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Abstract

Both lifespan and healthspan are influenced by nutrition, with nutritional interventions proving to 

be robust across a wide range of species. However, the relationship between nutrition, health and 

aging is still not fully understood. Caloric restriction is the most studied dietary intervention 

known to extend life in many organisms, but recently the balance of macronutrients has been 

shown to play a critical role. In this review, we discuss the current understanding regarding the 

impact of calories and macronutrient balance in mammalian health and longevity and highlight the 

key nutrient-sensing pathways that mediate the effects of nutrition on health and ageing.
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Introduction

Aging is one of the greatest societal challenges in the modern world. Lifestyle choices, 

improved technology and modern medicine have contributed to a rapidly growing aging 

population (Partridge 2014). While we live longer on average than our ancestors, increased 

lifespan is not without its drawbacks. The primary problem with living longer is that with 

increasing age comes a heightened risk of chronic diseases such as cancer, type II diabetes, 

stroke, dementia and cardiovascular disorders, leading to disability and related mortality (de 

Cabo and Le Couteur 2015; Fontana, et al. 2010; Piper, et al. 2011). Currently, the major 

focus of modern medicine is treating specific age-related diseases; but with a growing 

number of older people encumbered with multiple chronic conditions (Fontana, et al. 2014), 

this approach is problematic, e.g. leading to complications arising from multiple medications 

for different conditions (de Cabo and Le Couteur 2015). Rather than treat the symptoms of 
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aging, a logical alternative approach would be to intervene in the aging process itself 

(Partridge 2014).

Interventions that slow the rate of aging and increase healthspan and lifespan have been of 

considerable interest over the past 80 years. While genetic and pharmaceutical interventions 

have been widely explored in laboratory models (Baur, et al. 2006; Kenyon, et al. 1993; 

Mitchell, et al. 2014), translating such approaches to humans is difficult (Fontana and 

Partridge 2015). Nutritional manipulations, however, have proven to be similarly robust 

across multiple animal models and humans, with profound impacts on reproduction, health 

and aging. The complex relationship between nutrition and age-related health is not fully 

understood, however. A growing body of evidence has pointed to dietary restriction as an 

important mediator of health and lifespan (Masoro 2000, 2003; Miller, et al. 2005; Piper et 

al. 2011). But what does dietary restriction actually mean? Throughout the literature, dietary 

restriction is often used interchangeably with caloric restriction (CR). Whereas dietary 

restriction can involve different feeding regimens such as intermittent fasting or alternate 

day feeding (Ingram and Roth 2015), CR refers more specifically to the reduction of total 

calorie intake by 20-50% without malnutrition (Masoro 2005; Weindruch, et al. 1986). 

Recent evidence, however, suggests that the balance of macronutrients, rather than total 

energy intake, plays a larger role in lifespan extension than previously attributed (Mair, et al. 

2005; Solon-Biet, et al. 2014; Zimmerman, et al. 2003). Whether calories or specific 

nutrients affect aging is a critically important issue to resolve, with important implications 

for aging research (Simpson and Raubenheimer 2007). In this review, we discuss the current 

understanding and impact of both calories and macronutrients on health and lifespan based 

on studies in invertebrate and mammalian models, and highlight the use of nutritional 

geometry as a framework to help disentangle the complex relationship between diet and 

healthy aging.

Dietary restriction

There is widespread consensus in aging research that eating fewer calories results in a 

longer, healthier life. To date, CR has been the primary focus of most non-genetic nutritional 

interventions (Ingram, et al. 2004; Mattison, et al. 2003; Sinclair 2005). Yeasts, nematode 

worms, fruit flies, rodents and even non-human primates have been used as models for the 

study of CR and aging, suggesting that these effects must act via evolutionarily conserved 

mechanisms (Figure 1) (Lin, et al. 2000; Weindruch et al. 1986). Since the first account of 

the life-extending effects of CR in rats in the early 1930’s, there has been a substantial 

amount of research into the dietary basis of aging (McCay, et al. 1935). It was not until the 

early 1980s that the idea of CR as a viable model for aging and the study of age-related 

diseases really came to fruition (Masoro 1991; Masoro, et al. 1982; Walford, et al. 1992). 

