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Cells used in adoptive cell-transfer immunotherapies
against cancer include dendritic cells (DCs), natural-killer cells,
and CD8C T-cells. These cells may have limited efficacy due to
their lifespan, activity, and immunosuppressive effects of
tumor cells. Therefore, increasing longevity and activity of
these cells may boost their efficacy. Four cytokines that can
extend immune effector-cell longevity are IL-2, IL-7, IL-21, and
IL-15. This review will discuss current knowledge on effector-
cell lifespans and the mechanisms by which IL-2, IL-7, IL-15,
and IL-21 can extend effector-cell longevity. We will also
discuss how lifespan and efficacy of these cells can be
regulated to allow optimal clinical benefits.

Introduction

The use of immunotherapy as a novel treatment for various
cancers has undergone extensive investigation over the past few
decades and, more recently, has started to show real promise in
clinical application with the introduction of approved immuno-
therapies. One of the main immunotherapeutic modalities is the
adoptive transfer of immune effector cells that can directly or
indirectly kill tumor cells. However, little research has been car-
ried out to establish the length of time that these cells remain
active. The longevity of these cells is an important factor for
immunotherapies to have long lasting effects. A further consider-
ation is that many cancer microenvironments are immunosup-
pressive and thus adoptively transferred immune effector cells
must remain active and survive in this hostile microenvironment.

Immune cell longevity is generally controlled by three major
factors: telomere length, regulation of apoptosis, and cell anergy.
Telomeres are DNA repeats found at the end of chromosomes.
During cell division, dicentric chromosomes break apart as the
two centromeres are drawn to opposite poles of the mitotic spin-
dle. The chromosomal ends, if exposed, are unstable and tend to
fuse with other broken ends that they come into contact with.
This leads to fusion-bridge-breakage cycles resulting in genomic

instability. Thus, telomeres protect the chromosomal ends from
undergoing this fusion and help maintain their stability. These
telomere repeats shorten after each cell replication cycle and even-
tually deplete leaving the chromosome ends to become exposed.
Consequently genome instability occurs, which leads to apopto-
sis. As a result, cells only have a limited number of times they can
divide, the Hayflick Limit.1,2

A wide range of molecules regulate apoptosis. Some are anti-
apoptotic, such as heat shock proteins and certain members of
the Bcl-2 family. Others are pro-apoptotic, for example p53 and
other members of the Bcl-2 family.3

Anergy refers to functional inactivation of T cells and is a
result of cellular senescence. Consequently, the immune cells lose
their effector function but remain as long-lived cells in a hypores-
ponsive state.4 The molecular mechanism controlling T cell
anergy is thought to be initiated by an imbalance in Ras/MAPK
signaling due to suboptimal co-stimulation with CD28 as the T
cell receptor (TCR) binds to antigen presented on major histo-
compatibility complex (MHC). This leads to a disparity in Ca2C

concentration across the TCR membrane resulting in the induc-
tion of anergy inducing genes.5

Agents that increase cell longevity may function by affecting
these mechanisms that control cell survival.

This review will consider the major cell types used in adoptive
cell transfer immunotherapies, their natural lifespans and discuss
the key agents that increase the longevity of these cells. The
review will also consider the underlying mechanisms by which
these agents act.

Cell Types used in Adoptive Therapy

Dendritic cells
DCs are cells of the innate immune system and can be divided

into two major subsets: myeloid DCs originate from myeloid
progenitors, whereas plasmacytoid DCs originate from lymphoid
progenitors. The two subsets exhibit different toll-like receptors
(TLRs) on their surface and preferentially secrete different fac-
tors. Myeloid DCs secrete mainly IL-12 and plasmacytoid DCs
IFNa. DCs start as “immature” cells that circulate around
peripheral tissue and when a foreign antigen is recognized by the
TLR they mature.6 Immature circulating DCs can survive up to
10–14 d in vivo, with the lifespan of myeloid DCs being
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relatively shorter than that of plasmacytoid DCs.7,8 DC matura-
tion is induced by a number of factors including TNF-a, CpG,
Poly I:C, and LPS.9 The mature DCs stimulate the adaptive
immune system by presentation of foreign antigen in the context
of MHC I or MHC II to naive CD8C or CD4C T cells respec-
tively, causing them to become activated.6 Following antigen pre-
sentation, DCs undergo apoptosis.10 The lifespan of DCs
decreases following maturation, and mature DCs have been
shown to survive up to 3 d in vitro.11

