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Abstract

Associating changes in protein levels with the onset of cancer has been widely investigated to 

identify clinically relevant diagnostic biomarkers. In the present study, we analyzed sera from 205 

patients recruited in the U.S. and Egypt for biomarker discovery using label-free proteomic 

analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We 

performed untargeted proteomic analysis of sera to identify candidate proteins with statistically 

significant differences between hepatocellular carcinoma (HCC) and patients with liver cirrhosis. 

We further evaluated the significance of 101 proteins in sera from the same 205 patients through 

targeted quantitation by multiple reaction monitoring (MRM) on a triple quadrupole mass 

spectrometer. This led to the identification of 21 candidate protein biomarkers that were 

significantly altered in both the U.S. and Egyptian cohorts. Among the 21 candidates, 10 were 

previously reported as HCC-associated proteins (eight exhibiting consistent trends with our 

observation), whereas 11 are new candidates discovered by this study. Pathway analysis based on 

the significant proteins reveals up-regulation of the complement and coagulation cascades 
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pathway and down-regulation of the antigen processing and presentation pathway in HCC cases 

versus patients with liver cirrhosis. The results of this study demonstrate the power of combining 

untargeted and targeted quantitation methods for a comprehensive serum proteomic analysis, to 

evaluate changes in protein levels and discover novel diagnostic biomarkers.
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1 Introduction

Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide 

with five-year relative survival rates less than 15% [1, 2]. While the combined cancer 

mortality rate has been declining for two decades, incidence and mortality rates of HCC are 

still increasing [3]. Survival rates of patients with HCC can significantly be improved if the 

diagnosis was made at earlier stages, when treatment is more effective [4]. Most of the risk 

factors for HCC including chronic infection with hepatitis B virus (HBV) or hepatitis C 

virus (HCV) lead to the development of liver cirrhosis, which is present in 80–90% of 

patients with HCC [5]. The malignant conversion of cirrhosis to HCC is often fatal in part 

because adequate biomarkers are not available for diagnosis during the progression stages of 

HCC. Alpha-fetoprotein (AFP), the serologic biomarker for HCC in current use, lacks the 

desired sensitivity for early diagnosis of HCC [6, 7]. Therefore, more potent biomarkers are 

needed for detection of HCC at its early stage when it can be intervened more effectively.

Proteomics is the comprehensive analysis of all proteins in a biological system. Emerging 

technologies are enabling delineation of changes in protein levels and associating these 

changes with various diseases has been widely investigated to identify clinically relevant 

biomarkers [8, 9]. In particular, there is a great potential in utilizing proteomics to identify 

diagnostic biomarkers circulating in biofluids [10–12]. With recent advances of mass 

spectrometry and separation methods, liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS) has become an essential analytical tool in a variety of omic 

studies including proteomics [13, 14]. LC-MS/MS provides qualitative and quantitative 

analysis of proteins in a high-throughput fashion, and it has been widely used for biomarker 

discovery [15]. While untargeted analysis of biofluids by label-free LC-MS/MS methods 

gives a global characterization of proteomic signatures, the quantitative sensitivity and 

accuracy of these methods are not satisfactory to determine reliable biomarkers [16, 17]. 

Thus, subsequent confirmation of the findings from untargeted analysis is often desirable 

using more sensitive and reliable quantitation methods such as multiple reaction monitoring 

(MRM) [18, 19].

In the present study, we analyzed sera from HCC cases and patients with liver cirrhosis, 

recruited in the U.S. and Egypt. We performed untargeted proteomic analysis to identify 

proteins showing statistically significant differences in sera from HCC cases and patients 

with liver cirrhosis. These proteins were further analyzed through targeted quantitation by 

MRM, which yielded more sensitive and accurate quantitation results. A high-resolution 
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mass spectrometer (LTQ Orbitrap Velos) was used for untargeted proteomic analysis, while 

targeted quantitation was performed by MRM on a triple quadrupole (QqQ) mass 

spectrometer. We confirmed 21 candidates that showed significant changes in protein 

expression between HCC cases and cirrhotic controls in both cohorts. The results of this 

study demonstrate the power of combining untargeted and targeted quantitation methods for 

a comprehensive serum proteomic analysis, to investigate changes in protein levels between 

HCC cases and patients with liver cirrhosis.

2 Materials and methods

2.1 Experimental design

Adult patients were recruited from the outpatient clinics and inpatient wards of the Tanta 

University Hospital (TU cohort) in Tanta, Egypt and from the hepatology clinics at MedStar 

Georgetown University Hospital (GU cohort) in Washington, DC, USA. The TU cohort 

consists of a total of 89 subjects (40 HCC cases and 49 patients with liver cirrhosis); both 

HCC cases and cirrhotic controls are from either outpatient or inpatient wards. The GU 

cohort comprises of 116 subjects (57 HCC cases and 59 patients with liver cirrhosis). The 

protocol of the study was approved by the respective Institutional Review Boards at Tanta 

University and Georgetown University. Through peripheral venipuncture, single blood 

sample was drawn into 10 mL BD Vacutainer sterile vacuum tubes without the presence of 

anticoagulant. The blood was immediately centrifuged at 1000g for 10 min at room 

temperature. The serum supernatant was carefully collected and centrifuged at 2500g for 10 

min at room temperature. After aliquoting, serum was kept frozen at −80 °C until use. 