Despite the great strides made towards understanding the mechanisms of CR, much still 

remains unknown. Initial work exploring CR as a robust nutritional intervention for aging 

began with yeasts, worms and flies. In yeast (Saccharomyces cerevisiae), CR is mediated by 

reduced glucose levels, extending both overall lifespan and replicative lifespan (Bonawitz, et 

al. 2007; Kaeberlein, et al. 2005; Powers, et al. 2006) and in the worm Caenorhabditis 

elegans and the fruit fly Drosophila melanogaster, some forms of food restriction via 

nutrient manipulation also successfully extended lifespan (Partridge, et al. 2005; Taormina 
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and Mirisola 2014). Interestingly, the beneficial effect of CR does not appear to be 

universal. Although experiments in rodents produces a net beneficial effect to overall 

metabolic health in laboratory animals, (Bordone and Guarente 2005; Ingram et al. 2004; 

Masoro 2000) the effects on lifespan extension are highly dependent on various other factors 

such as strain and sex (Festing and Blackmore 1971; Liao, et al. 2010; Yuan, et al. 2009). 

40% CR extends maximal lifespan in male B6D2F1 mice by 20% relative to ad libitum fed 

controls (Wolf, et al. 1995); however, whether this effect also extends to females remains to 

be seen. We do know that CR extends lifespan in genetically heterogeneous mice created 

from four inbred strains (BALB/c, C57BL/6, C3H, and DBA2), although more than 90% 

died of cancer which may not be representative of the human situation (Miller, et al. 2011). 

Translation into longer-lived mammals has continued to show conflicting results (Liao et al. 

2010; Mattison, et al. 2012). Two long term studies in non-human primates were initiated in 

the early 1980s in order to address this question. Although both studies confirm the findings 

that CR delays the onset of age-associated diseases, CR monkeys from the National Institute 

on Aging (NIA) did not live longer than their ad libitum fed counterparts, which is in 

contrast to results obtained in the Wisconsin cohort (Colman, et al. 2009; Colman, et al. 

2014; Mattison et al. 2012). These results were attributed to possible discrepancies in diet 

design and diet composition (Mattison et al. 2012). NIA monkeys were fed a diet rich in 

natural ingredients such as protein derived primarily from plant sources while the Wisconsin 

monkeys were fed a semi-purified diet with protein derived from lactalbumin (Ingram, et al. 

1990; Ramsey, et al. 2000). Carbohydrate quality also differed between studies with the NIA 

diets containing significantly less sucrose than the Wisconsin study (Mattison et al. 2012).

Such studies highlight the question of whether CR per se is solely responsible for extended 

longevity or if particular macronutrients or a balance of macronutrients is more important 

(Table 1). While the effect of CR on human lifespan is yet to be determined, CR has been 

shown to improve several markers of health (Fontana et al. 2010; Heilbronn, et al. 2006). 

But despite these benefits, a central limitation is that compliance to lifetime CR is 

challenging in humans and the risk of missing essential nutrients can be detrimental to 

reproduction, bone structure and overall metabolic health (Fontana and Partridge 2015; 

Ingram and Roth 2015). Hence, dietary interventions involving ad libitum access to diets 

designed to prolong healthspan would be of greater utility than CR.

Calorie restriction or protein restriction?

Recent studies have suggested that the beneficial effects of CR on lifespan may be due to the 

reduced intake of specific dietary components such as proteins, rather than total energy 

intake (Mair et al. 2005; Pamplona and Barja 2006; Piper, et al. 2005; Zimmerman et al. 

2003) with these effects acting largely through the same evolutionarily conserved signaling 

pathways (Figure 2). The restriction of protein intake, rather than energy, may offer a more 

feasible nutritional intervention in humans. Work by McCay as early as 1929 reported that a 

low protein diet extended the lifespan of trout (McCay, et al. 1929). Since then, it has been 

shown that the restriction of essential amino acids can increase lifespan in honeybees (Paoli, 

et al. 2014), and the restriction of particular amino acids, such as methionine, can extend 

lifespan in mice (Sun, et al. 2009) and rats (Orentreich, et al. 1993; Richie, et al. 1994), and 

lower the levels of serum IGF-I, insulin, glucose and thyroid hormone in (BALB/cJ × 
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C57BL/6 J) F1 mice (Miller et al. 2005). Recently, the restriction of essential amino acids 

(Robertson, et al. 2015) and the sulfur amino acids methionine and cysteine (Robertson et al. 