DCs play an integral role in linking the innate and adaptive
immune systems, which makes them a suitable choice for cancer
immunotherapy. DC based immunotherapy can involve ex vivo
generation of DCs presenting tumor antigens to stimulate cyto-
toxic T cells. Alternatively, it can involve stimulation of antigen
uptake by DCs in vivo in a pro-inflammatory environment using
tumor cells or antigens linked to DC maturation stimuli.6 One
DC based vaccine that has been approved by the Food and Drug
Administration (FDA) in the USA is Sipuleucel-T (commercially
known as Provenge) for the treatment of metastatic castrate-resis-
tant prostate cancer. This is an ex vivo generated DC vaccine that
involves DCs being cultured with GM-CSF to induce their
expansion and with the antigen Prostate Acid Phosphatase
(PAP). Provenge is administered three times with 2-week inter-
vals between each infusion. Phase III trials of the vaccine have
shown a prolonged survival of approximately 4 mo in prostate
cancer patients.6,12 Phase III clinical trials for two other
DC-based immunotherapy vaccines from ex vivo generation have
also shown promise in the treatment of melanoma and prolong-
ing the extent of remission following chemotherapy for follicular
lymphoma.13,14

A number of cancers, including multiple myeloma, bladder,
prostate, kidney, and breast cancer and have been shown to
decrease the antigen-presenting capacity of DCs, rendering adop-
tive DC-based immunotherapies less effective.15-17 Various fac-
tors secreted by tumor cells have been shown to be responsible
for this by reducing DC differentiation and maturation. These
include: TGF-b, IL-6, IL-10, and VEGF, as well as tumor anti-
gens such as prostate-specific antigen (PSA), which exhibit simi-
lar effects.15,18-21 Furthermore, prostate tumor cells have been
demonstrated to induce DC apoptosis through promotion of
Bcl-2 family proteins.22 Therefore, increasing DC longevity has
the potential to be beneficial in DC-based immunotherapeutic
treatments for these cancers. Although it is known how long
mature DCs survive in mice (upto 3 d), it is currently unknown
how long antigen primed mature DCs can survive after adoptive
transfer.

Natural killer cells
Natural Killer (NK) cells are part of the innate immune sys-

tem and have a short life span. In healthy young adults they have
a half-life (t1/2) of less than 10 d, with proliferation rates falling
in old age.23 NK cells exhibit an array of receptors, including
NKG2D, NKp46, NKp30, NKp44, and DNAM1. Without the
need for MHC these receptors recognize “stressed” cells, such as
tumor cells, and are cytotoxic toward them.24,25 They do this by
recognizing ligands that are expressed on tumor cells.26 In

addition, NK cells secrete a number of cytokines such as IFNg,
TNF-a, and GM-CSF. These are involved in the activation of
innate and adaptive immune system cells, which further attack
cancer cells.27

Some tumor cells have means to evade these mechanisms,
largely by reducing their longevity and exerting anergic effects.
NK cell abnormalities that have been observed in cancer patients
include a decrease in cytotoxicity, defective expression of activat-
ing receptors or intracellular signaling molecules, overexpression
of inhibitory receptors, defective proliferation, decreased num-
bers in peripheral blood and in tumor infiltrate, and defective
cytokine production.28,29 Factors secreted by tumor cells that
exert anergic effects include IL-10, IL-6, IL-1b, PGE2, GM-
CSF, and IL-8.30,31 A major factor that induces NK cell apopto-
sis is TNF-a.30,32 Another mechanism of NK cell immunosup-
pression seen in prostate cancer is the shedding of soluble
ligands, for the killer activatory receptor -NKG2D, such as
MICA, which then attract the NKG2D receptors on NK cells
and act as a decoy away from the tumor cell, although this does
not directly affect the longevity of NK cells.25 In addition to
these tumor cell ligands, other ligands are also expressed on
tumor cells which act on groups of receptors on NK cells known
as inhibitory killer-Ig-Like receptors (inhibitory KIRs).33 A simi-
lar family of receptors – the leukocyte – Ig-like receptors (LILRs)
are also found on a number of types of effector immune cells.33,34

Adoptive NK cell immunotherapy involves administration of
either allogeneic or in vitro generated autologous tumor-specific
NK cells, which are then administered to the patient. Early adop-
tive therapies using NK cells in the 1980s–1990s involved the
generation of autologous lymphokine activated killer cells (LAK)
cells – these are lymphocytes isolated from patients and stimu-
lated with high doses (1000 I.U. per mL) of IL-2. LAK cells were
shown to lyse fresh autologous tumor cells that are resistant to
NK cell cytotoxicity.35 However, by the end of the 1990s, data
from phase II and III trials of metastatic patients had concluded
that the clinical response rate (15–20%) seen with LAK therapy
was not superior to that of IL-2 or IL-2 and INF-gamma thera-
pies. The patients also required high doses of systemically admin-
istered IL-2 to maintain the survival of the LAK cells and thus
toxicity was commonly observed, which gradually resulted in the
cessation of these types of therapy.