Primary tubes and serum aliquots were labeled using anonymous confidential code numbers 

with no personal identifiers. Identification codes were cross-referenced with clinical 

information in a pass code protected computer system. Characteristics of the patient 

populations in TU and GU cohorts are provided in Tables 1 and 2, respectively.

We analyzed sera from HCC cases and cirrhotic controls in TU cohort and GU cohort 

separately. We acquired LC-MS/MS data on a 3000 Ultimate nano-LC system interfaced to 

an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, San Jose, CA). The analysis 

was performed following a randomized order to avoid systematic biases (Supporting 

Information Table 1). In addition to the patient samples, in the analysis of the TU cohort we 

included in-between quality control (QC) runs of technical replicates using pooled human 

blood serum purchased from Sigma Aldrich and full process replicates [20] using aliquots of 

a sample pooled from the patients’ sera. Technical replicates are generated by multiple 

injections of a single aliquot for which the protein assay/sample preparation procedure is 

performed once. Full process replicates, on the other hand, are generated from multiple 

aliquots of the same biological sample, where the protein assay/sample preparation of each 

aliquot is performed separately. Proteins with statistically significant differences between 

the two groups were identified as candidate biomarkers. On the same cohorts of patients, 

these findings were confirmed through targeted quantitation using MRM on a TSQ Vantage 

mass spectrometer (Thermo Scientific, San Jose, CA). All the patient samples were analyzed 

by both untargeted and targeted methods. Figure 1 summarizes the workflow of this 

biomarker discovery study.
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2.2 Materials

HPLC-grade solvents, including methanol, isopropanol, and water, were procured from 

Macron Fine Chemicals™-Avantor Performance Materials (Center Valley, PA). HPLC grade 

acetonitrile (ACN) was purchased from Fisher Scientific (Pittsburgh, PA). Ammonium 

bicarbonate, DL-dithiothreitol (DTT), iodoacetamide (IAA), MS-grade formic acid (FA), 

and pooled human blood serum (H4522) were also purchased from Sigma-Aldrich. Mass 

spectrometry grade trypsin was obtained from Promega (Madison, WI).

2.3 Depletion of high-abundance proteins in serum

Sera were subjected to depletion using Agilent Plasma 7 Multiple Affinity Removal Spin 

Cartridge from Agilent Technologies (Santa Clara, CA). This cartridge depletes the seven 

most abundant human serum proteins, namely albumin, IgG, antitrypsin, IgA, transferrins, 

haptoglobin and fibrinogen. A 15-μl aliquot of serum was depleted as stated in the protocol 

provided by the manufacturer. The buffer of the depleted sample was exchanged into 50 mM 

ammonium bicarbonate (pH 8.0) using 3kDa MWCO Amicon Ultra 0.5mL centrifugal 

filters from Merck Millipore (Tullagreen, Carrigtwohill, Co. Cork). This buffer was used for 

tryptic digestion.

2.4 Trypsin digestion

Prior to trypsin digestion, the protein concentration of depleted serum was determined by 

micro BCA protein assay following the protocols recommended by the vendor (Thermo 

Scientific/Pierce, Rockford, IL). A 20-μg aliquot of depleted serum proteins that 

corresponds to 0.4 μl of original serum was transferred to an Eppendorf tube, to which 100-

μl of 50 mM ammonium bicarbonate was then added. Thermal denaturation was performed 

at 65 °C for 10 min. DTT and IAA solutions were prepared in 50 mM ammonium 

bicarbonate. Sample was reduced by adding a 1.25-μl aliquot of 200 mM DTT solution and 

incubated at 60 °C for 45 min. The reduced proteins were then alkylated by adding of a 5-μl 

aliquot of 200 mM of IAA and incubated at 37.5 °C for 45 min. A second 1.25-μl aliquot of 

200 mM DTT was added and followed by incubation at 37.5 °C for 30 min to consume 

excess IAA. A 0.8-μg aliquot of trypsin was added to the sample (enzyme/substrate ratio of 

1:25 w/w), and then incubated at 37.5 °C overnight. This was followed by microwave-

assisted digestion at 45 °C for 30 min at the power of 50 W. The enzymatic digestion was 

quenched by adding 0.5-μl neat FA to the samples. Then, the samples were speed-vacuum 

dried and re-suspended in 0.1% FA prior to LC-MS/MS and LC-MRM-MS analyses.

