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Abstract

Although the human cerebellum has been increasingly identified as an important hub that shows 

potential for helping in the diagnosis of a large spectrum of disorders, such as alcoholism, autism, 

and fetal alcohol spectrum disorder, the high costs associated with manual segmentation, and low 

availability of reliable automated cerebellar segmentation tools, has resulted in a limited focus on 

cerebellar measurement in human neuroimaging studies.

We present here the CATK (Cerebellar Analysis Toolkit), which is based on the Bayesian 

framework implemented in FMRIB’s FIRST. This approach involves training Active Appearance 

Models (AAM) using hand-delineated examples. CATK can currently delineate the cerebellar 

hemispheres and three vermal groups (lobules I–V, VI–VII, and VIII–X). Linear registration with 

the low-resolution MNI152 template is used to provide initial alignment, and Point Distribution 

Models (PDM) are parameterized using stellar sampling. The Bayesian approach models the 

relationship between shape and texture through computation of conditionals in the training set. 

Our method varies from the FIRST framework in that initial fitting is driven by 1D intensity 

profile matching, and the conditional likelihood function is subsequently used to refine fitting.

The method was developed using T1-weighted images from 63 subjects that were imaged and 

manually labeled: 43 subjects were scanned once and were used for training models, and 20 

subjects were imaged twice (with manual labeling applied to both runs) and used to assess 

reliability and validity. Intraclass correlation analysis shows that CATK is highly reliable (average 

test-retest ICCs of 0.96), and offers excellent agreement with the gold standard (average validity 

ICC of 0.87 against manual labels). Comparisons against an alternative atlas-based approach, 

SUIT (Spatially Unbiased Infratentorial Template), that registers images with a high-resolution 

template of the cerebellum, show that our AAM approach offers superior reliability and validity. 

Extensions of CATK to cerebellar hemisphere parcels is envisioned.
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1. Introduction

Segmentation of magnetic resonance images (MRI) of the brain into its anatomic 

components is one of the most difficult tasks in image processing. Many techniques exist to 

help divide a brain MRI into its subregions. Early techniques based on signal intensity 

features such as histogram thresholding, edge-based segmentation, and region-based 

segmentation generally did not perform well on images with complex anatomy, such as the 

brain [1]. State of the art approaches for segmenting medical images include: machine 

learning [2, 3], probabilistic graphical models [4, 5], atlas-based methods [6, 7, 8], and 

deformable models [9, 10, 11]. Segmentation of the cerebellum into its components is 

especially challenging because cerebellar foliations are on the order of 0.5mm, smaller than 

the standard 1mm3 resolution T1-weighted structural brain images. Additionally, the 

cerebellum’s close proximity to the base of the skull causes image contrast nonuniformity 

resulting in inferior gray matter/white matter (GM/WM) discrimination [12, 13]. Methods 

that seek to delineate more than the outer cerebellar boundary must use the prior knowledge 

of shape, image intensities and inter-shape relationships that human experts use to infer 

object boundaries in medical images.

Initial attempts at semi-automated cerebellar segmentation used an atlas-based approach 

[14]. Atlas-based segmentation relies on appropriate atlas formation and accurate 

registration (alignment) of the atlas to new images prior to segmentation. The first brain 

atlases were based on a single individual, such as the well-known Talairach atlas [15], and 

did not adequately reflect anatomical variability. Other early atlases derived from averaging 

multiple brain images after affine normalization (i.e., correcting for translation, rotation, 

scale, and shear), resulted in blurry templates [16, 17]. The utility of such atlases for 

defining anatomic structures and propagating them to individual images is thus limited by 

the spatial uncertainty present in blurry atlases that reduces label propagation accuracy. 

Modern registration methods use nonlinear transformations, that allow nonrigid 

deformation, and better account for inter-subject shape differences that are beyond the 

capabilities of linear mappings. Registration accuracy for nonlinear registration methods is 

directly related to the degrees of freedom of the underlying transformation [18]. The curse of 

dimensionality usually diminishes the advantage of high-order parameterizations due to 

increased computational requirements and difficulties in ensuring convergence. However, 

the sophisticated techniques employed by modern nonlinear registration algorithms have led 

to successful registration even with millions of parameters. A comparison of several popular 

nonlinear registration methods applied to the brain [19] shows that the top performers 

achieve median overlap of between 65% and 70% for the 40 images that comprise the LONI 

Probabilistic Brain Atlas (LPBA40), and 40% to 50% for other similar data sets. (A total of 

14 algorithms applied exhaustively to 80 images were evaluated, resulting in over 45,000 

registrations.) Most methods performed robustly, although a number of outliers were 

observed in the LPBA40 images. Supplemental material [20] indicated that overlap 

measures for segmentations of GM/WM parcels for the left and right cerebellar hemispheres 

were between 55% and 76%. These results indicate that off-the-shelf nonlinear registration 

methods are not sufficiently reliable for detailed cerebellar segmentation.
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There are a number of automated tools that provide limited cerebellar segmentation. 

FreeSurfer [21] delineates the cerebellar hemispheres, but they are inclusive of the vermis. 

