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Abstract

Purpose of the review—Microbial dysbiosis in the gut is emerging as a common component in 

various inflammatory disorders including spondyloarthritis (SpA). The depth of this influence has 

begun to be realized with next generation sequencing of the gut microbiome providing unbiased 

assessment of previously uncharted bacterial populations.

Recent findings—Decreased numbers of Firmicutes, a major phyla of gut commensals, 

especially the species Faecalibacterium prausnitzii and Clostridium leptum have been found in 

various inflammatory disorders including SpA and IBD, and could be an important link between 

SpA and gut inflammation. Multiple studies in ankylosing spondylitis, psoriatic arthritis, juvenile 

SpA and animals models of SpA are revealing common bacterial associations among these 

diseases as well as IBD.

Summary—We are beginning to appreciate the complex relationship between the gut 

microbiome and host immune regulation and dysregulation in health and disease. Potentially 

important differences have been revealed in SpA, but cause and effect relationships remain far 

from established. Many critical questions remain to be answered before we can apply new 

knowledge to improve therapeutics in SpA.
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Introduction

Spondyloarthritis (SpA) is a family of immune-mediated inflammatory disorders that 

includes ankylosing spondylitis (AS), psoriatic arthritis (PsA), juvenile spondyloarthritis 

(JSpA) and acute anterior uveitis. Undifferentiated SpA is now classified as axial or 

predominantly peripheral. There is considerable clinical overlap between SpA and 

inflammatory bowel disease (IBD), with IBD and AS exhibiting shared genetic 

predisposition and pathogenic mechanisms. IBD has been long associated with alterations in 

the gut microbiome, which may be primary or secondary factors in disease pathogenesis [1].

Rats overexpressing HLA-B27 spontaneously develop an inflammatory disease exhibiting 

arthritis and colitis, thus mimicking human SpA [2]. In common with the vast majority of 

IBD animal models, disease development in this model is microbiota dependent [3]. 

Rosenbaum and Davey proposed that HLA-B27 alters the intestinal microbiome, which 

might be the basis for disease predisposition associated with this allele [4]. This concept is 

supported by theories of a disrupted gut environment in spondyloarthropathy, with altered 

intestinal permeability perhaps leading to a dysregulated immune response and/or altered 

dendritic cell function. This may then drive microbial dysbiosis and/or microbiota mediated 

intestinal inflammation leading to epithelial permeability. Here we review recent 

developments from studies of the gut microbiome in patients with AS, JSpA and PsA as 

well as insights obtained from the animal models of SpA.

The gut microbiota

The gut microbiota is the vast microbial community that inhabits our intestine. Microbial 

cells outnumber host cells by a factor of ten, and collectively harbor 100 fold more genes 

than the human genome [5]. Staggeringly, an estimated 10% of all the metabolites in 

humans are thought to have microbial origins [6]. This mutually beneficial relationship 

offers host nutrients to intestinal commensal bacteria, in return for metabolic and 

physiological capabilities. Cohabitation with microbes seems to be an ever-evolving process 

with host microbe crosstalk normally involving regulation of immune activation and 

inflammation [7]. Although the microbiome varies between individuals, familial and 

functional similarities are found in the bacterial species represented [8]. Gut microbiome 

analysis in healthy human populations revealed around 1150 species of bacteria, the 

majority of which (50–75%) is represented by Firmicutes, followed by Bacteroidetes (10–

50%), and Actinobacteria (1–10%), with less that 1% being Proteobacteria [9]. 

Environmental factors and host genome have both been implicated as contributing to this 

similarity. The advent of high throughput genome sequencing techniques such as next 

generation 16S rRNA sequencing has lead to crucial insights into the intestinal metagenome, 

since more than 70% of the bacterial population including many anaerobes cannot be readily 

cultured [9]. The ability to routinely obtain an unbiased assessment of gut microbiota has 

resulted in a more comprehensive view of the gut dysbiosis in SpA patients as well as HLA-

B27 driven disease in an animal model. Table 1 refers to studies implicating gut bacteria in 

human diseases and animal models of spondyloarthropathies.
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Animal models of SpA

Gut commensals are important for educating our immune system, since animals raised in 

germ free environments fail to develop lymphoid organs and have muted adaptive immunity 

[23]. Thus, it is not surprising to think that more subtle differences in microbial communities 

might influence (or be influenced by) autoimmune or autoinflammatory diseases. In HLA-

B27 transgenic rats that develop SpA, inflammatory disease features including arthritis and 

colitis are absent when animals are derived into a germ free environment [3]. Interestingly, 

re-introduction of normal flora enables the inflammatory disease to re-establish itself [24]. 