2.5 LC-MS/MS data acquisition by untargeted analysis

Analysis of sera was performed on a Dionex 3000 Ultimate nano-LC system (Dionex, 

Sunnyvale, CA) interfaced to an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, 

San Jose, CA), which is equipped with a nano-ESI source. LC-MS/MS analysis was 

performed on a tryptic digest corresponding to 1 μg of proteins which was derived from 0.2 

μl of original serum considering the whole depletion and digestion process. The samples 

were online-purified using Acclaim PepMap100 C18 cartridge (3 μm, 100Å, Dionex). The 

purified samples were then separated using Acclaim PepMap100 C18 capillary column (75 

μm id × 150 mm, 2 μm, 100Å, Dionex). The separation of the digests was achieved at 350 
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nl/min flow rate, using the following gradient: 0–10 min sustaining 5% solvent B (98% 

ACN with 0.1%FA), 10–65 min ramping solvent B 5–20%, 65–90 min ramping solvent B 

20–30%, 90–105 min ramping solvent B 30–50%, 105–106 min ramping solvent B 50–80%, 

106–110 min maintaining solvent B at 80%, 110–111 min decreasing solvent B 80–5%, and 

111–120 min maintaining solvent B at 5%. Solvent A was a 2% ACN aqueous solution 

containing 0.1% FA. The separation and scan time were set to 120 min.

The LTQ Orbitrap Velos mass spectrometer was operated with two scan events. The first 

scan event was a full FTMS scan of 380–2000 m/z with a mass resolution of 15,000 at m/z of 

400. The second scan event was collision induced dissociation (CID) MS/MS of parent ions 

selected from the first scan event with an isolation width of 3.0 m/z. Normalized collision 

energy was set to 35% with an activation Q value of 0.250 and an activation time of 10 ms. 

The CID MS/MS was performed on the five most intense ions observed from the first MS 

scan event.

2.6 LC-MS/MS data analysis

The LC-MS/MS data were analyzed using MaxQuant [21] (version 1.4.1.2) and Scaffold 

[22] (version Scaffold_3.6.3, Proteome Software Inc., Portland, OR), where the quantitation 

of proteins was based on ion intensity and spectral count, respectively.

In the MaxQuant analysis, MS/MS spectra were searched against the UniProt human protein 

database (20,259 protein entries, version of April 23, 2014) using Andromeda [23]. Decoy 

database of modified reversed protein sequences and 247 common contaminants were also 

considered in the searching. MaxQuant used an initial searching result for recalibration of 

masses and retention times, where the mass tolerance of precursor mass and fragment mass 

used in Andromeda were set as 6 ppm and 0.5 Da, respectively. Carbamidomethylation of 

cysteine was set as a fixed modification; methionine oxidation and protein N-terminal 

acetylation were set as variable modifications. Minimal peptide length was set to seven 

amino acids and at most two missed cleavages were allowed. Only proteins with more than 

two identified peptides were considered. The false discovery rate (FDR) was set at 0.01 for 

identification of peptides and proteins. Minimal numbers of razor and unique peptide were 

both set to one. Uniqueness means a peptide is unique to a single protein group. The 

“matching-between-runs” feature was enabled and the “label-free quantification” (LFQ) 

approach with a minimum of two ratio counts was used to compare and normalize protein 

intensities across runs [24]. This yielded LFQ intensities that were used in the subsequent 

statistical analysis.

The statistical analysis was performed using Perseus (version 1.4.1.3), an accompanying tool 

to MaxQuant. Identifications from reversed sequences and contaminants were first removed 

and only proteins detected in over half of the runs in either case or control group were 

retained. After the screening, the LFQ intensities were log-transformed and missing value 

imputation was applied in consideration of the estimated intensity distribution. The most 

relevant proteins with statistically significant differences between HCC cases and cirrhotic 

controls were selected using Welch’s test. We calculated p-values with the null hypothesis 

that means of the two groups (HCC and cirrhosis) are the same. In addition, we used a 

burden of illness test [25] to identify proteins differentially expressed between the two 

Tsai et al. Page 5

Proteomics. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



groups, by taking into account both the mean of the intensity values and the proportion of 

missing values (set to 0) in the two groups. The p-values associated with the tests were 

adjusted for multiple testing using the method of Benjamini and Hochberg [26] to control 

the FDR at a 0.05 level. Proteins with an adjusted p-value <0.05 by either test were selected 

as candidates for further analysis by MRM.

In the Scaffold analysis, Proteome Discoverer software (version 1.2, Thermo Scientific, San 

Jose, CA) was used to generate Mascot generic format files (*.mgf), which were 

subsequently employed for database searching using Mascot (version 2.4.0, Matrix Science, 

London, UK). Mascot was set up to search the UniProt human protein database. Peptides 

were searched with a parent ion tolerance of 10 ppm and a fragment ion mass tolerance of 

0.8 Da. Trypsin was selected allowing two missed cleavages. Carbamidomethylation of 

cysteine was set as a fixed modification while oxidation of methionine was set as a variable 

modification. Scaffold was used to probabilistically assign peptide and protein 

identifications based on PeptideProphet [27] and ProteinProphet algorithms [28], 

respectively. Peptide identifications were accepted with a probability greater than 95%, 

while protein identifications were accepted with a probability greater than 99% and 

contained at least two identified peptides. Proteins that contained similar peptides and could 

not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles 

of parsimony. Identified proteins were then quantitated based on spectral counting. Missing 

values were set to 0 prior to subsequent statistical analysis. Proteins with statistically 

significant differences (p-value <0.05) between HCC cases and cirrhotic controls were 

selected using t-test.