To our knowledge the only automated tool that provides comprehensive labeling of the 

cerebellum is the SUIT (Spatially Unbiased Infratentorial Template) [22, 23], which offers 

plugin functionality for SPM (Statistical Parametric Mapping) [24], and uses atlas-based 

registration. More recently, a few novel methods have also emerged, but are not readily 

available for evaluation: In [25], artificial neural network (ANN) and support vector 

machine (SVM) approaches were shown to outperform template and probabilistic 

approaches when applied to the cerebellum. Similarly, a combined atlas and voxel-based 

appearance model (derived from a nearest-neighbor classifier) has been proposed in [26] for 

delineating the cerebellar hemispheres. Finally, [27] shows encouraging results for a 28 

label parcellation of the cerebellum using a multi-object levelset formulation that allows 

boundary-based speed functions to be derived.

We have developed a Cerebellar Analysis Tool Kit (CATK) that was funded by the National 

Institute for Alcohol Abuse and Alcoholism (NIAAA) and was motivated by studies 

showing these cerebellar regions are impacted by chronic alcohol abuse [28, 29, 30]. Our 

approach uses the Bayesian Active Appearance Modeling (AAM) framework that forms the 

basis of the FSL subcortical brain segmentation tool FIRST [31], which follows a 

deformable surfaces paradigm, but includes a mechanism for incorporating contextual 

knowledge. CATK differs from the FIRST framework [31] by: 1) implementing a multi-

template linear registration pipeline capable of robustly normalizing the cerebellum; 2) 

introducing a simplified mesh representation based on stellar sampling that assures 

approximate point correspondence; and 3) adding an intermediary surface fitting stage based 

on intensity profile matching. We obtained expert hand delineations on T1-weighted images 

for 63 subjects from Neuromorphometrics Inc. that are considered the gold standard for 

brain segmentation analyses. From this data, 43 subjects were used to train AAMs of the 

cerebellar hemispheres and major vermal lobules, and 20 subjects who were imaged and 

hand-labeled in two separate imaging sessions were used solely for reliability and validity 

assessment.

To establish reliability and validity, we applied CATK, FreeSurfer, and SUIT to the 20 

validation subjects with repeat scans (i.e., 40 test images). We used the Intraclass 

Correlation Coefficient [32] (ICC) and Dice Overlap [33] (DO) to assess segmentation 

performance. We note that the SRI24 atlas [34], which uses template-free nonlinear 

registration, also provides cerebellar labels. However, our current atlas-based comparisons 

are based on SUIT because of its specific focus on the cerebellum, and the fact that 

preliminary analyses showed comparable cerebellum segmentation accuracy for SRI24 and 

SUIT. We acknowledge that we were unable to take full advantage of SRI24’s ability to use 

multi-channel data to improve registration because the Neuromorphometrics imaging data 

we examined consists only of T1-weighted images.
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2. Material and Methods

2.1. Manual Segmentation and Data Preparation

A series of 1mm3 T1-weighted images from 63 healthy subjects that were manually 

segmented by Neuromorphometrics Inc (NMI) was used to develop CATK. AAM models 

were trained using 43 subjects that were scanned once, while 20 subjects that had two scan 

sessions (and were hand-labeled on both occasions) were held out for the assessment of 

reliability and validity. When delineating neuroanatomical regions, Neuromorphometrics 

uses protocols and custom software that were originally developed at the Center for 

Morphometric Analysis at Massachusetts General Hospital (Harvard Medical School). All 

labels are verified by a neuroanatomy expert. The manual labels parcellate the cerebellar 

volume into: left and right hemispheres, left and right white matter, and three vermal parcels 

defined as lobes I–V (superior anterior), VI–VII (superior posterior), and VIII–X (inferior 

posterior). These subdivisions are shown in Figure 1a.

Subjects used for training: The average age was 44 (5–96 years) and included 13 children 

(5–17 years), 19 adults (18–70 years), and 11 elderly (71–96 years). There were 21 males 

and 22 females, and only one subject was left-handed.

Subjects used for validation: The availability of repeat scans and manual labels for 20 

subjects (that were not used for training) enabled us to assess the test-retest reliability of 

both the manual and automated methods. The average age of the 20 subjects with repeat 

scans was 23 (19–34 years), with 8 men and 12 women, all of whom were right-handed. 

Test-retest reliability was assessed using the single-rater intraclass correlation coefficient 

(ICC) [32], which ranges between 0 and 1, corresponding to the rating reflecting 0 to 100% 

of the true underlying measure. Note that the narrow age gap in the validation set 

corresponds to lower inter-subject variance making it more difficult to achieve high ICCs. 

Note also that the labels from the repeat scans from separate imaging sessions reflect 

variability in the labeling process and variability due to differences in voxel boundaries 

between the scans (i.e., partial voluming).

