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Abstract

In multicellular organisms, individual cells have evolved to sense external and internal cues in 

order to maintain cellular homeostasis and survive under different environmental conditions. Cells 

efficiently adjust their metabolism to reflect the abundance of nutrients, energy and growth 

factors. The ability to rewire cellular metabolism between anabolic to catabolic processes is 

critical for cells to thrive. Thus, cells have developed, through evolution, metabolic networks that 

are highly plastic and tightly regulated to meet the requirements necessary to maintain cellular 

homeostasis. The plasticity of these cellular systems is tightly regulated by complex signaling 

networks that integrate the intracellular and extracellular information. The coordination of signal 

transduction and metabolic pathways is essential in maintaining a healthy and rapidly responsive 

cellular state.

Introduction

Living organisms require a constant supply of energy to maintain cell and organ function. 

Thus, an adequate balance between energy production and energy expenditure is essential to 

maintain cellular homeostasis. This is achieved by the regulation of the dynamics between 

the combustion of fuel sources to produce energy (catabolism), and their ability to utilize 

energy to synthesize macromolecules (anabolism). The importance of the balance between 

these two processes becomes apparent when the metabolic differences between growing 

cells and differentiated/quiescent cells are examined. To support growth and proliferation, 

cells rewire their metabolism to promote anabolic processes that synthesize the 

macromolecules (proteins, carbohydrates, lipids and nucleic acids) required for generating a 

daughter cell. On the other hand, most tissues are comprise of differentiated and non-

dividing cells, thus their metabolism is normally wired towards catabolic processes that 

provide energy to sustain cellular integrity and function. Maintaining this delicate balance is 

one of the most important requirements of life. Thus, it comes as no surprise that eukaryotic 
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cells have evolved to constantly and carefully modulate these processes in response to the 

ever-changing conditions.

In multicellular organisms, cells must be responsive to systemic cues of the physiological 

state to maintain energetic and cellular stability in addition to sensing the immediate 

environment. This is achieved through the ability of the cells to sense secreted factors (e.g. 

cytokines, growth factors, hormones) that, upon binding to a cell surface receptor, initiate 

signaling cascades that transduce information and regulate metabolism. Moreover, to ensure 

that balance between both the availability of nutrients and the cellular capacity to use them 

effectively is maintained, cells can also sense intracellular metabolite concentrations to fine-

tune the signaling networks independently of the environment. Many recent findings have 

highlighted the fact that metabolites serve as indicators of the metabolic state of the cell, that 

transduce this information through regulation of pro-translational modifications, such as 

acetylation, methylation and glycosylation, that regulate the activities of several signaling 

molecules and transcriptional regulators (not discussed further here, for review on this topic 

see [1,2]).

Understanding this intricate bidirectional relationship is a challenge due to its complexity, 

but one that is vital for understanding the principles of cellular homeostasis. Such 

knowledge will be of enormous benefit to determining how diseases develop as well as how 

to treat them.

Anabolic rewiring induced by PI3K/Akt and Ras/ERK signaling

Growth factors, hormones and nutrient signals provide the information required to rewire 

intermediate metabolism towards anabolism, thereby supporting cell growth and 

proliferation. The signaling framework downstream of these stimuli is primarily defined by 

two highly conserved and critical pathways, the phosphatidylinositol-3-kinase (PI3K)/Akt 

and the extracellular signal-regulated kinase - mitogen-activated protein kinase (ERK-

MAPK) signaling cascades (Fig.1).

PI3K/Akt signaling-induced Anabolic Reprogramming

Growth factors and other ligands activate PI3K signaling upon binding and consequent 

activation of their cell surface receptors, such as receptor tyrosine kinases (RTKs) and G 

protein-coupled receptors (GPCRs). This leads to the phosphorylation of membrane 

phosphatidylinositiol lipids and the recruitment and activation of several protein kinases, 

which perpetuate the extracellular signals to modulate intracellular processes [3,4]. One of 

the most critical signal propagators regulated by PI3K signaling is protein kinase B/Akt 

[3,4]. Indeed, Akt rewires metabolism in response to environmental cues by three distinct 

means; i) by the direct phosphorylation and regulation of metabolic enzymes, ii) by 

activating/inactivating metabolism altering transcriptional factors, and iii) by modulating 

other kinases that themselves regulate metabolism [5].