While these early studies clearly established a role for the gut microbiome in SpA, more 

recent work has focused on defining the differences. HLA-B27 transgenic rats have a 

different cecal microbiome as compared to the wild type (non-transgenic) rats [25]. How 

this affects immune modulation and disease severity is not clear. This study found increases 

in Prevotellaceae and Rikenellaceae concomitant with development of inflammation in the 

intestine [25].

Recent murine experiments have demonstrated that overall microbial composition as well as 

individual species plays an important role in development of inflammatory arthritis. 

Intestinal segmented filamentous bacteria (SFB) [26] colonization of germ free K/BxN mice 

was sufficient to drive arthritis development [27]. SFB colonization in the gut induced 

secondary and tertiary lymphoid tissues to generate IgA and Th17 T cell responses [28]. 

Notably, SFB antigen presentation by intestinal dendritic cells (CD11c+) is crucial for the 

development of Th17 cells, evoking a highly SFB-specific Th17 response [26]. These 

observations provide mechanistic support for earlier research suggesting that mucosal T 

cells are modulated by gut bacterial components [29], as well as outline the complex 

interplay between dendritic cells and innate lymphoid cells in regulating intestinal Th17 cell 

homeostasis. A common feature of SFB and other intestinal microbes which strongly 

potentiate Th17 responses such as Citrobacter rodentium is their intimate association/

attachment to intestinal epithelial cells. This is consistent with the notion that mucosa-

associated bacteria may be particularly relevant to IBD and/or SpA pathogenesis. Another 

bacteria associated with SpA (reactive arthritis), Chlamydia trachomatis, has been 

associated with induction of IL-23 expression in infected target cells [18]. Polymorphisms in 

the IL-23 receptor (IL23R) have been associated with AS and IBD [30], and the IL-23 

interaction with IL23R promotes the expansion of Th17 cells, and is a direct stimulator of 

Th17 cytokine production [31]. In the SKG mouse, which is a model of SpA, T cell receptor 

[32] signaling strength is impaired due to a mutation in ZAP-70. This results in the 

development and expansion of CD4+ Th17 T cells. When these mice are treated with 

microbe-associated molecular patterns (MAMPs) such as curdlan, which is a strong inducer 

of IL-23, there is tremendous Th17 activation and a strong inflammatory response that 

produces a SpA-like phenotype. Although germfree conditions ameliorate arthritis and 

ileitis, cohousing SKG mice with WT mice suppressed the ileitis but did not attenuate 

arthritis, suggesting that host microbiome interactions play a role in IL-23-dependent loss of 

mucosal function in SKG mice, triggering ileitis in response to curdlan [33].

Animal models of IBD and SpA have also provided novel insight at anti-inflammatory 

pathways elicited by the intestinal microbiota. The mucosal lining of the lumen has emerged 
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as an important component of host-microbe interaction. Epithelial fucosylation helps 

promote commensal colonization, at the same time resisting pathogens in the mucosal lining 

[34]. Another emerging area is the action of short chain fatty acids (SCFAs), fermentation 

products of gut microbes whose production is enriched in mucus degrading bacteria [35]. 

One such SCFA, butyrate, regulates intestinal permeability [36]. Low doses of butyrate 

enhance barrier function, although high doses increase intestinal permeability, probably 

secondary to cell death [37]. Honda and colleagues demonstrated that gnotobiotic mice 

colonized with Clostridium leptum and Clostridium coccoides have enhanced accumulation 

of Tregs in colonic lamina propria. They showed that Clostridium groups activate colonic 

intestinal epithelial cells to produce TGF-β and other Treg-inducing molecules [38,39]. 

Administration of diets that are rich in SCFA like butyrate to mice, or the administration of 

butyrate itself to naïve CD4+ cells, can promote their differentiation to colonic Tregs 

[40,41]. The myriad reported anti-inflammatory effects of SCFA also extend to imparting 

anti-inflammatory effects on intestinal antigen presenting cells (APC) [42] Potential 

therapeutic effects warrant further scrutiny in SpA animal models or patient populations.

[43].

Ankylosing Spondylitis

A recent study [44], revealed distinct microbial colonization in the terminal ileum of a small 

number of patients with AS, using healthy individuals as controls. There was an increase in 

the abundance of Lachnospiraceae, Ruminococcaceae, and Prevotellaceae in AS patients. 

Interestingly, these bacterial species are also observed in the DSS-induced colitis model of 

mice [45] Although the authors saw a decreased abundance of Streptococcus and 

Actinomyces in comparison to the control population, they did not see any differences in the 

bacteria normally associated with reactive arthritis or even Klebsiella species, which have 

been hypothesized to trigger AS [46].

