizes. Figure 3

also shows that significance thresholds for burden and SKAT-
O statistics are closer to the Bonferroni correction than the
SKAT statistic, and hence that these statistics are less corre-
lated, confirming the result seen visually in Figure 1 for the
burden test. The effect of the MAF threshold on the con-
clusion is smaller, but for the SKAT statistic, it can be seen
that higher MAF thresholds correspond to more interwindow
correlation and hence to larger (less stringent) significance
thresholds. This makes sense because there should be more
linkage disequilibrium between the variants when a higher
MAF threshold is used.

The simulation approach also enables us to study the sig-
nificance thresholds for a combination of window-based tests
of rare genetic variation and single-marker tests of common
variation. In Figure 4, the necessary significance thresholds
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Figure 4. Estimates of genome-wide significance thresholds for a combined strategy including window-based tests of rare variants and single-
marker tests of common variants. Results are derived from simulations, for three MAF thresholds and three test statistics. The horizontal axis is
−log10(0.05/m), for m tests. Each dot is a single estimated value for −log10 of the FWER at 5% for sections of chromosome 3 of varying size. A linear
regression was fit through all the data. The gray line is the line of equality, y = x.

for controlling FWER at 5% are shown for genomic sections
of varying size for this combined strategy. The variability
across chromosomal sections of the same size is shown, as
well as the linear relationship. All estimates here are well
below the line of equality, y = x, demonstrating the well-
known effect of linkage disequilibrium between common
variants.

Estimating Genome-Wide Significance

We have used the apparent linear relationships in Figures 2–
4 to infer genome-wide significance thresholds, by extrapo-
lating from the length of chromosome 3 to the length of the
whole genome. Chromosome 3 is approximately 198 million

bp long and the whole genome, including X and Y is approx-
imately 3.096 billion bp, or 15.6 times longer than chromo-
some 3 alone. Table 1 shows predicted genome-wide values
for me and significance thresholds based on this extrapolation
for window-based tests alone, and Table 2 shows similar cal-
culations for the combined analytic strategy including both
single-SNP tests of common variants and window-based tests
of rare variants. (Supplementary Table S1 shows the effective
number of independent tests predicted for all of chromosome
3, and for the whole genome, corresponding to Fig. 2). Be-
cause there is little correlation between rare genetic variants
and common variants, the effective number of independent
tests in Table 2 tends to be close to the sum of the num-
ber of independent window-based tests and the number of
independent common-SNP tests.
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Table 1. Estimated genome-wide significance thresholds for window-based tests of rare genetic variation, derived from simulations

MAF threshold
defining rare variants Test statistic

Number of windows
on chromosome 3

Genome-wide
estimate of the

number of
independent tests

Predicted
genome-wide
significance
threshold

0.005 SKAT 71,179 682,646 7.32 × 10–8

0.005 Burden 1,127,774 4.43 × 10–8

0.005 SKAT-O 1,868,633 2.68 × 10–8

0.01 SKAT 74,156 615,665 8.12 × 10–8

0.01 Burden 1,319,873 3.79 × 10–8

0.01 SKAT-O 1,866,388 2.68 × 10–8

0.05 SKAT 81,858 741,391 6.74 × 10–8

0.05 Burden 1,062,330 4.71 × 10–8

0.05 SKAT-O 1,923,726 2.60 × 10–8

Table 2. Estimated genome-wide significance thresholds for a combined analytic strategy including window-based tests of rare
genetic variation and single-marker tests for common variants

MAF threshold
defining rare variants Test statistic

Number of tests
(single marker and

windows) on
chromosome 3

Genome-wide
estimate of the

number of
independent tests

Predicted
genome-wide
significance
threshold

0.005 SKAT 869,354 5,933,687 8.43 × 10–9

0.005 Burden 7,237,279 6.91 × 10–9

0.005 SKAT-O 8,547,380 5.85 × 10–9

0.01 SKAT 797,907 4,412,096 1.13 × 10–8

0.01 Burden 5,735,011 8.72 × 10–9

0.01 SKAT-O 6,019,458 8.31 × 10–9

0.05 SKAT 613,066 2,746,888 1.82 × 10–8

0.05 Burden 3,142,544 1.59 × 10–8

0.05 SKAT-O 4,306,272 1.16 × 10–8

Results are derived from simulations.

We have not provided standard errors of these estimates,
because each point used for calculation of the regression
parameters is based on subdivision of the same chromo-
some 3 data in different ways. We cannot therefore argue that
the points are independent. However, the intervals (±1.96*
standard error) shown in Figure 3 are each calculated from
disjoint sections of the chromosome.

For window-based tests, the largest influencing factor is
the chosen test statistic. The SKAT test does not require as
small a significance threshold as the other two methods. In
contrast, for the combined analytic strategy of Table 2, the
primary driver of significance threshold is the MAF. For MAF
thresholds of 1% or larger, then significance threshold of 1 ×
10–8 would be a reasonable choice for our data.

Discussion

We have presented an empirical approach for estimating
genome-wide significance thresholds for the analysis of se-
quencing data and rare genetic variation. Here, we have ex-
plored the impact of the choice of MAF threshold and the
choice of test statistic on the necessary thresholds for window-
based tests, and have shown that these factors have different
patterns of dependence and will impact necessary genome-
wide thresholds.

Therefore, for a chosen analytic strategy, the necessary
threshold is likely to depend on the analysis plan, as well

as on the design parameters such as ethnicity, sample size,
or sequencing depth (because increased depth could identify
more rare variants). If region-based tests are repeated under
a large series of different models and assumptions, alteration
of the significance thresholds would be necessary. In contrast,
we believe that effects of sample size and depth on genome-
wide significance thresholds will be small. Supplementary
Figures S2 and S3 show that in our data, altering the sample
size made no visible difference to the estimated significance
thresholds. If sequence data are first imputed against a large
population reference panel [Wood et al., 2013; Zheng et al.,
2012], then additional read depth should lead to the addition
of only a few extremely rare or singleton genetic variants.
Nevertheless, it may be of interest to revisit the impact of
sample size and depth in larger datasets.