Akt regulates glucose metabolism, inducing both glucose uptake and glycolytic flux by 

increasing the expression of the glucose transporter genes and regulating the activity of 

glycolytic enzymes, respectively [6–8]. Morever, the ability of Akt to induce glycolysis is 
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also mediated by the regulation of Hexokinase (HK). HK performs the first step of 

glycolysis. Akt has been shown to regulate the ability of HK-II to interact with the 

mitochondria, and thus promotes glucose carbon to be oxidized through glycolysis [9]. By 

regulating glycolysis, Akt might be involved in regulating the tricarboxylic acid (TCA) 

cycle activity via the malate/aspartate and glycerol-phosphate shuttles. In addition to glucose 

metabolism, Akt also directly phosphorylates and activates ATP-citrate lyase (ACL) [10]. 

ACL promotes the production of acetyl-coA in the cytosol from citrate generated in the 

TCA cycle [11]. Cytosolic acetyl-coA is vital for de novo lipid synthesis, as it can initiate 

and/or elongate fatty acids chains [11], thus linking Akt signaling to lipid synthesis.

Moreover, Akt also regulates the transcription factor c-Myc, a key transcriptional factor that 

promotes anabolic processes, through phosphorylation and inactivation of a negative 

regulator of c-Myc, glycogen synthase kinase-3 (GSK3) [12]. Together these findings 

demonstrate that upon stimulation, the PI3K/AKT pathway rewires cells from catabolic to 

anabolic metabolism (Fig.1).

Ras/ERK signaling cascades and its consequences for anabolism

Extracellular cues also lead to the activation of the small GTPase, Ras. Like PI3K, the Ras 

family (H-, K- and N-Ras) is activated downstream of cell surface receptors. Ras activation 

involves its transition to a GTP-bound state, which initiates signal transduction through 

several pathways, of which the ERK-MAPK signaling cascade is the best characterized [13].

Taking into consideration the key role of Ras in orchestrating biological responses to stimuli 

that induce cell growth and proliferation, Ras stands out as a possible key driver of anabolic 

reprogramming. In support of this, Ras has been shown to decouple glucose and glutamine 

metabolism, thus diverting these carbon sources to anabolic pathways to support cell growth 

and proliferation [14]. Ras signaling enhances glucose uptake and glycolytic flux, but 

decreases glucose entry into the TCA cycle [14,15]. This increased flux through glycolysis 

has been shown to fuel anabolic processes by diverting glucose-derived carbon to the non-

oxidative arm of the PPP, thus supporting nucleotide biosynthesis [16]. Interestingly, the 

mechanisms behind these effects of Ras were found to be through ERK stabilization of c-

Myc, which increases the expression of enzymes involved in these pathways [16]. In 

addition, ERK also induces the flux of glucose-derived carbon towards biosynthetic 

pathways by phosphorylating and inducing nuclear translocation of the anabolism-related 

version of pyruvate kinase, pyruvate kinase M2 (PKM2) [17]. While Ras signaling diverts 

the glucose-derived carbon flux away from the TCA cycle, it also promotes the utilization of 

glutamine for anaplerosis and the maintenance of redox potential [14,18]. Thus, activation of 

Ras makes the cells more dependent on glutamine as a source of carbon and nitrogen for 

anabolic processes [14,18].