2.7 Design of MRM transitions for targeted quantitation

In the untargeted LC-MS/MS analysis, candidate protein biomarkers were identified using 

MaxQuant and Scaffold. We merged the results by both approaches and evaluated these 

proteins through targeted quantitation by MRM. For each targeted protein, one or two 

associated peptides were selected using the following rules [29]: (1) identified in the 

untargeted analysis with a Scaffold probability greater than 95%, (2) completely digested by 

trypsin, (3) 7-25 amino acid residues, (4) excluding the first 25 amino acids at the N-

terminus of proteins, (5) excluding peptides with M, RP, KP and glycosylation site (NXS/T), 

(6) excluding peptides with ragged ends (tryptic peptides cleaved between R/K, K/R, R/R 

and K/K), and (7) fixed carbamidomethylation of Cysteine. Next, five transitions of selected 

peptides were determined using the following rules: (1) precursor ions with charge states of 

two or three, (2) y series of fragment ions greater than y3 with a charge state of one, (3) the 

five most intense fragment ions in the MS/MS spectra from untargeted analysis, and (4) m/z 

values of precursor and transition ions between 300 and 1500.

Prior to MRM scheduling of individual samples, a 1-μl aliquot of each sample was pooled 

and subjected to MRM experiment to refine the transition list. A 3-μl aliquot of the pooled 

sample was analyzed by LC-MRM-MS. The expected retention time (RT) of each peptide 

and its transitions were manually checked using Pinpoint (Thermo Scientific, San Jose, CA) 

and compared with that in the untargeted analysis to confirm the targeted peptides. Their 

correlation plots in terms of RT are provided in Supporting Information Figure 1. An RT 
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segment was set to 12 min for each targeted peptide with its expected RT in the center based 

on the pooled sample analysis. The three most intense transition ions of each peptide were 

selected as the final transitions. Peptides and transitions were removed from transition list if 

any of them was not detected in the pooled sample analysis. In total, 101 targeted proteins 

with 187 peptides and 561 transitions were scheduled and subjected to the LC-MRM-MS 

experiments. With the abovementioned 12-min RT segment, a minimum 30 ms dwell time 

was assigned to each transition. A complete list of the MRM transitions used in this study is 

provided in Supporting Information Table 2.

2.8 LC-MRM-MS data acquisition by targeted analysis

The LC conditions described previously in the untargeted analysis were used here for 

targeted quantitation by MRM on the TSQ Vantage mass spectrometer (Thermo Scientific, 

San Jose, CA), which was operated in positive mode with an ESI voltage of 1800V. 1.5 μg 

of serum peptides derived from 0.3 μl of original serum was injected to the LC system. Data 

independent acquisition mode was used for MRM experiment. Predefined precursor and 

transition ions were monitored to specifically select targeted peptides corresponding to each 

candidate protein with 10.0 sec chromatogram filter peak width. The MRM experiments 

were performed at a cycle time of 5.0 sec and a Q1 peak width (FWHM) of 0.70 Da. The 

collision energy (CE) value for each targeted peptide is predicted by Pinpoint (CE(+2) = 

0.034 * m/z + 3.314(eV), CE(+3) = 0.044 * m/z + 3.314(eV)) with a collision gas pressure of 

1.5 mTorr in Q2.

2.9 LC-MRM-MS data analysis

The LC-MRM-MS data were analyzed using Skyline [30] (version 2.5.0.6079). Peptide 

search results from Andromeda, i.e., msms.txt and mqpar.xml, were used to recognize the 

monitored transitions from LC-MRM-MS data. The Skyline determined the RT location and 

integration boundaries for each peptide in each run independently. By comparing the same 

peptide across runs, we adjusted the RT location and integration boundaries to exclude 

interfering regions. We selected the peak closest to the RT center of segment if multiple 

peaks were detected. Each protein’s intensity was quantitated using the summation of 

intensities from its corresponding transitions. The difference between total area and 

background was assigned to quantify a transition [29]. Prior to the statistical analysis, the 

quantitated protein intensities were log-transformed and normalized by the summed 

intensity. The most relevant proteins with differential abundance between HCC cases and 

cirrhotic controls were selected using t-test, and the associated p-values were adjusted based 

on multiple testing correction (FDR <0.05).