Since these early trials, various NK cell therapy trials have con-
tinued using either autologous or allogeneic NK cells, for a variety
of cancers with a variable and often limited benefit (reviewed in
Cheng et al, 201328). One trial with eight patients including seven
with metastatic melanoma and one patient with RCC showed that
autologous adoptively transferred NK cells could be expanded
within the patients but had no anti-tumor activity.36 This was pos-
sibly due to the activation agent used in this trial (IL-2) which can
upregulate regulatory T cells (Tregs) which can then inhibit NK
activity in vivo. Phase II trials are currently ongoing with the results
from one completed phase II trial presently published. Findings
from the trial showed a lack of NK cell expansion and restricted
anti-tumor effects in patients with ovarian and breast cancer.37

This limited response may be due to the immunosuppressive
effects of cancer cells on NK cells, as listed above.28,38
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Recently, research has also shown that some NK cells can
become NK memory cells, which have a longer life span. These
cells are capable of antigen-specific recall, a feature that had previ-
ously been regarded as unique to the adaptive immune system.
NK memory cells, like other memory cells, maintain their exis-
tence through self-renewal. They can be induced by cytokines,
however, the underlying mechanism behind this is currently not
understood.39

Gamma delta T cells
Gamma Delta (gd) T cells have TCRs that are composed of g

and d chains, as opposed to a and b chains which are found on
most other T cells.40 In mice, most gd T cells were found to sur-
vive up to 4 weeks in vivo.41 Furthermore, gd T cells can also
exhibit a memory phenotype (CD45ROC) and are therefore
capable of long-term survival over years.42 This differentiation of
gd T cells into memory cells is induced by IL-21.43 The majority
of gd T cells express Vg9Vd2 TCRs. They can recognize their
targets, such as tumor cells, independent of MHC-mediated pre-
sentation and are cytotoxic toward them. Additionally, gd T cells
secrete interferon-g, a cytokine involved in antitumor immune
responses.44 A numbers of studies, both in vitro and in vivo have
demonstrated the effects of Vg9Vd2 T cells against a number of
tumors including many different carcinomas, melanoma, mye-
loma, lymphoma, and neuroblastoma.44,45

Vg9Vd2 T cells express the NK cell receptor NKG2D, which
is involved in tumor recognition. Therefore, shedding of
NKG2D ligands, as is seen in prostate cancer, may have a similar
effect on gd T cells as seen in NK cells, deterring the immune
effector cells away from the tumor cells.46 Whether tumor cells
have further effects on reduction of gd T cell longevity is yet to
be confirmed.

Phase I/II clinical trials involving adoptive cell transfer of ex
vivo expanded gd T cells have been carried out for lymphoid
malignancies, prostate cancer, melanoma, breast cancer, and
colon cancer. These trials have all involved administration of gd
T cells in combination with either zoledronate or IL-2. Results
from the trials have shown the therapies to be generally well toler-
ated and demonstrate potential antitumor activity.45

CD4C and CD8C T cells
CD4C and CD8C T cells form a major component of the

adaptive immune system. Through tumor antigens presented by
antigen presenting cells (APCs), they can be primed to proliferate
and secrete cytokines that also aid the activation of other cell
types such as NK cells, neutrophils or APCs. Adoptive transfer
strategies have manly focused on CD8C T-cells that are directly
responsible for tumor cell killing, although CD4C T cells have
also been shown to have class II restricted and non-restricted
cytotoxic activities against tumor cells, particularly where recipi-
ents are initially rendered lymphopenic. CD8C T cells, also
known as cytotoxic T cells, recognize their targets by binding to
antigen associated with MHC class I on the surface of APCs,
such as DCs. Na€ıve CD8C T cells are quiescent, though their
exact lifespan is undetermined, and enter the cell cycle following
this antigen interaction.47,48 These activated CD8C T cells

induce cytolysis of the target cells and secrete cytokines such as
TNF-a and IFNg.49 Following activation, most effector CD8C

T cells undergo apoptosis after approximately 2 weeks, with a
small proportion of cells surviving to become CD8C memory T
cells capable of survival over years, largely mediated by the pres-
ence of the forkhead transcription factor, FOXO1.50,51 There is
however, evidence that adoptive transfer of antigen primed na€ıve
T cells yields better efficacies in reduction of tumor volume than
transfer with central memory T cells, due to na€ıve cells having a
greater potential for clonal expansion than the memory cells.52