Together, these reports have shown that activation of Ras/ERK signaling cascade rewires 

cells towards anabolism, to promote synthesis of building blocks and energy necessary for 

cell growth and proliferation (Fig.1).
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Mechanistic target of rapamycin (mTOR) as the master regulator of 

anabolic reprogramming

Despite the direct effects of PI3K/AKT and Ras/ERK on metabolism, activation of mTOR 

by these pathways seems to account for a large proportion of their metabolic contributions. 

mTOR exists in two functionally and structurally distinct complexes mTOR complex 1 

(mTORC1) and 2 (mTORC2). Of the two complexes, mTORC1 seems to have the most 

direct influence in the maintenance of energetic balance [19]. The PI3K-Akt and Ras/ERK 

pathways are potent activators of mTORC1 activity, through the negative regulation of 

tuberous sclerosis complex 2 (TSC2), a major inhibitor of mTORC1 activation. Akt directly 

phosphorylates TSC2 at multiple sites [20]. ERK1/2 induce the phosphorylation of TSC2 

through its downstream target p90 ribosomal S6 Kinase (RSK) at some Akt as well as at 

novel sites [21]. These phosphorylation events release TSC2-mediated inhibition of the 

GTPase Ras homolog enriched in brain (RHEB), thus allowing RHEB to activate mTORC1 

[22]. Moreover, both ERK and RSK promote mTORC1 activity by phosphorylating raptor, a 

key substrate-binding element of the mTORC1 complex [23,24]. Importantly, mTORC1 is 

also considered a major nutrient sensor as its activity is regulated by the availability of 

amino acids and glucose [25,26]. Thus, the ability of mTORC1 to integrate mitogenic 

signals with the nutritional status of the cell makes it a critical rheostat for the maintenance 

of metabolic balance and cellular homeostasis [26].

In the presence of nutrients and growth factors, mTORC1 drives ATP-consuming cellular 

processes necessary for cells to grow and proliferate (Fig. 2). mTORC1 also regulates 

protein synthesis by inducing mRNA translation and ribosome biogenesis [27,28] through 

its canonical substrates S6 kinases (S6Ks) and the inhibitory eIF4E-binding proteins 

(4EBPs) [29]. Interestingly, mTORC1 has been shown to also increase the efficiency of 

proteasome-mediated protein degradation to maintain proteostasis and sustain the increase in 

protein synthesis [30]. In addition to protein synthesis, mTORC1 has been recently 

implicated in the regulation of other major metabolic pathways of the cell, including lipid 

and nucleic acid synthesis, glycolysis, glutaminolysis, TCA cycle and oxidative 

phosphorylation, further supporting the idea of mTORC1 as a master regulator of 

metabolism [26,31].

The ability of mTORC1 to regulate these pathways has been largely attributed to the 

regulation of key metabolic-related transcription factors. However, recent reports have also 

identified post-translational mechanisms [32,33]. Indeed, through regulation of 4EBP1 and 

S6K1, mTORC1 can promote the translation of hypoxia-inducible factor 1α (HIF1α) and c-

Myc, thereby inducing the expression of glycolytic enzymes, glucose transporters and 

inhibiting the glucose-derived carbon flux through the TCA cycle [34,35]. This diverts the 

glucose-derived carbon from the TCA cycle to biosynthetic pathways, which promote cell 

growth. Consistent with this notion, mTORC1 signaling induces the oxidative arm of the 

pentose phosphate pathway (PPP) through increasing the expression of the rate-limiting 

enzyme, glucose-6-phosphate dehydrogenase (G6PD) thus increasing the generation of 

ribose (essential for nucleotide synthesis) and NADPH (essential for lipid synthesis) [35]. 

Moreover, mTORC1 through S6K1, regulates de novo pyrimidine synthesis by 
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phosphorylating and activating the carbamoyl-phosphate synthetase 2, aspartate 

transcarbamylase, and dihydroorotase (CAD) [33,36]. CAD catalyzes the first three steps in 

de novo pyrimidine synthesis, thus providing a direct link between mTORC1 and an 

increase in the production of nucleotides [33,36].

c-Myc and mTORC1 are potent regulators of glutamine-mediated anabolic processes. c-Myc 

induces the expression of several proteins essential for glutamine anaplerosis, such as 

glutaminase (GLS) and the glutamine transporters [37]. Cells with mTORC1 active have 

been reported to be addicted to glutamine [38], indicating that glutamine is a key carbon 

source for mTORC1-related metabolic rewiring. Interestingly, mTORC1 has been recently 

shown to enhance c-Myc translation efficiency through S6K1, and consequently increase 

GLS activity [39] and many other c-Myc targets. mTORC1 also induces the activity of the 

mitochondrial glutamate dehydrogenase (GDH) through inhibition of SIRT4 transcription, a 

known regulator of GDH activity [40], supporting the role of mTORC1 in inducing 

glutamine anaplerosis to replenish the TCA cycle and anabolic processes.