2015) have been shown to protect against hepatic ischemia reperfusion injury by 

preconditioning against oxidative stress, complications of cardiovascular surgery (Robertson 

et al. 2015) and mediating hydrogen sulfide production (H2S) (Hine, et al. 2015). H2S 

production under protein restriction exerts a hormetic response, acting on brain signaling 

and the vascular system to reduce blood pressure and trigger the same signaling response 

cascade observed in animals fed protein-restricted diets via activation of GCN2, eIF2α and 

ATF4 and repression of mTOR (Figure 2) (Hine et al. 2015; Robertson et al. 2015). 

Moreover, a meta-analysis of animal studies of caloric restriction and aging conclude that 

the restriction of protein, rather than caloric restriction, appeared to have the greatest effect 

on delaying aging (Nakagawa, et al. 2012). Data in humans indicate that reduced protein 

intake may become an important component of anticancer and anti-aging dietary 

interventions (Fontana, et al. 2008; Levine, et al. 2014).

Macronutrient balance

While both CR and protein restriction have been shown to impact aging, a fundamental 

limitation of these two one-variable-at-a-time approaches is that they cannot disentangle the 

interactive effects of nutrients and calories (Simpson, et al. 2015). Recent studies have 

begun to tackle these interactions and shown the importance of the balance of 

macronutrients on health and aging. Such evidence has been derived using the Geometric 

Framework for nutrition (GF; Simpson and Raubenheimer 2009, Simpson and 

Raubenheimer 2012). In the GF, nutrition is represented in an n-dimensional space, in which 

the components of n represent focal dietary components (e.g. macronutrients). Various 

phenotypic responses (e.g. lifespan) can be modelled onto this n-dimensional space, 

providing a detailed landscape of the effects of nutrition. Using this framework allows the 

use of nutritional geometry to simultaneously interpret the effects of energy, individual 

macronutrients (or other focal dietary components) and the interactions within and between 

nutrients (Piper et al. 2011; Simpson and Raubenheimer 2012). This framework has helped 

to resolve conflicting ideas about the nutritional determinants of health and aging, and to 

reconcile views on resource-mediated trade-offs between reproduction and longevity 

(Jensen, et al. 2015; Lee, et al. 2008; Solon-Biet, et al. 2015b; Tatar, et al. 2014).

Studies in both invertebrates and mice show that reproduction and longevity do not trade-off 

against one another; rather, these responses have different nutritional requirements. In the 

field cricket Teleogryllus commodus and fruit fly Drosophila melanogaster, the 

macronutrient blend that maximized lifespan was markedly different from diets which 

maximized reproductive variables (Jensen et al. 2015; Maklakov, et al. 2008). Maximal 

longevity occurred on low protein (P), high carbohydrate (C) diets in both males and 

females, while a higher P:C ratio was better for reproduction in females only. Consuming a 

low proportion of protein in the diet relative to carbohydrate, not total calories, extended 

lifespan in ad libitum-fed flies (Bruce, et al. 2013; Lee et al. 2008), while diets with a higher 

proportion of protein shortened lifespan but improved reproduction (Lee et al. 2008). This 

result has been replicated in several other insect species (Dussutour and Simpson 2009; 

Fanson, et al. 2009; Grandison, et al. 2009; Lee et al. 2008; Piper et al. 2011) and 
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consistently indicates that the balance of macronutrients is the chief nutritional cue that 

directs metabolism towards longevity or reproduction (Wilder, et al. 2012). A recent study 

in mice showed that ad libitum low protein, high carbohydrate diets fed short-term improved 

several markers of health including insulin, HOMA, glucose tolerance and triglycerides to a 

level comparable to CR, but without at 40% reduction in total calorie intake (Solon-Biet, et 

al. 2015a). Long-term investigations in ad libitum-fed mice across 25 different diets varying 

in macronutrient composition support these findings, showing that latelife health and 

longevity were optimized not by reducing energy intake, but by low P:C diets (Solon-Biet et 

al. 2014). In an attempt to stabilize protein intake, mice displayed a compensatory increase 

in food intake on low protein diets, resulting in increased energy intake and greater 

adiposity, but experienced a significant increase in lifespan, improved blood pressure, lipid 

profiles, mitochondrial function, insulin sensitivity (Solon-Biet et al. 2014) and immune 

function (T and B cell populations) measured at 15 months (Le Couteur, et al. 2014). These 

health and longevity consequences were shown to be related to circulating branched chain 

amino acid (BCAA) levels, which, interestingly, were the only amino acids to be positively 

correlated to protein intake under chronic feeding conditions. BCAA levels were the lowest 

in mice on the low protein, high carbohydrate diets correlating to diet treatments that yielded 

the longest health and lifespan.