2.2. Atlas-based segmentation

The SRI24 atlas [34] developed at the Stanford Research Institute, and SUIT [23], 

developed by the UCL Institute of Cognitive Neuroscience, are templates to which MR 

images can be aligned using linear or nonlinear registration in order to parcellate the 

cerebellum. SRI24 was created from 24 healthy subjects to enable multi-channel (i.e., T1, 

T2, PD, and DTI) atlas-to-subject image registration for atlas-based segmentation (based on 

cortical parcellation maps) or spatial normalization. It uses a novel template-free technique 

that jointly adjusts individual subjects, which reduces bias, as opposed to using a single 

reference. Registration of new images can be accomplished using either template-based 

registration with the atlas or using the template-free method via the open-source CMTK 

package [35]. Although the SRI24 parcellation maps contain cerebellar labels, the atlas 

creation was not focused on the cerebellum. In contrast, SUIT was specifically designed to 

improve cerebellar co-registration across subjects during atlas creation. SUIT’s authors 

recognized that aligning subjects using a multi-subject whole-head template, such as 
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MNI152, tends to result in poor cerebellar alignment, which is evident by the blurry 

template seen in Figure 1b. This problem is further compounded by using Schmahmann’s 

atlas labels that are derived from a single subject [36]. To build a comprehensive 

probabilistic atlas, shown in Figure 2, SUIT follows Schmahmann’s protocol of labeling 

(starting at the midsagittal slice and moving outwards laterally) but incorporates the 

normalized brains of 20 diverse subjects (ages between 19 and 27). The resulting 1mm3 T1-

weighted template (also shown in Figure 2) is formed by averaging the normalized subjects. 

We compared CATK to SUIT because SUIT had been optimized for the cerebellum. 

Cerebellar segmentation of new images using SUIT (version 2.7) is achieved with SPM 

(version 12)[24, 37]. Normalization between the template and new image is achieved using 

affine registration (with the whole-head template) followed by tissue classification to 

roughly isolate the cerebellum using probabilistic priors. Finally, a nonrigid deformation 

using cosine basis functions is estimated to account for individual subject variation. While 

the entire procedure can be applied automatically through SPM, the isolation algorithm is 

not infallible, and documentation recommends that the user review (and correct) the 

isolation mask prior to nonlinear registration. For comparison with fully automated CATK, 

we only used SUIT in the automated fashion. SUIT also offers an alternative deformation 

method based on the DARTEL engine [38] that uses gray and white matter segmentation 

maps produced during cerebellar isolation to generate a flowfield using Large Deformation 

Diffeomorphic Metric Mapping (LDDMM) [39]. Parameterization with DARTEL is more 

flexible, which allows more detailed deformations and theoretically more precise 

registration. In our experiments, both SPM registration engines were used, but for brevity 

only results from the cosine basis deformation method, which achieved better results on our 

data, are shown. This is discussed further in Section 4.

It is not possible to directly compare measurements between SUIT and the manual labels 

since the parcellations differ. SUIT produces 28 parcels compared with 7 parcels for the 

manual labels. The major difference is in the vermis. Whereas the manual labels delineate 

the superior anterior portion of the vermis (lobules I–V), SUIT does not distinguish between 

hemispheres and vermis for this region. To address this difference, we constructed 

additional probabilistic atlases (the non-DARTEL atlas is shown in Figure 1a) using the 43 

training images from our manually labeled data. These images were registered with SUIT 

using the standard and DARTEL methods, failed registrations were manually removed from 

the set, and the corresponding label images were combined in SUIT-space to form an atlas 

and template for each method (i.e., one for standard SUIT and one for SUIT with 

DARTEL).

2.3. CATK Algorithm

At its core, CATK comprises a 3D Active Appearance Model (AAM) [40] that uses 

parameterized examples of surface shape and intensity to drive an optimization framework 

that fits the model to new images. This methodology has led to advances in adaptive face 

recognition systems [41], and has shown great promise in difficult medical imaging 

segmentation problems [42]. Unlike intensity-only boundary segmentation or energy 

minimizing curves (active contours [43, 44]), AAMs encapsulate variation from real 

examples and restrict the search space to plausible combinations. Since the variability of 
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cerebellar appearance tends to be closely distributed, the use of contextual knowledge results 

in reliable estimation and sensible transitions between parameters.

The key distinction between the AAM and its cousin the ASM (Active Shape Model) [45] is 

that it generates statistical models for both shape and texture (intensity pattern), and allows 

fitting to take advantage of their interrelationship. Where an ASM adjusts shape parameters 

towards optimizing image heuristics (e.g. maximum boundary gradient), an AAM minimizes 

the error between a hypothesized image driven by the shape parameters and the original 

image. There are numerous ways to model the prior relationship between shape and texture, 

hence a number of AAM variations exist, e.g., [40, 31, 10, 42].

CATK uses an adptation of the Bayesian AAM framework devised by Patenaude [31] upon 

which his development of FSL’s subcortical brain segmentation tool FIRST [31, 46] is 

based. The method’s primary distinction as a Bayesian approach is that it uses conditional 

distributions (as opposed to arbitrary weightings) to model the relationship between shape 

and texture. Our implementation extends the original framework, in order to segment the 

cerebellum, by using an alternative shape parameterization based on stellar meshes (as 

opposed to polygonization with Marching Cubes [47]), and introduces a multi-stage fitting 

process that combines both ASM-style profile-matching and AAM posterior optimization; 

as opposed to Patenaude’s implementation which relies solely on the latter. In addition, a 

robust localization algorithm has been developed that is used for pose correction and 

cerebellar isolation. Figure 3 provides a graphical overview of CATK’s functionality.