In addition to increasing the activity of HIF1α and c-Myc, mTORC1 activation also leads to 

increased sterol regulatory element binding proteins (SREBP) activity [35]. SREBPs 

orchestrate the ability of the cells to synthesize lipids, as they induce the global expression 

of enzymes involved in de novo fatty acid synthesis [41]. In addition, mTORC1 also 

regulates SREBPs activity by inducing the phosphorylation and inhibition of LIPIN1, a 

phosphatase that inhibits SREBPs activity [42], thus directly linking mTORC1 to lipid 

synthesis.

mTORC1 signaling, therefore, is a critical regulator of anabolic processes that fuel cell 

growth and proliferation (Fig.1).

Fine-tuning signaling networks and catabolic rewiring through energetic 

sensors

Energetic homeostasis is regulated by both nutrient availability and energy demand, which 

are constantly changing. Therefore, cells have evolved multiple nutrient- and energy-sensing 

pathways to recognize the level of intracellular nutrients (such as mTORC1, described 

above) and energetic status (AMP/ATP ratio, NAD+/NADH). In times of nutrient 

deprivation or energetic deficit, nonessential ATP consumption is inhibited and energy 

stores are mobilized for catabolic processes. The best known regulators of these processes 

are AMP-activated protein kinase (AMPK), and Silent information regulator 1 (SIRT1) [43–

45]. Under low-energy conditions, AMPK and SIRT1 are activated by increases in 

intracellular AMP and NAD+ levels, respectively. Once activated AMPK and SIRT1 switch 

on catabolic pathways that generate ATP while switching off anabolic pathways and other 

ATP-consuming processes, thus restoring the energy balance [43–45]. The complementary 

effects of AMPK and SIRT1 suggest that cells evolved both enzymes to work in a 

coordinated fashion. Thus, AMPK and SIRT1 are able to regulate each other [46] and are 

both frequently required to stimulate major pathways [47,48].

Gomes and Blenis Page 5

Curr Opin Biotechnol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AMPK and SIRT1 coordinate the increase in the ability of the cells to oxidize fatty acids, 

thus fueling mitochondrial oxidative phosphorylation and the generation of ATP in an 

efficient manner [49]. AMPK promotes fatty acids oxidation (FAO) by regulation and 

activation of the peroxisome proliferator-activated receptor alpha (PPARα), a key 

transcriptional regulator of FAO [50]. AMPK also phosphorylates and inactivates acetyl- 

coenzyme A (CoA) carboxylase (ACC)-2, thus releasing the inhibitory pressure of malonyl-

CoA from the uptake of fatty acids by the mitochondria for β-oxidation [51]. Importantly, in 

addition to increasing FAO, both AMPK and SIRT1 repress the ability of cells to synthesize 

fatty acids, by inhibiting the actions of SREBP1c [52,53].

SIRT1 and AMPK also have an important role in the regulation of glucose metabolism. 

AMPK induces glucose uptake and its oxidation through the glycolytic pathway, through 

regulation of glucose transporters and 6-phosphofructo-2-kinase/fructose-2,6-biphosphate 

[54,55]. Moreover, AMPK blocks glucose uptake through inducing a thioredoxin-interacting 

protein-dependent regulation of GLUT1 [56]. SIRT1 promotes the carbon flux from glucose 

to enter the TCA cycle by repressing HIF-1α, thus feeding oxidative phosphorylation 

(OXPHOS) in the mitochondria [57,58]. This suggests that SIRT1 and AMPKs actions 

complement each other, ensuring that the glucose that enters cells is used to produce ATP 

through oxidative phosphorylation and preventing it from entering biosynthetic pathways, 

such as the PPP. In addition, AMPK and SIRT1 regulate the CREB-regulated transcription 

co-activator2 (CRTC2), thus repressing gluconeogenesis [59,60].