Reports about the role of BCAAs in aging and health are seemingly divergent. Some suggest 

that elevated BCCAs are harmful because they are linked with obesity and diabetes, while 

others suggest that BCAAs should be supplemented to increase mitochondrial biogenesis 

(D’Antona, et al. 2010). For example, in a major review, Newgard (2012) noted that human 

epidemiological studies and animal studies show that elevated BCAAs are associated with 

and predict diabetes, obesity and heart disease, while animal and cell studies show that 

BCAA supplementation increases activation of certain nutrient signaling pathways which 

are detrimental for aging (Chotechuang, et al. 2009). In another review, Valerio, et al. 

(2011) argue that BCAAs increase mitochondrial biogenesis and muscle function, thus 

BCAA supplementation should be considered as a treatment for older people. While the 

exact roles of BCAAs in health and lifespan are yet to be determined, evidence suggest that 

BCAAs may be an important mediator of key molecular pathways that link nutrition with 

aging.

Nutrient-sensing pathways

Nutrient-sensing pathways that mediate the effects of nutrition on health and aging have 

been explored in many experimental models (Chantranupong, et al. 2015; Fontana et al. 

2010; Hubbard and Sinclair 2014). These include the evolutionarily conserved key 

regulators mTOR, AMPK, insulin/IGF-1 and sirtuins. Both calories and macronutrients 

influence these pathways which have evolved to respond to periods of famine by switching 

cells and organism from their focus on growth and reproduction, towards survival and 

resilience (Figure 3) (Kapahi, et al. 2010; Le Couteur, et al. 2012; Speakman and Mitchell 

2011). Although there are at least four key nutrient-sensing pathways implicated in 

longevity, these interact and share many downstream targets that regulate cell processes 

involved in aging, including mitochondrial biogenesis, cellular metabolism, autophagy, 

DNA repair and expression, and translation.
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Mechanistic Target of Rapamycin (mTOR)

In eukaryotic cells, mTOR is highly conserved and acts as a central regulator of growth and 

metabolism in response to nutrient and growth factor cues (Stanfel, et al. 2009). This 

pathway is involved in anabolic processes including protein and lipid synthesis (Efeyan, et 

al. 2015). mTOR integrates input from various pathways, including insulin and IGF-1, and 

responds to dietary protein, particularly BCAAs (Chotechuang et al. 2009; Solon-Biet et al. 

2014). In addition, mTOR responds to changes in cellular energy levels, altered genetic 

makeup, gene manipulations and pharmacological interventions that affect lifespan 

(Arsham, et al. 2003; Tato, et al. 2011; Wang and Proud 2009). In mammals, mTOR has two 

structurally and functionally distinct multiprotein complexes: mTORC1 and mTORC2 

which are differentiated by their accessory proteins, Raptor and Rictor (Jacinto, et al. 2004). 

mTORC1 is the only complex sensitive to amino acids (Yuan, et al. 2013) and is the primary 

modulator of protein, lipid, nucleotide synthesis and autophagy while mTORC2 is involved 

in cell proliferation and survival (Chantranupong et al. 2015). In animal models, it has been 

demonstrated that inhibition of mTOR protects against metabolic dysfunction, obesity, 

cancer and neurodegeneration (Stanfel et al. 2009) which can be achieved through 

pharmaceutical interventions such a rapamycin (Harrison, et al. 2009; Miller et al. 2011) or 

nutritional interventions such as alterations in the ratio of dietary P:C (Solon-Biet et al. 

2014). In mice, mTOR was activated most strongly by the ratio of circulating BCAA to 

glucose (i.e. the P:C), providing a key mechanistic link from the longevity and health 

impacts of low P:C diets to the mTOR pathway. Reducing mTOR signaling is critical for 

improved health and lifespan.