3 Results and Discussion

3.1 Untargeted analysis

Data matrices of protein intensities were obtained by preprocessing LC-MS/MS runs from 

each cohort, based on ion intensity and spectral count. Only proteins with more than two 

identified peptides were considered. In the MaxQuant analysis, 269 and 252 proteins were 

identified in the TU and GU cohorts, respectively. The complete lists of the identified 

proteins are provided in Supporting Information Tables 3 (TU cohort) and 4 (GU cohort). In 
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the Scaffold analysis, 231 and 227 proteins were identified in the TU and GU cohorts, 

respectively. The complete list of the identified proteins in each cohort is given in 

Supporting Information Table 5. Venn diagrams showing the number of proteins identified 

by MaxQuant and Scaffold are provided in Supporting Information Figure 2.

Prior to statistical analysis, we evaluated the experimental variability by comparing the 

quantitated protein intensities of QC runs obtained from technical replicates using a standard 

from Sigma Aldrich and full process replicates using aliquots of a sample pooled from the 

patients’ sera. The correlation coefficients between the technical replicates and the full 

process replicates ranged from 0.972–0.999 and 0.937–0.995, respectively. Supporting 

Information Figures 3 and 4 show the scatter plots between pairs of technical and full 

process replicates. The calculated correlation coefficients and the plots suggest that the 

untargeted proteomic analysis had a fairly good reproducibility.

Statistical analysis of the ion intensities obtained by MaxQuant revealed 80 proteins (38 in 

TU cohort and 54 in GU cohort) that are statistically significant (Supporting Information 

Table 6). Statistical analysis of the data obtained by spectral count using Scaffold identified 

78 (42 in TU cohort and 48 in GU cohort) significant proteins (Supporting Information 

Table 7). The difference between the two cohorts may be attributed to their heterogeneous 

nature. For example, the participants in the TU cohort are all HCV positive and nearly all 

are HBV negative, whereas about half of the participants in the GU cohort are HCV positive 

and about a third are HBV positive. Also, while the TU cohort is homogeneous Middle 

Eastern, the GU cohort consists of approximately 56% Caucasian, 30% African American, 

10% Asian, and 5% Hispanic. Moreover, about three quarter of the HCC cases in the TU 

cohort are stage I HCC, while stage I HCC accounts for about half of the HCC cases in the 

GU cohort. Through further evaluation of these candidate proteins on the TSQ Vantage 

mass spectrometer using pooled sera, we finalized a list of 101 proteins for further 

evaluation by MRM (Supporting Information Table 2).

3.2 Targeted quantitation

To evaluate the variability between untargeted analysis and targeted quantitation, we 

compared the coefficients of variation (CVs) of intensities for those proteins that were 

profiled by both quantitation methods and present in over 80% of the samples within the 

HCC or the cirrhotic groups. Since this evaluation was performed on the proteins that were 

found statistically significant in the untargeted analysis and further evaluated by targeted 

quantitation, we compared the CVs in HCC and cirrhotic groups separately. Therefore, the 

CVs we calculated reflect the combined biological and analytical variation for each protein 

within each disease group. In the TU cohort, the ranges of the CVs in the HCC and cirrhotic 

groups were 2.2–8.9% (with median at 3.8%) and 2.3–8.6% (with median at 4.4%) by 

untargeted analysis, and these numbers reduced to 0.6–6.5% (with median at 1.4%) and 0.5–

7.2% (with median at 1.4%) by targeted quantitation. Similarly, in the GU cohort, the ranges 

of the CVs in the HCC and cirrhotic groups were 1.7–7.3% (with median at 3.2%) and 1.9–

8.5% (with median at 3.6%) by untargeted analysis, and they reduced to 0.7–4.9% (with 

median at 1.7%) and 0.9–5.9% (with median at 1.8%) by targeted quantitation. The 

comparison is summarized by box plots in Supporting Information Figure 5. Furthermore, 
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one-tailed paired Wilcoxon tests in every pair of group and cohort indicated that the CVs in 

the targeted quantitation are significantly smaller (p-value <0.05) than in the untargeted 

analysis.

Through targeted quantitation of the 101 candidate proteins by MRM, we found 61 proteins 

that are statistically significant (adjusted p-value <0.05). These represent 39 and 43 

significant proteins in the TU and GU cohorts, respectively, with 21 overlapping in both 

cohorts (Table 3). Heatmaps of hierarchical clustering results based on the significant 

proteins in each cohort are presented in Figure 2. The quantitation results from Skyline are 

provided in Supporting Information Table 8. Among the 21 proteins found significant in 

both cohorts, 11 are up-regulated in HCC versus cirrhosis, while 10 are down-regulated in 

HCC. All of their fold change directions are consistent with those in the untargeted analysis. 