However, the magnitude of effect of ethnic origin is cur-
rently unclear. Our data are based on UK individuals of Euro-
pean descent. Sequence variant correlation structure is dra-
matically different in more heterogeneous populations, for
example, from sub-Saharan Africa. Reduced levels of linkage
disequilibrium translate into higher numbers of uncorrelated
variants, more independent tests and, hence a lower genome-
wide significance threshold, and this would definitely be of
interest to examine.

The same technique can be used to estimate genome-
wide significance thresholds for single-marker tests of as-
sociation for common SNPs, thereby enabling a compar-
ison with previous estimates of genome-wide significance
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thresholds. These pilot data from the UK10K study iden-
tified 531,208 SNPs with MAF ≥ 0.05 on chromosome 3,
in contrast to 464,048 in Europeans in the 1000 Genomes
project (www.1000genomes.org, Supplementary Table S2).
For MAF ≥ 0.005, the number of variants was very similar in
the two datasets. Supplementary Figure S4 and Table S2 show
that our estimated significance threshold for single-SNP tests
with MAF ≥ 0.05 is 2.3 × 10–8. This is a little smaller than
previous estimates for genotyping arrays (e.g., 7.2 × 10–8:
[Dudbridge and Gusnanto, 2008]; 5 × 10–8: [Pe’er et al.,
2008]), but in close agreement with a recent estimate based
on 1,000 genomes sequencing data (3 × 10–8: [Li et al., 2012]).

Our calculations used portions of the genome of varying
size to calculate the relationship between the number of tests
performed and the effective number of independent tests. If
warranted, it is therefore computationally tractable to repeat
these calculations, for example, for studies with a significantly
different study design than the one investigated here. In fact,
we recommend that any study should consider undertaking
simulations on a single chromosome to evaluate the neces-
sary thresholds for their particular study design, especially if
several window-based tests are anticipated.

A limitation with our extrapolation strategy is that the
points used to calculate the regression line are not completely
independent. Because we have repeatedly divided chromo-
some 3 into sections of different size, the same data have been
used multiple times to obtain the significance thresholds for
each distinct section size. Hence, we have not presented con-
fidence intervals for our predictions; the mean values of the
predictions should not be affected by dependence between
the points.

We found good agreement between me estimates from our
simulations and two methods based on eigenvalues of the
correlation matrix. There are, however, computational lim-
itations associated with calculating eigenvalues in large ma-
trices that limit the size of the genomic sections that can
be explored with this approach. As an alternative strategy,
there are at least three methods that calculate me directly
from the correlations without the need to calculate eigen-
values [Chen and Liu, 2011; Cheverud, 2001; Moskvina and
Schmidt, 2008]. However, we found (data not shown) that
these estimates did not agree well with our simulations, and
hence these methods would have given biased estimates of
significance thresholds.

Our correlation-based approach has used expected corre-
lations between test statistics under the null hypothesis. In
contrast, previous publications on this topic have focused on
single-SNP tests and based their development on the cor-
relation matrix between genotypes [Chen and Liu, 2011;
Cheverud, 2001; Li and Ji, 2005; Moskvina and Schmidt,
2008] or the correlations between P-values [Li et al., 2012];
in the latter, the authors found that a sixth-order polyno-
mial described the relationship between the P-value and
the linkage disequilibrium. For window-based tests, corre-
lations between genotypes are not the right metric, and
correlations between P-values cannot be obtained without
simulations, and hence we worked with the test-statistic

correlations. Therefore, an explicit consideration of the re-
lationship between test statistic correlations and genotype
correlations, and the impact of the asymptotic distribution
on estimators of me could be a fruitful avenue for future
research.

Assuming independence of genes, a genome-wide Bonfer-
roni correction for gene-based burden tests in WES studies
is 0.05/20,000 = 2.5 × 10–6. However, this threshold does
not correct for single-variant tests performed on common-
frequency sites or for possible correlation between genes. Our
simulation-based approach would also be applicable to WES
data, assuming that the genomic region used in the simula-
tions has an average gene density.

In the new era of next-generation association studies, defin-
ing robust thresholds to declare significance is of paramount
importance to help guard against false-positive signals. For
window-based testing, the analysis choices will impact the
necessary significance thresholds. The estimates we have ob-
tained for genome-wide significance thresholds may vary if
we had used another chromosome for our simulations, or if
we had incorporated multiple window tests into our analytic
strategy. However, for a combined strategy including single-
marker tests of common variants combined with window-
based tests for rare variants, we found that single-variant
results are the principle drivers of significance thresholds and
hence that significance thresholds depend little on the ana-
lytic choices for the windows and more on the MAF thresh-
olds chosen.

We recommend that each study perform simulations to
investigate the impact of their own analytic strategy on sig-
nificance levels, and we suggest that sufficiently accurate pre-
dictions can be obtained by performing the simulations on a
small portion of the whole genome and extrapolating to the
full genome, thereby making such investigations feasible. An
R package, QW signif, is available at cran.r-project.org to fa-
cilitate such calculations. We add the well-known caveat that
all association signals require validation in independent data.
Nevertheless, in European populations, a reasonable choice
for WGS analyses that investigate association of complex traits
with individual variants and locus-based aggregation of rare
variants (using only one test statistic) can be expected to be
between 0.6 × 10–8 and 1.5 × 10–8.
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