A study comparing certain gut microbes in AS patients with age matched controls revealed 

an increase in sulphate reducing Bacteriodes in patients [47]. In a follow up study with AS 

patients and healthy controls, these authors reported that reduced levels of IL-10 production 

upon stimulation of their PBMCs with autologous Bacteroides [48]. Previous studies in 

HLA-B27 transgenic rats [24] also reported that recolonization of the gut of germfree 

animals with Bacteroides lead to gut inflammation, whereas Lactobacillus and fusiform 

bacteria did not result in inflammatory lesions. Klebsiella pneumonia, long hypothesized to 

be involved in the pathogenesis of AS based in part on higher serum levels of IgA antibodies 

[49] could not be confirmed by others [50].

Treatment of HLA-B27 transgenic rats with SpA using prebiotics (compounds that induce 

growth or activity of commensals) has shown some benefit for colitis [13], raising hope for 

future therapies aimed at altering the gut microbiome. There are a number of mechanisms by 

which HLA-B27 might alter the microbiome. For example, human monocytic cells 

expressing HLA-B27 exhibit impaired handling of Salmonella [51], and exhibit reduced 

proliferative capacity against LPS, suggesting that intracellular effects of HLA-B27 might 

be involved in shaping the intestinal microbiome. One study reported that of 104 patients 

with spondyloarthropathies that were tested, polymorphisms in NOD2 were frequent in SpA 
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patients with chronic gut inflammation (comparable to Crohn’s patients), whereas, in SpA 

patients with acute gut inflammation or without gut inflammation, NOD2 polymorphisms 

were similar to the control population [52]. Studies with HLA-B27 transgenic animals that 

are resistant to SpA associated gut inflammation might be helpful in resolving these 

scenarios.

Juvenile SpA

Patients with a form of juvenile SpA classified as enthesitis-related arthritis (ERA), exhibit 

decreased abundance of Clostridium leptum [53] similar to AS patients [47]. Another 

member of the Clostridales family known as Fecalibacterium prausnitzii was also decreased 

in patients with juvenile SpA compared to healthy controls. Despite these differences, serum 

IgA and IgG antibody against F. prausnitzii and B. fragilis were similar between controls 

and patients. There is also some evidence of a cellular immune response to the outer 

membrane protein of Salmonella typhimurium in juvenile SpA patients compared to healthy 

controls [54]. Intriguingly, study of the microbiota of juvenile SpA patients revealed that 

patients could be stratified into two distinct clusters, one dominated by Bacteroides genus 

members, the other by Akkermansia muciniphila. The fact these may represent distinct 

disease subtypes remains an enticing possibility and serves to highlight that this approach 

may also be extended to the spectrum of SpA-like diseases.

Psoriatic arthritis (PsA)

Many patients with psoriasis and psoriatic arthritis (PsA) have associated subclinical gut 

inflammation [55]. Decreased bacterial diversity due to lower abundances of several taxa 

were demonstrated [56]. The authors found Coprococcus to be inversely associated with 

psoriasis with or without arthritis (PsA), whereas a decline in relative abundance of 

Ruminococcus and Akkermansia were unique to PsA. This is of particular interest since 

Ruminococcus are also reduced in abundance in patients with IBD [57]. Moreover, the 

decreased abundance of Akkermansia in PsA contrasts to that of juvenile SpA, indicating 

distinct microbes may also drive the etiology of these diseases.

Another gut commensal found in healthy populations, Alistipes, was lower in abundance in 

both PsA [56] and Crohn’s disease [57]. Many of these microorganisms play a role in 

degrading mucus and producing SCFAs that influence gut homeostasis. A hallmark of 

dysbiosis in these individuals may be a loss of commensals, disrupting immune homeostasis.

Intestinal Permeability and SpA

Disruption of the intestinal epithelium has profound implications for the loss of mucosal 

tolerance. Further to the epithelium’s role in providing physical and chemical barriers 

between microbe and host, the provision of mucus and other metabolites (e.g. fucose) to 

support the colonization of commensals is well described. While a number of studies 

support increased intestinal permeability in SpA patients [58], mirroring IBD populations 

[59], this is not a universal observation [60]. Nonetheless, it is conceivable that transient or 

sub-clinical mucosal lesions may significantly disrupt local barrier integrity without overt 

systemic changes in intestinal permeability. The ‘chicken-egg’ dichotomy of inflammation 

Gill et al. Page 5

Curr Opin Rheumatol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and barrier function remains unresolved. Either local inflammation drives damage to the 

epithelium itself or dysbiotic changes that do not favor epithelial fitness (e.g. the loss of 