5’ adenosine monophosphate-activated protein kinase (AMPK)

AMPK regulates cellular uptake of glucose, β-oxidation of fatty acids, the glucose 

transporter 4 and mitochondrial biogenesis. Activation of AMPK has been proposed as one 

of the mechanisms through which CR has beneficial effects on lifespan and healthspan 

(Cantó and Auwerx 2011). AMPK is a serine/threonine protein kinase, which is activated by 

cellular stresses that alter the AMP/ATP ratio resulting in depletion of ATP. As a 

consequence, ATP-consuming pathways are turned off, while ATP generation is turned on 

(Dagon, et al. 2006). AMPK is a heterotrimeric protein comprised of one catalytic (α) and 

two regulatory (β and γ) subunits containing the kinase domain which when phosphorylated 

results in increased AMPK activity (Dagon et al. 2006). Recently, Mair and colleagues 

showed that cyclic AMP-responsive element binding protein (CREB)-regulated 

transcriptional co-activator (CRTC-1) is an essential target for AMPK-mediated lifespan 

extension in C. elegans (Mair, et al. 2011). Longevity via transcriptional regulation of 

AMPK occurred through CRTC-1 downregulation, with neuronal CRTC-1 playing a 

primary role in regulating longevity and mitochondrial metabolism in peripheral tissues 

(Burkewitz, et al. 2015; Mair et al. 2011). In mammals, hepatic AMPK activation acts to 

slow gluconeogenesis and down-regulate key genes such as G6Pase and PEPCK, while in 

the muscle, it stimulates glucose uptake by increasing expression of glucose transporters 

such as GLUT-4 (McCarty 2004). The cardioprotective effects of short-term CR are thought 

to be mediated through AMPK activation (Shinmura, et al. 2007). Administration of the 

drug Metformin enhances lifespan in mice and this is accompanied by an increase in AMPK 
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activity (Martin-Montalvo, et al. 2013), hence AMPK modulation represents an attractive 

target for inducing CR-like benefits. By activating this nutrient sensor, AMPK can extend 

healthspan and lifespan by restoring energy balance via catabolic responses such as fatty 

acid oxidation, proteolysis and inhibiting processes not essential for survival such as cell 

growth and proliferation (Canto, et al. 2009). These responses have been shown to underlie 

the beneficial effects of CR. Whether AMPK activation reflects the balance of dietary 

macronutrients as well as measures of energy status remains to be seen, but has been 

postulated (Simpson and Raubenheimer 2009).

Sirtuin pathway: SIRT1

Sirtuins have been shown to regulate the aging process and mediate CR-induced longevity in 

organisms including S. cerevisiae, C. elegans and D. melanogaster (Guarente and Kenyon 

2000). Sirtuins are class III histone deacetylases that require NAD+ as a cosubstrate. CR 

increases cellular NAD+ as a consequence of reduced energy intake, thereby activating 

sirtuins. In mammals, there are seven homologs (SIRT1-7) which have been identified. 

SIRT1 remains perhaps the best and most studied, which is likely due to it sharing the most 

sequence similarity with the yeast Sir2 (Allard, et al. 2009; Frye 2000). SIRT1 has multiple 

functions, some of which are outlined in Figure 1, and include deacetylation of a large 

number of transcription factors (Boily, et al. 2008; Guarente 2006; Longo and Kennedy 

2006), and regulation of PGC-1α (Gerhart-Hines, et al. 2007; Rodgers, et al. 2005; Sun, et 

al. 2007). In middle aged rats, CR has been reported to increase the expression of SIRT1 

protein in brain, fat, kidney, and liver (Cohen, et al. 2004; Nisoli, et al. 2005). In young CR 

mice, SIRT1 protein expression was increased in muscle and fat but markedly reduced in the 

liver (Chen, et al. 2008). The SIRT1 protein, but not its increased expression, is essential for 

lifespan extension in CR mice (Mercken, et al. 2013). There is a number of pharmacological 

agents that allosterically activate SIRT1 and delay aging, including resveratrol and SRT2014 

(Baur et al. 2006; Howitz, et al. 2003; Mercken, et al. 2014; Milne, et al. 2007; Sinclair and 

Guarente 2014). Notably, resveratrol increased lifespan in mice fed a high fat diet but not in 

mice on standard chow where only health benefits were observed (Baur et al. 2006; Pearson, 

et al. 2008). This suggests that activation of the SIRT1 pathway may have its greatest effect 

on aging where there is high energy intake and greatest inhibition of SIRT activity.