2.3.1. Localization, Normalization, and Parameterization—Statistical shape within 

the AAM is specified by a Point Distribution Model (PDM) [40] that describes each shape 

as a linear combination of characteristic modes of variation. This requires that each shape is 

modeled by a set of corresponding landmarks. To achieve this, the cerebellum must be 

localized and its pose and intensities normalized. First, any image in homogeneity is 

corrected (using N4ITK [48]) and the intensity distribution rescaled by removing the upper 

and lower tails with a threshold. A skull-stripped [49] version of the image is then linearly 

registered using AIR [50, 51, 52] with the MNI152 whole-head template in order to account 

for gross pose differences, namely position, scale, and orientation. (A 9 parameter model is 

used.) Since cerebellar pose relative to the rest of the brain varies across subjects the initial 

registration leaves significant residual differences, which contribute higher variability 

between point correspondences. If left unchecked, this causes the AAM to account for 

variability that does not correspond to inter-subject variation. To address this, CATK uses a 

bootstrapping process whereby a rough cerebellar ASM, constructed from the initial 

alignment, is fitted and used to mask the cerebellum. A second linear alignment using the 

higher resolution SUIT template is then used to refine the cerebellar region-of-interest.

Following localization and image normalization, which is common to both training and 

fitting (shown by the first two steps in Figure 3), the training examples are parameterized by 

creating triangular surface meshes from the hand-labeled voxel volumes using stellar 

projection of a subdivided icosahedron. (This subdivided surface approaches a sphere as the 

number of subdivision levels is increased.) Since the base mesh has known topology, this 

provides a convenient and efficient means of obtaining a consistent number of 

Price et al. Page 6

Neuroimage. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correspondences across the training data. Following sampling, residual translations are 

removed by centering each mesh. The resulting surfaces follow the boundary interface 

defined by a selected label group that corresponds to a particular parcel. For instance, 

parameterization of the hemispheres includes the exterior GM/CSF and interior GM+WM 

hemisphere/vermis interfaces. Therefore, attention to concavities, such as gaps between 

inter-lobule fissures that are more predominant when atrophy occurs, depends on the quality 

of manual segmentations used for training. (I.e., high model flexibility requires adequate 

examples of extreme cases.)

Unfortunately, enforcing stellar topology to arbitrary shapes is not possible, however, the 

stellar approximations closely match the original surfaces of the cerebellar substructures we 

have labeled. An example of degradation due to this assumption can be seen when modeling 

the entire cerebellar cortex with a single projection center. In this case, the white matter 

peduncles protrude in an overlapping manner thereby causing additional volume to be 

enclosed within the brainstem. To resolve this difficulty, CATK uses multiple projection 

centers determined from the manual labels. An example for the cerebellar hemispheres is 

shown in Figure 4, where the top-left image shows the labeled voxels that we wish to 

parameterize. Sampling with a single projection center produces the model shown in the top-

right, while using a projection center for each hemisphere results in a closer approximation 

to the desired shape as seen in the bottom-right image. This approach allows efficient 

representation of multiple parcels.

2.3.2. Bayesian Framework—The model is trained according to the method presented in 

[31], which is based on the assumption of a multivariate Student Distribution that offers 

better adaptation for smaller training sets. With the exception of our implementation-specific 

adjustments discussed in the last paragraph, this section provides a conceptual overview of 

the Bayesian AAM framework that we have adopted; the interested reader is referred to the 

original work for further details [31, 46].

Meshes are generated for each parcel group and represented by a concatenated parameter 

vector hs that is added to a data matrix Xs whose columns span the number of training 

examples m (Equation 1). The mean shape, represented by Equation 2, is computed by 

averaging the columns of Xs and is removed from each column (Equation 3) to produce the 

demeaned data matrix Zs. Singular value decomposition of Zs (Equation 4) produces the two 

main ingredients of the PDM: the eigenvectors Us that describe the modes of variation, and 

the singular values Ds that describes their importance.

(1)
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(2)

(3)

(4)

(Vs is a weighting matrix that reconstructs the original training data.)

Since there are typically far fewer training examples (columns) than parameter dimensions 

(rows) in Zs, this potentially leads to very large covariance matrices. Fortunately, the 

resulting matrices are also of low rank which allows a number of computational 

simplifications; for instance, only the first m eigenvectors need be calculated. By choosing 

parameters bs, that represent weights for each mode (eigenvector), any shape  within the 

multivariate distribution can be generated:

(5)

where γ is a scalar relating to parameters of the multivariate Student Distribution. We can 

also invert this process and obtain model parameters bs, or the closest shape, for any set of 

mesh vertices.

Texture (intensity distribution) is modeled in the same manner where the example vectors hI 

are derived from 1D intensity profiles sampled normal to the surface at each vertex. 