Tumor cells have been shown to secrete TGF-b, which can
induce CD8C effector T cells to express FOXP3. This is a tran-
scription factor that stimulates the CD8C effector T cells to dif-
ferentiate into Tregs cells. Treg cells suppress other effector
CD8C T cells resulting in a decrease in their response to tumor
cells.53 Multiple mechanisms are involved in this suppression,
notably through induction of apoptosis and secretion of the
immunosuppressive cytokines IL-10, TGF-b, and IL-35.54 Fur-
thermore, tumor cells can further suppress CD8C T cells by
directly secreting these cytokines that induce cell anergy.55

CD4C, CD8C T cells and whole T cell populations have been
adoptively transferred into patients for cancer immunotherapy.
Four main types of T-cells have been used (reviewed in56):

(1) Autologous TILs (Tumor infiltrating lymphocytes) – The
majority of trials with these cells have been on patients with
metastatic melanoma. Tils are isolated from fresh tumor
biopsy specimens, expanded with IL-2 and then infused
intravenously into patients. Prior chemotherapy to induce
lymphodepletion is important for efficacy of these trans-
ferred cells as seen in object clinical responses, and also their
longevity.57 After cell infusion, patients are typically given
IL-2 (either high or low dose) to maintain the activity of the
TILs.

(2) Autologous whole T cells or CD8C T cells taken from the
periphery and selected for their tumor antigen specificity or
stimulated with tumor antigens presented by APCs – This
approach involves the expansion of tumor antigen specific
CD4C or CD8C T cells by using APCs loaded with one or
more tumor antigens. The tumor specific T cells are then
infused into the patients together with IL-2. Although the
cells produced are more specific to the cancer in question,
the technique has not given rise to response rates above
10%, possibly due to the short longevity of the antigen spe-
cific T cells.

(3) T cells transduced with receptors specific for selected tumor
antigens. This technique involves taking peripheral PBMCs
and then transducing the T cells with TCRs specific for
selected tumor antigens and then expanding these cells. The
technique has been used for a number of cancers including
melanoma, head and neck cancer, and colorectal cancer
using tumor antigens specific to these cancers e.g., MART1
in melanoma and CEA in colorectal cancer. This approach
has led to good clinical response rates (above 30%) with cer-
tain antigens such as MART1 and NY-ESO-1 used in mela-
noma patients, however, the limitation of the cells in their

www.tandfonline.com e1002720-3OncoImmunology



recognition of specific antigens has led to only selected
patients benefiting from this approach.58

(4) Chimeric antigen receptors (CARs)59 – These have been pro-
duced by expansion of CD4C or CD8C T cells that are then
transduced with a receptor complex consisting of a (scFv)
extracellular domain of a tumor specific antibody, linked
through hinge and transmembrane domains of either CD4C

or CD8C to a cytoplasmic signaling region. The first genera-
tion of these CARs used the CD3 receptor z chain alone, but
more recently, second and third generation CARs have been
engineered with one or two additional intracellular costimu-
latory signaling domains (e.g, CD28, OX40, or 41BB). The
additional domains have allowed a greater cytotoxic activity
of these cells combined with a greater lifespan. Also CD4C T
cells can be given the ability to lyse tumor cells in an MHC
class II independent manner when transfected with a CAR
complex60 Gamma delta cells have also been transduced with
CARs directed to CD19 to allow significant expansion in
response to CD19 thus removing the limitation that only
one gamma delta subset is currently expandable (with amino-
bisphosphonates such as zolendrenic acid.).61

The best clinical outcomes have so far come from autologous
TILs with partial or complete clinical response rates (CRRs) of
over 50% in melanoma56 and more recently, using CARs with a
CD19 directed antibody region to treat B cell leukaemias, where
CRRs over 80% have been observed.62 On the basis of these out-
comes – a CAR therapy, CTL0019 – a CAR with CD19 joined
to intracellular regions of CD3 z and 41BB has been granted
FDA approval as a breakthrough therapy. However, so far, treat-
ments with adoptively transferred T cells have been mainly
restricted to “immunogenic” cancers where T cells can be
directed against tumor associated antigens. The lifespan of TILs
and genetically engineered T cells has been documented in a few
studies in patients – both TILs and CAR-T cells can persist for
upto a year.63,64 The persistence of TILs has been shown to be
related to the length of their telomeres.65