SCFA-producing bacteria), or a disrupted epithelium promotes a breakdown of mucosal 

homeostasis with resulting inflammation and dysbiosis (Figure 1). Therefore, events in SpA 

leading to increased intestinal permeability may be spatio-temporally linked. Currently, 

HLA-B27 transgenic rats that develop subclinical and overt IBD provide a robust model to 

dissect some of these details. These transgenic animals exhibit background strain-dependent 

disease activity and severity, with Fischer (F344) animals exhibiting the most severe disease 

and Lewis animals less severely affected (manuscript in preparation). In contrast HLA-B27 

transgenic rats with the Dark Agouti (DA) background remain disease free, providing an 

opportunity to determine genetic and environmental factors that control gut inflammation.

Studies in HLA-B27 rats indicate intestinal inflammation and impaired barrier function 

occur concurrently [61]. Thus development of barrier dysfunction, dysbiosis and 

inflammation may be tightly linked both temporally and spatially. HLA-B27 expression is 

known to cause an unfolded protein response (UPR) in APC triggered by protein 

accumulation and misfolding [62]. Although not detectable in ileal biopsies [63], it is 

possible that individuals with HLA-B27 have a stress response in a subset of inflammatory 

cells. This could lead to either a disruption of the epithelial barrier, a local inflammatory 

response or both leading culminating to the loss of barrier function and the loss of oral 

tolerance. It is conceivable that increased translocation of microbial products may prime the 

development of spondylitis-inducing immune cells which subsequently migrate to the 

periphery. Moreover, given that microbial products may induce peripheral inflammation 

themselves, e.g. the curdlan/SKG model described above or endotoxin-induced uveitis 

(EIU), translocated microbial products may contribute to the inflammatory cascade at extra-

intestinal sites [32,64].

Conclusions

Understanding the complexity and dynamic nature of the gut microbiome and its role in 

inflammatory disorders including SpA is a work in progress. During homeostasis, host 

microbe interactions in the gut guide the normal development of host immune response, 

whereas microbial dysbiosis is implicated in disease pathogenesis. Currently, the broad 

spectrum of disease observed in both SpA patient populations and in animal models (e.g. the 

strain specific development of disease in HLA-B27 transgenic rats) provides an opportunity 

to dissect genetic, environment and microbiota-specific differences that underline SpA 

pathogenesis. Enticingly, antibiotic treatment, probiotic and prebiotic delivery and even 

fecal transplant are all examples of how the microbiota may be readily manipulated. 

Moreover, the identification of SpA-associated microbiota phenotypes may aid in the 

diagnosis or prognosis of HLA-B27 dependent disease. In summary, microbiome research 

has the potential to revolutionize research, diagnosis and treatment of spondyloarthritis.
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Key Points

1. Microbial dysbiosis of gut commensals has been implicated in SpA and may 

provide an important link between SpA and gut inflammation.

2. Epithelial permeability, either as cause or effect of gut inflammation has been 

implicated in loss of mucosal tolerance.

3. Genetic factors and environmental triggers can concomitantly influence the gut 

microbiome promoting disease.

4. HLA-B27 transgenic rats with SpA develop subclinical or overt IBD and 

represent a robust model to dissect these interactions.

5. Cause and effect relationships between microbial dysbiosis and SpA may lead to 

the development of novel therapeutic approaches.
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Figure 1. 
Host genetics, environmental triggers or inflammation may all trigger changes to the 

intestinal microbiota (dysbiosis). Importantly, changes to the intestinal microbiota itself may 

cause or contribute to inflammation. Host genetics may either create niches that promote 

dysbiosis, or directly alter immune responses to the ‘normal’ microbiota. These altered 

immune responses may manifest in hyper-active innate and adaptive immune responses that 

promote inflammation. Due to intimate epithelial-microbiota interactions, dysbiosis may 

also disrupt barrier function and intestinal homeostasis leading to inflammation, a process 

itself that may impair barrier integrity. Environmental triggers of dysbiosis are incompletely 

understood, but include diet and antibiotic use.
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Table 1

Microbiome linked with Arthritis and its associated gut inflammation

Bacteria/Bacterial product Disease Reference

Bacteriodetes spp Arthritis [10]

Klebsiella pneumoniae AS and CD [11]

Flagellin CD [12]

Bacteriodes thetaiotamicron Colitis [13]

Bacteriodes vulgatus Colitis [14]

Mycobacteria Psoriasis [15]

Prevotella copri RA [16]

Prevotella spp RA [17]

Chlamydia tracomatis ReA [18,19]

Salmonella Omp ReA [20]

Shigella ReA [21,22]

Yersinia ReA [21,22]
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