(Experience has shown that the order of 15 samples per profile works well for cerebellar 

surfaces.) In order to ensure consistent spatial sampling without additional resampling noise, 

sample coordinates are always generated in the normalized reference frame and projected 

into the original (subject) image for interpolation. As for shape, the demeaned intensity 

PDM is approximated through eigen-decomposition:

(6)

(Whereas Zs has 3 dimensions for each vertex, i.e. 3n rows, ZI has 15 dimensions for each 

vertex, i.e. 15n rows.) Modeling each entity (shape and texture) in this way amounts to 

partitioning a generalized data matrix Z = {Zs
T, ZI

T}T, which allows the distribution of 

intensity conditioned on shape to be constructed by partitioning the joint precision matrix λ:

(7)

(8)
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(9)

assuming a Student Distribution St with α degrees of freedom where alpha is determined 

according to . Equation 9 forms the basis of the Bayesian Appearance Model and 

intrinsically handles the weighting between shape and intensity.

Since the underlying data can be arbitrary, it is therefore possible to apply the same 

approach to other data partitions. For instance, shape–shape relations can be modeled that 

predict the shape distribution of one parcel given the location (or intensity distribution) of 

several others. While the same effect can be achieved by performing eigen-decomposition 

on the entire unpartitioned data matrix, this increases the dimensionality of each input vector 

significantly and can result in poor generalization given the finite number of training 

examples. However, we have found that modeling inter-structure relationships through 

conditional modeling can also suffer from lower generalization due to compression of the 

conditional covariance which is also simplified though eigen analysis. When initializing 

models of subparcels (like the vermis), we found conditional shape–shape relations to be 

very effective, but parcel groups like the three vermal lobes tended to perform better when 

modeled as a whole since most of the covariance can be explained through the joint PDM. 

Therefore, CATK uses conditional partitions to initialize sub-parcellations using the full 

cerebellum model as a reference, while hemispheres and vermal lobes are each modeled as a 

group (i.e. 2 meshes for the hemispheres, and 3 meshes for the vermis). Figure 5 shows 

parcel shapes sampled from the model of the vermis which is jointly modeled by 3 

projection centers. Each row illustrates how the average shape (center column) varies along 

the first 5 modes of variation. By choosing a linear combination of these modes one can 

define a family of shapes that resemble the original examples. Although the total 

dimensionality of the shape vector is over 7000, the PDM adequately explains 90% of the 

variance with only 40 modes.

2.3.3. Model Fitting—Fitting is achieved by first using the two-stage normalization 

procedure discussed and initializing the search using the result of the rough ASM solution. 

Drawing upon insights gained by experimenting with different approaches, CATK applies a 

multi-stage fitting process that incorporates both ASM and AAM techniques. One of the 

drawbacks of the Bayesian AAM is that it is slow to converge and is easily trapped in local 

minima. While the conditional distribution between shape and intensity (Equation 9) can be 

fine-tuned through priors (intended to condition the covariance matrix), smoother surfaces 

that over segment the underlying volume tend to be favored irrespective of these parameters. 

In addition, the cerebellar structural boundaries are not all well-defined (in terms of tissue 

contrast), and the close proximity to nearby structures with similar intensity distributions 

tends to result in a small capture region. (Models that are initialized close to the “capture 

region” generally have a high convergence rate, hence large capture regions are desirable.) 

Another possibility is that the low number of training examples is insufficient to completely 

characterize the texture variations, because the fine foliations within the cerebellum cause 

intensity to fluctuate near the boundary thereby increasing variance across subjects.
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Contrastingly, a naive ASM that simply selects the maximum gradient along each intensity 

profile offers a large capture area since the model parameters can jump farther between 

iterations. This comes at the cost of discarding the context of the intensity distribution and 

its relation to shape, which also presents problems. Therefore, we use an ASM/AAM hybrid 

approach that uses 1D template matching to propagate the shape parameters. This is very 

fast to compute, and is more robust in low contrast images.

Intensity profiles comprise 15 samples centered about each vertex and extend from the 

interior to the exterior of a parcel along the local surface normal. Gradient-based template 

matching is used to match each profile to the corresponding mean intensity profile drawn 

from the conditional distribution during fitting. First, μI|s is calculated from the candidate bs, 

and gradients are computed for both the conditional profile gI|s and the profile sampled from 

the current mesh vertex gi. Convolution using the Fast Fourier Transform ( ):

(10)

provides the linear shift t that best aligns each sampled profile with the model. (We perform 

1D convolution in parallel for each vertex by reshaping each 15n length profile g to 15 × n 

arrays and operating row-wise. Output vector t has length n.) Vertices are then adjusted to 

these optimum points along each surface normal, and the closest shape is selected (using the 

inverse of Equation 5). This process is applied iteratively until convergence is detected.

After the ASM terminates, stage two refines the solution using the Bayesian AAM: A 

conjugate gradient descent optimization adjusts shape parameters bs to maximize the 

posterior function [31]:

(11)

which is equivalent to minimizing the negative log-likelihood. This drives the process to 

select the most probable shape given the observed intensities.