Agents that can Increase Immune Cell Longevity

IL-2
IL-2 is a cytokine normally secreted by activated T cells and to

a lesser extent by activated DCs (Fig. 1). It binds to the IL-2
receptor (IL-2R), which is made up of 3 subunits: an a chain
(IL-2Ra, also known as CD25), a b chain (IL-2Rb, also known
as CD122), and the common gamma chain (gc also known as
CD132). gc is shared with a number of other cytokines, namely
IL-4, IL-7, IL-9, IL-15, and IL-21.66 IL-2 can boost the expan-
sion of activated CD8C T cells following acute viral infection.
This expansion has been shown to be approximately three times
less in IL-2 knockout mice, with similar results seen in IL-2R
deficient CD8C T cells.67,68 Exposure of naive CD8C T cells to
high concentrations of IL-2 has also been demonstrated to result
in a large proliferation of these cells, both in vitro and in vivo.69

IL-2 similarly stimulates the expansion of NK and gd T cells.70,71

These properties of IL-2 made it one of the first cytokines
used to boost immune cells and thus enhance adoptive cell ther-
apy. Exogenous administration of IL-2 has been found to
increase persistence of adoptively transferred CD8C and gd T
cells.72,73 However, IL-2 is not without its problems and despite
the action of IL-2 to stimulate proliferation of CD8C T cells, it
may also have negative effects by increasing the number of Treg
cells.74

IL-2 is approved by the FDA in the USA for the treatment of
metastatic melanoma and renal cell carcinoma, and by the NHS
in the UK for renal cell carcinoma (commercially known as Pro-
leukin). However, this is not a mainstay treatment due to limited
efficacy, expense and associated toxicity.75,76 These factors are all
due to the pharmacokinetic properties of IL-2. In studies in renal
metastatic patients, the half-life was 2.8–5.1 h and the tmax was
4 h. Therefore patients need to be dosed daily. Typical doses of
IL-2 needed for durable clinical response rates (i.e., partial or
complete regression) in renal carcinoma or melanoma are
700,000 international units (I.U)/kg (delivered every 8 h intrave-
nously (0.04 mg/kg).77 These doses are known to cause signifi-
cant expansion of Treg cells in patients.78

IL-7
IL-7 is a cytokine important in early T cell development and

in their homeostasis. It is normally produced by thymic and
bone marrow stroma. IL-7 signals through the IL-7 receptor (IL-
7R), a heterodimer comprised of IL-7Ra (also known as
CD127) and gc. Administration of the cytokine can boost T cell
proliferation and IL-7 knockout mice have arrested development
of T cells.79,80 Therapy with IL-7 has been shown to increase the
numbers of peripheral T cells, predominantly through an
increase in homeostatic peripheral expansion in both mice and
non-human primate models.81–83 Furthermore, IL-7 has been
found to increase the survival of CD8C memory T cells as well as
effector cells, a trait not seen with IL-2.84 A further advantage of
IL-7 over the use of IL-2 is that IL-7 is able to down regulate
Treg activity, a factor involved in suppression of cytotoxic T cell
activity.85

Considering the use of IL-7 in cancer immunotherapy,
administration of the cytokine in tumor-bearing mice was shown
to prolong their survival, and this correlated with an increased in
activated DC numbers, T cell numbers in lymphoid tissues and
activated effector T cells in the tumor microenvironment.86 Two
phase I human trials, the first in patients with metastatic cancer
and the second in patients with different types of refractory can-
cers, showed the cytokine to be well tolerated and lead to a dose-
dependent proliferation of CD8C T cells.87,88 Doses of the cyto-
kine required for T cell proliferation are from 10 to 60 mg/kg In
addition, adoptively transferred CD8C T cells have a greater anti-
tumor efficacy when combined with IL-7 due to the decrease in
Treg cells, and activated CD8C T cells that express IL-7R are
associated with greater memory CD8C T cell development.89,90

In humans, expansion in CD8C T cells has been found to start 4
d after administration of IL-7 and this increase persists for
approximately 14 d, despite the half-life of the cytokine being 7–
23 h and decreasing to baseline after 72 h.91 IL-7 is also capable
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of increasing the survival of NK cells with increased numbers of
NK cells seen after 7 d incubation with the cytokine.92 The lower
concentrations of IL-7 needed for clinical efficacy, together with
the longer half-life, and the lack of effect on Treg cell expansion
makes IL-7 a promising cytokine to use in future clinical trials.