The dot plots and ROC curves for these proteins in both cohorts are given in Supporting 

Information Figure 6, where the intensity values are based on MRM analysis and the fold 

changes are based on means. Other candidate biomarkers for the TU and GU cohorts are 

presented in Supporting Information Tables 9 and 10, respectively. While the reported AUC 

for each single biomarker is moderate, a panel selected by the SVM-RFE algorithm [31] 

from 21 proteins has led to a significant improvement over individual biomarkers including 

AFP. Specifically, the algorithm selected six proteins, namely, clusterin (CLU, P10909), 

vascular cell adhesion protein 1 (VCAM1, P19320), prostaglandin-H2 D-isomerase 

(PTGDS, P41222), phosphatidylinositol-glycan-specific phospholipase D (GPLD1, 

P80108), vasorin (VASN, Q6EMK4) and lymphatic vessel endothelial hyaluronic acid 

receptor 1 (LYVE1, Q9Y5Y7). Figure 3 depicts the ROC curves for AFP, a panel of six 

proteins, and the six proteins combined with AFP. We used a bootstrap method (1000 

bootstrap replicates) to compute the 95% confidence interval (CI) of the area under each 

ROC curve. The six proteins in a panel achieved a higher AUC (95% CI [0.72, 0.88], with 

mean of 0.80) than AFP alone (95% CI [0.62, 0.81], with mean of 0.73). While the mean 

AUC was increased to 0.84 when the six proteins were combined with AFP in a panel, the 

addition of AFP does not improve the performance since the 95% CI [0.75, 0.91] overlaps 

substantially with the ROC based on the six proteins alone. An SVM classifier trained to 

minimize the misclassification rate by combining these markers and evaluated through 

cross-validation yielded higher sensitivity and specificity (0.75 and 0.77) compared with the 

performance of AFP alone (0.7 and 0.62). This comparison was performed using the GU 

study cohort, because the clinical measurement of AFP for the cirrhotic controls in the TU 

cohort was not available.

A number of these candidate biomarkers were reported as HCC-related biomarkers in 

previous studies. Among the candidate biomarkers found in both cohorts, five up-regulated 

proteins were reported in previous HCC studies, namely, apolipoprotein A-II (APOA2, 

P02652) [32, 33], clusterin (CLU, P10909) [34–36], complement factor B (CFB, P00751) 

[32, 35], serum amyloid P-component (APCS, P02743) [35], and vitronectin (VTN, P04004) 

[37, 38]. Alteration of proteins of biofluids in HCC compared with cirrhosis may potentially 

contribute to diagnostic signatures for HCC. It is noted that VTN was reported by two 

independent studies comparing serum/plasma proteins in HCC versus patients with cirrhosis 

[37, 38]. In addition, CLU, CFB and APCS were reported in a recent study by comparing 
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the levels of plasma proteins in HCC patients, cirrhotic patients and healthy individuals from 

two African cohorts [35]. CLU was also found significant by comparing serum proteins in 

HCC versus HBV-related cirrhotic patients [36]. It is of interest to note that while this 

protein was found significant in both cohorts (Table 3), the analysis in GU cohort yielded 

greater statistical significance and fold change, where more patients recruited from this 

cohort were with HBV infection. However, the sample size in this study may not be 

sufficient enough to draw solid conclusion in this regard. The roles of CLU in HCC 

progression and metastasis have also been reported [39, 40]. Moreover, three down-

regulated proteins, i.e., adiponectin (ADIPOQ, Q15848), EGF-containing fibulin-like 

extracellular matrix protein 1 (EFEMP1, Q12805), and lymphatic vessel endothelial 

hyaluronic acid receptor 1 (LYVE1, Q9Y5Y7), were supported by their previously reported 

prognostic implications. Decreased levels of ADIPOQ have been associated with poor 

prognostic in HCC patients based on in vitro and in vivo findings [41], and this protein was 

conjectured to prevent liver tumorigenesis. EFEMP1 gene was studied through expression 

profiling and karyotype analysis [42]. Decreased levels of EFEMP1 were found in HCC 

tumor tissues and closely associated with promoter hypermethylation and worse prognosis in 

HCC. In the context of postoperative survival analysis, LYVE1 was reported as a HCC 

prognostic biomarker [43].

In addition to the aforementioned eight candidate biomarkers, we found two previously 

reported protein biomarkers: cystatin-C (CST3, P01034) and beta-2-microglobulin (B2M, 

P61769). However, the reported up-regulation of these proteins contradicts with our 

observation (i.e., down-regulation in HCC cases versus patients with liver cirrhosis). 

Specifically, through analysis of SELDI-TOF MS, increased levels of CST3 were found in 

HCC versus cirrhosis [44]. It is noted, however, this protein has been frequently reported for 

its elevation in patients with hepatic diseases [45, 46]. Thus, additional investigation of this 

protein may further elaborate its role and functionality in the development of HCC. Another 

study that involves small sample size (six per group) showed that increased levels of B2M 

could be used for early diagnosis of HCC in cirrhotic patients [47]. Apart from these, 11 

new candidates have been discovered in our study, including six up-regulated proteins: 

apolipoprotein C-II (APOC2, P02655), apolipoprotein C-III (APOC3, P02656), heparin 

cofactor 2 (SERPIND1, P05546), kininogen-1 (KNG1, P01042), phosphatidylinositol-

glycan-specific phospholipase D (GPLD1, P80108), vitamin K-dependent protein Z (PROZ, 

P22891), and five down-regulated proteins: multimerin-1 (MMRN1, Q13201), 

prostaglandin-H2 D-isomerase (PTGDS, P41222), vascular cell adhesion protein 1 

(VCAM1, P19320), complement and component C1q receptor (CD93, Q9NPY3), and 

vasorin (VASN, Q6EMK4). Among these new candidates, several are involved in blood 

coagulation (SERPIND1, KNG1, PROZ, MMRN1) and cell adhesion (MMRN1, VCAM1). 