2.4. Evaluation Measures

2.4.1. Reliability and Validity—We assessed both reliability and validity using the 

intraclass correlation coefficient (ICC) on measurements from the 20 validation subjects that 

were scanned and hand labeled twice. The ICC for a measure indexes the proportion of 

variance of that measure that reflects the true variable being measured as compared to 

measurement error. When applied to repeated scans, the error (1 - ICC) includes both 

variability in the measurement and variability in the scans due to the different voxel 

boundaries (and thus differences in partial voluming) that occurs whenever the subject is 

positioned within the MR Imager. The ICC is always measured relative to the variability of 

the underlying phenomena being measured. For example, the test-retest images used to 

assess reliability here only contains variability in cerebellar measures present in normal 

individuals 19–34 years of age. The reliability measured here would be higher if it was 

measured across data with larger intersubject variability (e.g., including alcoholic and non-

alcoholic subjects, and perhaps including individuals from 19–60 years of age). Reliability 
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for CATK was assessed by computing the ICC for each cerebellar measure across the two 

repeat scans.

Validity (i.e., agreement with the gold standard Neuromorphometrics manual measures) was 

assessed by computing the ICC for four-tuples of measures (the two repeat measures for the 

measure of interest and the two corresponding Neuromorphometrics measures). The higher 

the ICC, the greater the agreement of the measure of interest with the gold standard. 

Additionally, because the vermis lacks clear-cut anatomical demarcations from the 

cerebellar hemispheres [53, 54], we also report reliability and validity for midsagittal areas 

for the vermal lobules, which have been used as a surrogate measure of vermis volume in 

numerous studies [55, 56, 29, 30].

2.4.2. Dice Similarity—Dice overlap (DO) [33] is a well-used metric that compares the 

spatial overlap between two discrete segmentations by measuring the proportion of voxels 

that have the same label as a percentage of the total masked volume:

(12)

where the contributing elements are the True Positive (TP), False Positive (FP), and False 

Negative (FN) voxels respectively. DO results are useful as a means of verifying that some 

volumetric correspondence exists between the ground truth and estimated labels. However, 

we point out that: (1) DO is sensitive to quantization error due to the discretization process 

(fitted meshes must be converted back to voxels), and (2) it does not account for variability 

in the ground truth labeling. The latter is an important factor when trying to determine 

whether a method can be considered “good enough”, and is the case here since our objective 

is to achieve validity with respect to manual labeling.

Owing to the sensitivity of vermal segmentations to partial voluming of different tissues at 

the vermal lateral boundaries, we compute midsagittal vermal DO by masking the volume 

comprising the midsagittal slice and 4 slices on either side. Using 3D voxels (volumetric) 

instead of 2D pixels (area-based) to define midsagittal vermal DO also avoids the need to 

reslice the manual labels to a normalized orientation prior to measurement that would 

contribute additional quantization error.

3. Results

Reliability and validity results, based on the 20 validation subjects with repeat scans (refer to 

Section 2.1), are presented in Table 1.

3.1. Reliability

Manual measurements: On average, hemisphere manual labels have a reliability ICC of 

0.98, while vermal lobes have an average reliability ICC of 0.87, all consistent with the 

manual labels being trustworthy indications of the cerebellum. Much research on the 

cerebellar vermis uses midsagittal area rather than volume as measures of vermal size 

because of the difficulty in delineating vermal lateral extent. We also derived measures of 
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midsagittal vermal area in all our analyses. Midsagittal vermal lobe area had ICCs averaging 

0.95, consistent with the literature, showing improvements in the precision and reliability of 

midsagittal area vs. volume measurements for the cerebellar vermis.

Automated measurements: For the total cerebellum and the hemispheres, CATK and 

FreeSurfer perform excellently, each with reliabilities over 0.98. SUIT, on the other hand, 

exhibits reliabilities of 0.52 to 0.67. For vermal volumes and areas, CATK is only compared 

to SUIT since FreeSurfer does not measure the vermis. For vermal volumes, CATK test-

retest reliabilities (averaging 0.93) were comparable to or higher than test-retest reliabilities 

for manual labeling (averaging 0.87). In contrast, SUIT test-retest reliabilities were poor to 

moderate for vermal volumes (ranging from 0.19 to 0.66, averaging 0.42). For midsagittal 

vermal areas, test-retest reliabilities increased for both CATK (averaging 0.97) and manual 

labeling (averaging 0.95). SUIT had worse test-retest reliabilities for midsagittal vermal 

areas (ranging from 0.078 to 0.487 and averaging 0.31) compared to vermal volume 

measures.