Insulin/IGF-1

Lower levels of insulin and IGF-1 induced by CR or low P:C diets are associated with 

improved health and increased lifespan across taxa including humans (Fontana et al. 2010; 

Levine et al. 2014; Miller et al. 2011). Mice with mutations along the growth hormone 

(GH)-IGF-1-insulin pathway have been shown to be long-lived (Flurkey, et al. 2001; Hsieh, 

et al. 2002) and low IGF-1 levels in humans can predict survival in people with exceptional 

longevity (Milman, et al. 2014). The balance of macronutrients, namely low P:C, reduces 

insulin levels and HOMA in mice (Solon-Biet et al. 2014) supporting findings that inhibiting 

this pathway through diet is important for healthspan and lifespan extension. Moderating 

insulin secretion either by diet or administration of Metformin can reduce insulin/IGF-1 

signaling via activation of AMPK (McCarty 2004), facilitating glucose uptake into the cell, 

reducing glucose, insulin, and IGF-1 levels, leading to the prevention, or even reversal, of 

insulin resistance (Minor, et al. 2010).
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FGF21: an emerging key regulator?

A recent potential addition to these four classical nutrient sensing pathways is Fibroblast 

Growth Factor 21 (FGF21), which is emerging as an endocrine signal associated with 

metabolic control. It is increased in response to acute starvation but also in the obese/

diabetic condition, with a recent study showing that low protein intake is the major stimulant 

for its expression in liver and subsequent increase in the circulation (Laeger, et al. 2014). 

FGF21 regulates several metabolic functions (gluconeogenesis, mitochondrial activity, 

ketogenesis, lipid metabolism, energy expenditure) which would be expected to be 

beneficial for age-related health. Similar effects have been reported in response to dietary 

methionine restriction (Lees, et al. 2014; Stone, et al. 2014). Although circulating FGF21 

derives primarily from liver, it is also expressed in other metabolically important tissues, 

including white and brown adipose tissue, skeletal muscle, heart and pancreas (exocrine and 

β cells). Such a pattern of expression is indicative of a role for this hormone in metabolic 

control. Just as for the four other nutrient sensing pathways discussed above are highly 

interconnected, FGF21 too, plays a communicated role in nutrient signaling and has been 

shown to activate AMPK and SIRT1 (Chau, et al. 2010), suggesting a role for FGF21 in 

linking nutrition and aging.

Outlook

This review has focused primarily on the relationships between calories and macronutrients 

and their effects on health and aging. Although both CR and macronutrient balance have 

profound impacts on health and lifespan, it is important to note that other dietary regimens 

such as intermittent fasting and time-restricted feeding, also have beneficial effects in both 

mice and humans (Fontana and Partridge 2015; Mattson, et al. 2014). The fact that results of 

Solon-Biet et al (2014) show that limiting energy intake by dilution under ad libitum 

conditions has no benefit, yet under CR protocols it does, must suggest that it is not just the 

restriction per se that matters, but also the timing of intake (Simpson et al. 2015). Exactly 

how the complex network of nutrient signaling pathways interact to mediate the effects of 

various feeding regimens remains to be investigated. Although considerable research has 

gone into understanding these underlying mechanisms, none have yet studied it as a function 

of multiple nutrient dimensions. As highlighted in a recent review (Simpson et al. 2015), 

different nutritional interventions will have different effects on these pathways and 

understanding exactly how multiple nutrient dimensions affect these pathways can only be 

done using a framework that integrates these components simultaneously. The Geometric 

Framework is such a tool. Exactly how calories and macronutrients, and the interplay of 

both, influence these pathways is a fundamental question to resolve. A better understanding 

can have important implications for diet management, disease prevention and 

pharmaceutical interventions.
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Figure 1. 
The complex metabolic network of potential players in the mechanism of caloric restriction 

(CR). A reduction in energy intake influences cellular energy levels, activating the AMPK 

and SIRT1 pathways. Antagonistic responses include the inhibition of the anabolic pathways 

mTOR and insulin/IGF-1. Downstream effects result in increased stress resistance and 

improved lifespan and healthspan.
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Figure 2. 
The complex metabolic network of potential players in the mechanism of low 

protein:carbohydrate (P:C) diets. Low P:C diets activate GCN2 and FGF21 and inhibit 

activation of mTOR and Insulin/IGF-1. Inhibition of these pathways activates AMPK and 

AKT, resulting in improved metabolic health, lifespan and healthspan.
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Figure 3. 
Schema showing the mechanism for the beneficial effects of caloric restriction on aging. 

The red boxes show that standard view based on energy intake. The impact of the balance of 

macronutrients and compensatory feeding in ad libitum diets in relation to this pathway 

(blue boxes). This more closely approaches real-life feeding in animals and humans that 

have unlimited access to food across a wide range of macronutrient compositions.
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