KNG1 is also related to heparin binding. APOC2 and APOC3 have the functions of 

inhibiting lipoprotein lipase and hepatic lipase and decreasing the uptake of lymph 

chylomicrons by hepatic cells.

This study confirmed other previously reported HCC-associated biomarkers. These include 

four up-regulated proteins, complement C3 (C3, P01024) [32, 35, 48], C4b-binding protein 

alpha chain (C4BPA, P04003), complement factor I (CFI, P05156) [35], and plasminogen 
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(PLG, P00747) [32] in the TU cohort (Supporting Information Table 9), and three up-

regulated proteins, vitamin D-binding protein (GC, P02774) [32], alpha-2-macroglobulin 

(A2M, P01023) [35], and serotransferrin (TF, P02787) [32, 49] in the GU cohort 

(Supporting Information Table 10).

3.3 Gene ontology and pathway analysis

Gene ontology analysis was performed using PANTHER [50] based on the 21 biomarkers 

identified in both cohorts (Table 3). Figure 4 (a–c) illustrate the participation of these 

proteins in a diverse array of biological processes, including metabolic process, cellular 

process, biological adhesion, immune system process, localization, etc., emphasizing the 

systemic effects of HCC disease. The gene ontology analysis also reveals various molecular 

functions and pathways where the biomarkers are involved. For example, the new candidate 

biomarker heparin cofactor 2 (SERPIND1, P05546) is mapped to the pathway of blood 

coagulation and related to serine-type peptidase activity and peptidase inhibitor activity.

We used PathwayLinker [51] and DAVID [52] (version 6.7) to further identify significant 

signaling pathways, where the UniProt IDs of the significant proteins confirmed by MRM 

and their interacting neighbors were considered. We used PathwayLinker to obtain the first 

neighbor interactors of the 286 proteins detected in this study, where three interaction 

databases, BioGrid [53], STRING [54], and HPRD [55], were considered. Using the 

detected proteins and their interacting neighbors as a reference, we analyzed the proteins 

found significant in this study to determine relevant signaling pathways in KEGG [56] 

through the DAVID functional annotation tool. By mapping 34 up-regulated proteins from 

both cohorts against the 286 detected proteins and their interacting neighbors, we found 

complement and coagulation cascades as the most significantly enriched signaling pathway, 

as shown in Figure 4. This pathway involves 11 proteins that were up-regulated in this study 

(A2M, F12, F13B, SERPIND1, CFI, KLKB1, KNG1, PLG, CFB, C3, and C4BPA). When 

we analyzed the 27 down-regulated proteins from the two cohorts, we found antigen 

processing and presentation, as the most significant pathway. Among the 27 down-regulated 

proteins, three (FGB, FGG, and C7) are involved in complement and coagulation cascades 

pathway. The proteins we used for pathway analysis, the interacting proteins obtained from 

PathwayLinker, and the signaling pathways found by DAVID are provided in the 

Supporting Information Table 11.

4 Concluding remarks

We analyzed serum proteins from HCC cases and cirrhotic controls in two study cohorts 

(TU and GU), where seven high-abundance proteins were depleted, allowing relative 

quantitation of hundreds of serum proteins. Candidate protein biomarkers were identified 

through LC-MS/MS based untargeted analysis and confirmed by targeted quantitation using 

MRM. The most relevant proteins in distinguishing HCC cases from cirrhotic controls were 

selected using three statistical tests. We identified 101 statistically significant proteins 

through untargeted analysis. Among these, 61 were confirmed through targeted analysis by 

MRM. In particular, there were 21 candidate protein biomarkers found significant in both 

the TU and GU cohorts. Our findings independently confirmed several previously reported 

HCC protein biomarkers and revealed a number of new candidate biomarkers. Furthermore, 
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we performed multivariate analysis to identify a panel of six protein biomarkers, which 

yielded better performance in comparison with AFP.

Although less measurement variability has been observed by targeted quantitation compared 

with untargeted analysis, the reported fold changes of the candidate protein biomarkers are 

moderate and barely exceed two except for Ig alpha-1 chain C region, Ig alpha-2 chain C 

region, Ig kappa chain C region, and Immunoglobulin J chain in the GU cohort (Supporting 

Information Table 10). This may be attributed to the nature of the samples we collected. 

Instead of healthy controls, we used serum samples from cirrhotic patients as our controls. 