3.2. Validity (agreement of automated methods with expert manual labels)

As noted above, validity (i.e., agreement with the gold standard Neuromorphometrics 

manual measures) was assessed by computing the ICC for four-tuples of measures: the two 

repeat measures for the automated procedure under investigation and the two corresponding 

Neuromorphometrics measures. The higher the ICC, the greater the agreement of the 

automated measures with the gold standard. For the total cerebellum and right and left 

cerebellar hemisphere volumes, for which we have FreeSurfer data, both CATK and 

FreeSurfer have over 0.96 agreement (1.0 is perfect) with the Neuromorphometrics manual 

labels. In comparison, SUIT agreement with the manual labels is only 0.70–0.77. For the 

vermis measures, we only have CATK and SUIT to compare. For vermis volumes, CATK 

agreement with the manual labels varied between 0.60 and 0.85. SUIT performed much 

worse, with agreement varying between 0.25 and 0.57. For the midsagittal area 

measurements, CATK had excellent agreement with the manual labels (between 0.91 and 

0.94), while SUIT performance was no better than for the vermal volume measures (between 

0.26 and 0.52). Based on these results, we use midsagittal vermal area measurements in our 

clinical applications of CATK [57, 58].

3.3. Dice Comparison

Figure 6 shows the DO results obtained for CATK, SUIT, and FreeSurfer. MS-Vermis refers 

to masked midsection volumes of the vermis centered about the midsaggital slice as 

discussed in Section 2.4.2, and is different from midsagittal vermal area ICCs that were 

computed from the single midsagittal slice.

Average CATK DO scores were 90% for the total cerebellar volume, 89% for the left and 

right hemispheres, 70–79% for the vermal volume, and 81–88% for the midsagittal vermal 

volume, with little variability of agreement across subjects for the total cerebellum and 

cerebellar hemisphere volume measures. FreeSurfer performed similarly to CATK for the 

total cerebellar and cerebellar hemisphere volumes it measures. SUIT also achieved 

reasonably high average DO scores: close to 90% for the total cerebellum and hemispheres, 
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an average of 71% for the vermal volume, and an average of 78% for the midsagittal vermal 

volume. However, as illustrated in Figure 6b, overlap scores are more variable for SUIT 

than CATK or FreeSurfer, with agreement for individual subjects for several measures being 

below 40%.

4. Discussion

CATK has surprising test-retest reliability (average ICC of 0.96) evaluated from repeat 

scans on 20 subjects not included in the data used for training. Given that the test set only 

contained individuals in a narrow age range (19–34 years), the reliability results for the 

manual labeling says reliable differences in cerebellar measures are present in such 

individuals, and the CATK reliability results show that CATK can also reliably detect 

differences between individuals in this narrow age range. CATK also demonstrated high 

validity (i.e., agreement with gold standard Neuromorphometrics hand labeling), with 

validity ICCs of over 0.96 for total cerebellum and cerebellar hemisphere volumes, between 

0.60 and 0.85 for vermal volume measures, and between 0.91 and 0.94 for midsagittal 

vermal area measures. DO scores for CATK also indicate close agreement with the manual 

labels, with a range of: 87%–93% for the total cerebellum and cerebellar hemispheres, 52%–

84% for vermis volumes, and 72%–91% for midsection vermal volumes. The minimum of 

52% corresponds to vermis lobule VI–VII, which has proved to be one of the most difficult 

parcels to segment because of its high variability. However, higher scores are achieved using 

midsection volumes of the vermis that are less sensitive to the poorly defined lateral 

boundaries of the vermis. CATK’s agreement with the gold standard is thus very 

encouraging, with the agreement being close to the test-retest reliability of the gold standard 

itself.

FreeSurfer and CATK showed comparable reliability and validity for total cerebellum 

volume and for cerebellar hemisphere volumes—the only cerebellar measures that are part 

of FreeSurfer. As is apparent in Figure A.7c in the appendix, FreeSurfer volumes were 

consistently somewhat smaller than manual volumes, consistent with FreeSurfer having a 

small bias in its volume estimates. CATK produces segmentations in the form of 3D 

triangular mesh surfaces that interpolate the discrete manual volumes in the training set. 

These measurements also tend to be slightly smaller than the corresponding manual 

volumes, and are adjusted through calibration on the training set. Given these adjustments 

on the training data, this potential bias is not present on the test set. We speculate that 

FreeSurfer’s bias could be linked to a similar phenomenon, and could be corrected in a 

similar manner.

SUIT’s much lower reliability and validity ICCs and lower average DO scores compared to 

CATK (or FreeSurfer where appropriate), indicates that CATK has much higher validity for 

volume measures than SUIT. Our analyses show that SUIT as implemented in the SPM 

toolbox is not sufficiently robust as a volume measurement tool. SUIT registration was 

applied using both the standard functions (that use cosine basis functions during nonrigid 

registration) and the DARTEL engine (that defines the deformation by a LDDMM-based 

flowfield). While DARTEL offers greater model flexibility and more refined fitting, this 

comes at the cost of larger errors when the solution fails to converge. We found that both 
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implementations failed on exactly the same images, leading us to conclude that poor 

initialization was to blame. However, because of DARTEL’s higher dimensionality, the 

resulting segmentations were much worse for DARTEL, leading to lower average scores 

than the standard approach. Therefore, we chose to report results from the standard method. 