IL-21
IL-21 is a cytokine that is secreted by activated CD4C T cells

and NKT cells.93 The IL-21 receptor (IL-21R) is composed of
an IL-21R subunit and gc. IL-21R is most closely related to IL-
2Rb and IL-4Ra.94 CD8C T cell development is not affected in
IL-21 knockout mice, suggesting the cytokine is not important
in their development.95 However, administration of IL-21 has

been shown to enhance proliferation of these cells when in com-
bination with either IL-7 or IL-15.96 IL-21 can also increase to
cytotoxicity of CD8C T cells, as well as gd T cells.97,98 Similarly,
IL-21 knockout mice do not show halted development of NK
cells thus suggesting IL-21 is not important for their develop-
ment.95 Nevertheless, IL-21 has been demonstrated to enhance
the growth of immature NK cells at low doses, an effect that,
interestingly, reverses to inhibition of proliferation at high doses
of IL-21.99 Considering mature NK cells, IL-21 has been shown
to decrease their proliferation but increase their cytotoxicity and
IFNg production resulting in greater efficacy.100-102

Due to this increase in CD8C T and NK cell cytotoxicity, a
number of phase I and phase II clinical trials to study IL-21 in

Figure 1. Summary of the cytokines, their receptors and their effects on the immune cells.
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the treatment of advanced-stage melanoma or renal cell carci-
noma patients have taken place (reviewed in103). From these
studies, the half-life of the protein ranges from 1.1 to 4.2 h with
a maximal tolerated dose of 30 mg/kg. Many of these trials have
shown complete responses in a very small number of patients
(typically upto 5%) and partial responses in up to 25% of the
patients. Results from these trials have also shown the cytokine to
be well tolerated with an increase in NK and CD8C T cell func-
tion through increased IFNg and perforin production.104,105

Despite these effects on CD8C T and NK cells, IL-21 has
been shown to inhibit DC activation and maturation and induces
apoptosis of these cells via STAT3 signaling.107,108 Thus IL-21 is
detrimental toward DC function.

IL-15
IL-15 is a cytokine that stimulates the proliferation of acti-

vated T cells and is involved in the maturation and survival of
NK cells.109 IL-15 knockout mice have been shown to have
decreased numbers of total CD8C T cells, memory phenotype
CD8C T cells, NK cells, and NKT cells.110 In addition, studies
have shown that IL-15 expands populations of NK, NKT and
CD8C T cells and induces maturation of DCs with enhanced
IFNg secretion.111-114 CD8C T cells incubated with IL-15 were
shown to retain their effector phenotype for up to 60 d in incuba-
tion with IL-15.113 IL-15 does not affect Tregs and promotes the
long-term maintenance of CD8C memory T cells.115,116

IL-15 acts by binding to a receptor composed of a b subunit
(IL-2R/15Rb) that is shared with the IL-2 receptor, the gc, and a
distinct a subunit (IL-15Ra) giving the receptor specificity to
the IL-15 cytokine.109

Two preclinical studies involving murine models have shown
that administration of IL-15 is effective against colon carcinoma
with both studies observing prolonged survival of mice with the
cancer.117,118 A study investigating the effects of IL-15 in rhesus
macaques showed the cytokine to be generally well tolerated.115

The development of GMP grade IL-15 in recent years119 has
enabled the initiation of Phase I clinical trials on patients with
metastatic melanoma and metastatic renal cell carcinoma –
although results for these are yet to be reported.109 The pharma-
cokinetic properties of IL-15 as reported in macaques is similar
to that of IL-2 and IL-21 with a half-life of 1 h – although
MTDs have not yet been established, doses of 50 mg/kg were
used in the animals without life limiting toxicities.

In a study where the cytokines IL-15, IL-2, IFN-g, IL-12, and
IL-21 were individually incubated in co-culture with non-adher-
ent peripheral blood mononuclear cells (PBMCs) containing NK
and CD8C immune effector cell populations and prostate cancer
cell lines, results showed IL-15 to be the only agent that caused
significant expansion of the PBMCs and killing of tumor cells.
This suggests that IL-15 can activate the antitumor immune
response in the presence of prostate cancer cells whereas IL-2,
IFNg, IL-12, and IL-21 cannot, despite having potent activity
on selected immune effector cell populations in the absence of
tumor cells. Therefore, IL-15 may be of particular importance
for tumor immunotherapy, playing a protective role against the
development of tumors.120

Underlying Mechanisms that Increase Immune
Cell Longevity

Telomerase activation
IL-2, IL-7, IL-21, and IL-15 have all been shown to upregu-

late telomerase activity in various cell types, thereby preventing
telomere loss and allowing cells to divide more times than they
would normally do so (Table 1). IL-2 has been demonstrated to
increase telomerase activity in NK cells indicated by an increase
in levels of human telomerase reverse transcriptase (hTERT)
mRNA, a catalytic component of telomerase.121 IL-21 has also
been demonstrated to increase NK cell longevity by maintaining
telomere length, suggesting telomerase activity is taking place.122