Also, the HCC cases in our study have liver cirrhosis and most are early stage HCC. Due to 

these subtle differences, substantial fold changes are not expected between HCC and 

cirrhosis. While the comparison has led to significantly altered proteins that can serve as 

candidate biomarkers, more potent computational and analytical strategies are required to 

identify biomarkers for clinical diagnosis. Further evaluation of the proteomic data at the 

peptide level might reveal more distinct signatures. Also, through more selective analysis 

using subsets of the serum proteome, it is expected to reduce the analytical complexity and 

enhance the power to identify clinically relevant biomarkers. In addition to aforementioned 

refinements, our future work will focus on evaluating if the observed proteomic signatures 

could be reliably used for diagnosis of HCC in high-risk population of cirrhotic patients. 

This will be accomplished by investigating candidate biomarkers discovered in this study on 

a larger population that includes healthy controls and that allows stratification of the patients 

on the basis of etiology and disease stage. Also, we will analyze the proteomic data to 

identify differences that may exist at the peptide level between HCC cases and cirrhotic 

patients. Finally, we plan to utilize additional omic measurements conducted on the same 

subjects [57–59] to integrate multi-omic signatures for a more comprehensive 

characterization of HCC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AFP alpha-fetoprotein

AUC area under curve

CE collision energy

CV coefficient of variation

FWHM full width at half maximum

HCC hepatocellular carcinoma

LC-MS/MS liquid chromatography coupled with tandem mass spectrometry
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MRM multiple reaction monitoring

QqQ triple quadrupole

ROC receiver operating characteristic

RT retention time
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Figure 1. 
Workflow of the proposed biomarker discovery study involving untargeted and targeted 

analysis of sera.
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Figure 2. 
Heatmaps for significant proteins measured by MRM in the TU (top panel) and GU (bottom 

panel) cohorts.
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Figure 3. 
Top panel: Dot plot and ROC curve for AFP. Bottom panel: ROC curves for AFP, a panel of 

six proteins, and a panel of six proteins combined with AFP (mean AUC and 95% 

confidence interval).
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Figure 4. 
Top panel: Gene ontology analysis by PANTHER (Protein ANalysis THrough Evolutionary 

Relationships). Bottom panel: Complement and coagulation cascades pathway involving 

both up-regulated (red) and down regulated biomarkers (blue) in KEGG database.
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Table 1

Characteristics of the TU study cohort.

HCC (n=40) Cirrhosis (n=49) p-value

Age

 Mean (SD) 53.2 (3.9) 53.8 (7.6) 0.3530

BMI

 Mean (SD) 24.9 (3.1) 24.5 (4.4) 0.6513

Gender

 Male 77.5% 67.3% 0.3474

HCV serology

 HCV Ab+ 100.0% 100.0% 1.0000

HBV serology

 HBsAg+ 0.0% 6.1% 0.2492

MELD

 Mean (SD) 18.6 (7.7) 18.9 (7.1) 0.1328

 MELD ≤ 10 20.0% 12.2% 0.3863

Child-Pugh grade

 A 15.0% 0%
0.0117

 B 47.5% 46.9%

 C 37.5% 53.1%

AFP

 Median (IQR) 275.9 (1244.3)

HCC stage

 Stage I 72.5%

 Stage II 15.0%

 Stage III 5.0%

 Unknown 7.5%
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Table 2

Characteristics of the GU study cohort.

HCC (n=57) Cirrhosis (n=59) p-value

Age

 Mean (SD) 59.7 (6.6) 59.0 (7.1) 0.602

BMI

 Mean (SD) 30.0 (6.7) 29.5 (6.5) 0.6828

Gender

 Male 71.9% 74.6% 1

 Caucasian 57.9% 66.1%

Ethnicity

 African American 28.1% 23.7% 0.4469

 Others 14.0% 10.2%

 Current 23.3% 21.7%

Smoker

 Former 49.1% 49.2% 1

 None 26.3% 27.1%

 Current 24.6% 22.0%

Alcohol

 Former 51.7% 51.7% 1

 None 33.3% 30.0%

HCV Serology

 HCV Ab+ 61.4% 39.0% 0.037

 HCV RNA+ 54.3% 37.3% 0.8791

HBV Serology

 Anti HBC+ 43.9% 28.8% 0.1574

 HBsAg+ 12.3% 5.1% 0.2018

MELD

 Mean (SD) 11.1 (3.7) 16.4 (14.3) 5.98E-03

 MELD < 10 47.4% 15.3% 8.31E-05

Child-Pugh gradea)

 A 38.6% 13.6%

 B 36.8% 54.2%

 C 10.5% 28.8%

AFP

 Median (IQR) 28.8 (83.2) 4.4 (9.7) 3.22E-05

HCC Stage

 Stage I 54.4%

 Stage II 31.6%

 Stage III 5.3%

 Unknown 8.7%

a)
Child-Pugh grade is unknown in eight HCC patients.
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