To examine whether SUIT’s dense nonlinear registration offers some advantage, we 

implemented a hybrid approach where the cerebellar isolation algorithm is replaced with 

CATK. Essentially, this uses CATK as an initial solution to dense registration. While 

several registrations still produced irregularly skewed transforms, the majority met with 

success. This raised the average test-retest reliability of SUIT measurements to 0.90 from 

0.45, and improved the average validity ICC to 0.80 from 0.52. Although these results are 

still lower than those achieved by CATK, the fact that CATK and SUIT approaches can be 

applied successfully in tandem is of interest for future applications in which shape 

parameterization of the target structure may be more difficult.

One of the reasons we think CATK performs so reliably is because the 1D template 

matching used within the ASM stage, that uses gradient information, is extremely robust to 

differences in the intensity distribution. This allows the model to converge even when there 

is significant blurring due to effects like subject motion. In recent published work [57], we 

used CATK to compare measures of cerebellar volumes between adolescents with histories 

of prenatal alcohol exposure (PAE) and non-exposed controls. CATK detected smaller 

cerebellar volumes and mid-sagittal vermal areas in the PAE group compared to controls, 

with the exception of the superior posterior vermis, consistent with prior studies that used 

manual cerebellar measurement. In addition, we were able to show that smaller anterior 

superior vermis areas were present over and above the generally smaller brain evident in the 

PAE group, an interesting new finding. We note that the PAE vs. control comparison shows 

that CATK does well in measuring pathologically small cerebellar, and particularly vermal, 

size despite such cases not being part of the training set. Finally, in our recent experience 

applying CATK to more than 300 scans of adults and adolescents with alcohol use disorders 

and controls, the method has failed on less than 2% of images while detecting hypothesized 

cerebellar size differences (work in preparation). In summary, our work in clinical samples 

suggests the utility of using CATK in large clinical studies to sensitively detect disease-

related cerebellar volume effects.

A limitation of CATK in its current form is that it does not segment the cerebellar 

hemispheres into their parcels. CATK was developed with limited funding and made use of 

the standard Neuromorphometrics labels as available on their web site. Extending CATK to 

delineate parcels of the cerebellar hemispheres would involve significant additional work, 

which we have proposed in pending funding applications, and where we also propose using 

prospective motion tracking and correction to obtain higher image quality that will allow 

better delineation of the cerebellar foliations.
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Appendix A. Measurement Comparisons for Validation Subjects

Comparative plots of total cerebellar volumes and combined vermal areas are shown against 

manually labeled examples in Figure A.7. Since CATK produces segmentations in the form 

of 3D triangular mesh surfaces that interpolate the discrete volume, measurements must be 

adjusted through calibration (i.e., scaled up by a small factor) in order to be comparable with 

those taken directly from discrete volumes. Consequently, values in Figure A.7a have been 

adjusted accordingly using a correction factor computed from the training data. Also note 

that each data series (i.e., volume and area) is sorted in terms of the manually labeled 

measurements to facilitate visualization, and the apparent covariation between cerebellar 

volume and vermal area is as a result of this ordering.
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Figure A.7. 
Measurement comparison for cerebellar volumes and vermal areas for the 20 validation 

subjects. Both test and retest images are plotted illustrating the repeatability of each method.
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Highlights

We apply an active appearance modelling framework to cerebellar segmentation

Validation using manual delineations indicate high reliability and validity

Comparison with FreeSurfer and SUIT show better performance than atlas-based 

methods

Detected teratogenic effects in adolescents with history of Prenatal Alcohol 

Exposure
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Figure 1. 
Top-Left: Cerebellar parcellation under manual labeling protocol by Neuromorphometrics 

Inc. (NMI). Images show slices from our custom atlas that was generated by SUIT’s 

standard registration functions on our training data. Bottom-Left: Average NMI T1-

weighted template. Bottom-Right: Cropped MNI152 whole-head T1-weighted template for 

comparison.
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Figure 2. 
SUIT atlas (top) and template (bottom) showing central slices from each axis. The atlas does 

not explicitly identify white matter (apart from the dentate nuclei), but this can be deduced 

from the T1 template.
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Figure 3. 
Functional Overview of CATK.
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Figure 4. 
Stellar parameterization of the cerebellar hemispheres. Top: Isosurface of original labels 

(left), and stellar mesh with a single projection center and 4 levels of subdivision (right). 

Note that the isosurface cannot be used directly since the number of vertices (parameters) is 

dependent on the surface area and therefore variable. Bottom: Stellar meshes using two 

projection centers with 2 levels of subdivision (left), and 5 levels of subdivision (right). 

Stellar sampling produces a manifold with a fixed number of vertices per subject that is 

required for statistical modeling.

Price et al. Page 24

Neuroimage. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Shape variation of CATK vermis model. The central column (zero deviation) represents the 

average shape while each row shows how parcel shape is affected by varying the parameters 

for the 5 most influential modes.
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Figure 6. 
Dice Overlap scores for manual labels vs. CATK, SUIT, and FreeSurfer. “MS-Vermis” 

refers to midsection volumes of the vermis computed over 9 slices centered laterally to 

illustrate that central measurements (e.g. areas) are more reliable due to improved lateral 

boundary definition.
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