Considering CD8C T cells, IL-15 has been shown to increase
CD8C memory T cell longevity by inducing telomerase activity
through JAK3 and PI3K signaling pathways.123,124 A further
study, looking at both IL-7 and IL-15 showed an upregulation of
na€ıve CD8C T cells when incubated with these cytokines, with a
higher response seen with IL-15.125

Stimulation of telomerase activity in immune cells makes
these cytokines potentially harmful to administer in cancers such
as leukemia, where there is already uncontrolled telomerase activ-
ity occurring in T cells. This has been shown with IL-2, which
promotes tumor growth in chronic adult T cell leukemia (ATL)
cells. The signaling pathways involved were found to be the JAK/
STAT pathway and the JAK/PI3K/AKT/HSP90/mTORC1
pathway in these ATL cells.126

Due to the similarity between morphology of these cytokines
and their effects on telomerase activity, one can postulate that
they are acting via similar mechanisms. As mentioned, the JAK/
STAT pathway has been identified as playing an important role.
This pathway occurs within the cells and is activated by the inter-
action of the cytokine with its corresponding receptor. This inter-
action results in autophosphorylation of Janus Kinase (JAK),
which subsequently phosphorylates Signal Transducer and Acti-
vator of Transcription (STAT). The phosphorylated STAT then
dimerizes and translocates into the nucleus where it binds to
DNA and promotes gene transcription. JAK1 and 3, and STAT3
and 5, have been found to be the predominant activated subtypes
by all four cytokines. However, IL-21 is known to signal primar-
ily through the STAT3 component of the JAK/STAT pathway
with less STAT5 involvement, whereas IL-15 signals primarily
through STAT5. Both STAT3 and STAT5 are directly involved
in telomerase transcription.126,127

Despite these predictions from the involvement of shared sig-
naling pathways, further research is required to clarify the effects
of these cytokines on telomerase in both CD8C and NK cells.
Currently, only IL-15 and IL-7 have been shown to enhance telo-
merase activity in CD8C cells with no published research describ-
ing their effects on telomerase activity in NK cells. Conversely,
and IL-2 and IL-21 have been shown to stimulate telomerase
activity in NK cells with no studies reporting their effects on telo-
merase in CD8C T cells. Furthermore, whether there is upregula-
tion of telomerase activity in DCs or gd T cells is still unknown.
Another important consideration is whether these cytokines
affect telomerase in different cancer cells types as well as the
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immune system cells. As discussed, IL-2 increases telomerase in
leukemia cells, promoting tumor growth.126 However, IL-15
only stimulates telomerase in immune effector cells in the pres-
ence of prostate cancer cells without any effect on prostate cancer
cell proliferation.120 Further research is required to determine
effects of the different cytokines on different cancers.

Another possibility to enhance immune effector cell longevity
through telomerase activation would be via transfection with tel-
omerase genes in order to potentially immortalize adoptively
transferred cells. Telomerase gene transfection has been carried
out in DCs with hTERT transfection by both plasmid transfec-
tion and adenoviral gene transfer. This produced immortalized
DCs that were shown to induce a cytotoxic T cell response both
in vitro and in vivo.128,129

Inhibition of apoptosis
The major pathway targeted by these cytokines affecting apo-

ptosis is through the anti-apoptotic Bcl-2 protein. Studies have
shown IL-2, IL-7, and IL-15 all to decrease apoptosis and
enhance survival of both NK and CD8C T cells by upregulation
of Bcl-2.88,130–134 Another mechanism by which IL-7 has been
found to decrease CD8C T cell apoptosis is through diminishing
programmed cell death protein 1 (PD-1) expression in CD8C T
cell populations in vivo.135 A further study in mice has shown
IL-15 to block sepsis-induced apoptosis of DCs, as well as NK
and CD8C T cells.136

Despite the effect of IL-21 to increase CD8C T cell cytotoxic-
ity, the cytokine has been found to stimulate apoptosis of these
cells through downregulation of Bcl-2. This pro-apoptotic effect
on CD8C T cells is a unique feature to the cytokines dis-
cussed.137 The induction of apoptosis in DCs by IL-21 is
induced via STAT3 and Bim in vivo. Interestingly, this effect was
repressed by granulocyte-macrophage colony-stimulating factor
(GM-CSF) due to competition between GM-CSF-induced
STAT5 and IL-21-induced STAT3.108

Reversal of anergy
In addition to telomerase activation and inhibition of apopto-

sis in the immune effector cells, the third mechanism to increase
immune cell longevity is through reversal of anergy. This has
been shown to be the case in T cells (CD3C) following stimula-
tion with IL-2 in vitro, which involved JAK3 and mTOR signal-
ing.138 Furthermore, downregulation of IL-2 production in mice

by injecting PD-1 resulted in induction of CD8C T cell
anergy.139 Additional effects of the cytokines discussed on
immune effector cell anergy have not yet been published and this
mechanism of inducing increased cell longevity requires further
clarification.

Translation into Clinical Practice

Adoptive cell transfer as a cancer immunotherapy is still in its
infancy in relation to routine use in clinical practice. However,
further research and clinical trials show real promise for effective
and targeted anticancer therapies. Selected treatments have
already gained approval in clinical practice, for example, the
FDA approved use of ProvengeTM for prostate cancer in the
USA. A number of trials combining Provenge with other immu-
notherapeutic or conventional chemotherapeutic/radiotherapeu-
tic modalities are currently taking place for example
combinations of Provenge with either ipilimumab or IL-7 (clini-
caltrials.gov).

More recently, as the functions of cytokines are becoming bet-
ter understood, and are being used as adjuvants for adoptive cell
therapy trials to improve their efficacy and diminish the negative
effects seen such as immunosuppression. Understanding which
cytokine, or combination has the greatest effect on boosting
immune cell longevity will ultimately lead to anticancer therapy
with high-efficacy and minimal side effects.

It is also important to consider the mechanism of action
behind these cytokines, as this too has important clinical applica-
tions. Importantly, knowing that these cytokines boost telome-
rase activity suggests that any potential use of these cytokines
should not be in combination with telomerase inhibitors which
are another class of drug gaining popularity as anticancer drugs.
Furthermore, an understanding of underlying pathways paves the
way to even more direct targeting of immune effector cells, for
example transfection with telomerase to potentially immortalize
adoptively transferred cells, together with the introduction of
cytokine cassettes with one or more of the above mentioned
cytokines.

However, a key translational step will be to control the activity
of the cells that have an increase in lifespan so that toxic side
effects, such as cytokine storms and autoimmunity can be mini-
mized. In order to do this, one must also consider the artificial

Table 1. Summary table of the currently known mechanisms by which the four cytokines act on immune effector cells

Currently known mechanisms by which the agent acts

Agent DCs NK cells gd T cells CD8C T cells

IL-2 Unconfirmed Telomerase activation121

Decrease apoptosis133
Reversal of anergy138 Decrease apoptosis134

Reversal of anergy138,139

IL-7 Unconfirmed Decrease apoptosis133 Unconfirmed Telomerase activation125

Decrease apoptosis88

IL-21 Induces Apoptosis107,108 Telomerase activation122 Unconfirmed Unconfirmed
IL-15 Decrease apoptosis136 Decrease apoptosis130,131 Unconfirmed Telomerase activation123–125

Decrease apoptosis132
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engineering of cells described here, that can be regulated by trans-
fection with suicide genes such as those for herpes simplex virus
thymidine kinase (TK)140 or CD20141 or the use of transfected
extracellular FK506 binding domains with Caspase-9 signaling
motifs to cause cell death upon treatment with FK506.142

Concluding Remarks

A major disadvantage of current adoptive cell transfer cancer
immunotherapies is their unpredictable lifespan and the ability
of cancer cells to evade attack from cells of the immune system.
Increasing cell proliferation with non-cell based strategies may
help overwhelm the cancer and therefore decrease this immune
suppression making the cell-based immunotherapy more effec-
tive. There are four major agents that have been shown to have
these effects: IL-2, IL-7, IL-15, and IL-21. These four cytokines
affect the immune cells with similar mechanisms: first through
stimulation of telomerase activity, and second through inhibition

of apoptosis, resulting in an increase in cell longevity. Reversal of
anergy may also be another mechanism through which these
cytokines act. Further research is required in order to validate
these effects and the effects of these cytokines on gd T cells need
further clarification. Beyond this, it will be important to deter-
mine exactly how much these cytokines are increasing cell longev-
ity and how long the effects last for. The consequences of
prolonged longevity of these cells should also be considered. If
activity and excessive cytokine production from these cells occurs,
there must be checkpoints in place to attenuate this to prevent
toxicity to the patient. This will help to establish which agent, or
combination of agents, is the most effective in boosting immune
cells without affecting cancer cells.
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