SIRT1 and AMPK are also both necessary for the activation of the peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α) [49]. Following phosphorylation by 

AMPK, SIRT1 deacetylates PGC-1α and leads to its full activation, thus inducing the 

expression of genes related with FAO and mitochondrial biogenesis [48,61]. Importantly, 

this ability to activate mitochondrial biogenesis is central to the metabolic rewiring induced 

by AMPK and SIRT1 as it generates increased capacity for the oxidative catabolism of both 

glucose and fatty acids.

In addition to SIRT1, other sirtuin family members also play a role in regulation of 

metabolism. Particularly SIRT3 and SIRT6 have been shown to regulate glycolysis and 

TCA cycle through HIF-1α and c-Myc [62–64]. SIRT3 also contributes for catabolic 

processes by promoting oxidative phosphorylation through direct deacetylation of OXPHOS 

components [65,66]. On the other hand, SIRT4 has been shown to negatively regulate FAO 

[67,68], as well as to promote glutamine anaplerosis [40], suggesting a potential role for this 

sirtuin in promoting anabolic processes.

As a major regulator of anabolic processes, mTORC1’s activity is also indirectly regulated 

by the energetic state of the cells. AMPK phosphorylates and stimulates the activity of 

TSC2, thus repressing mTORC1 signaling [69]. AMPK also directly phosphorylates raptor, 

a critical component of mTORC1, to suppress mTORC1 signaling [70]. Moreover, energy 

depletion also inhibits mTORC1 function in an AMPK-independent manner. The AAA+ 

ATPase-containing complex Tel2-Tti-Tti2-RUVBL1/2 (TTT-RUVBL1/2) responds to 

cellular energy state and directly regulates the functional assembly of mTORC1 [71], 

however the mechanism of energy sensing for this process remains to be elucidated. Thus, 
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AMPK, SIRT1 and the TTT-RUVBL complex fine-tune signaling transduction in 

accordance to the energetic state of the cell, regulating the balance between anabolic and 

catabolic processes, thereby maintaining cellular homeostasis (Fig.2).

Conclusions

Cellular homeostasis is maintained in coordination with extracellular cues (such as growth 

factors and nutrients) and intracellular metabolite concentrations. The interplay among all 

these factors coordinate complex signal transduction networks that perpetuate the 

information and rewire the metabolism of the cells. Taking into consideration the fact that 

cells are highly plastic and constantly exposed to a multitude of signals, an important 

question emerges. How are these pathways coordinated by the small number of upstream 

signaling regulators in response to the diverse intra and extra-cellular signals? The response 

is still largely unknown, but surely part of the answer must be based on how these conserved 

pathways integrate their actions, their crosstalk and how they are regulated. Importantly, the 

notion that intracellular metabolite levels are potent regulators of signaling pathways should 

also be taken into account. This is an important area of research that has emerged recently, 

with numerous metabolites being described to regulate signaling cascades, thus contributing 

to the maintenance of energetic balance. Therefore, the understanding of these signaling 

cascades and their ability to fine-tune the balance between catabolism and anabolism is 

extremely important for understanding the development of metabolic-related diseases. An in 

depth study of these signal integration mechanisms is therefore an attractive area for further 

investigation. Furthermore, the knowledge gained may yield important therapeutic targets 

for drug development for use in a multitude of metabolic diseases.
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Highlights

• Signaling networks intracellular and extracellular cues to maintain homeostasis

• PI3K/AKT and Ras/ERK signaling induces anabolic reprogramming

• mTORC1 is a master node of signaling integration that promotes anabolism

• AMPK and SIRT1 fine tune signaling networks in response to energetic status
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Fig. 1. Anabolic rewiring induced by PI3K/Akt, Ras/ERK and mTORC1 signaling
Extracellular signals activate two major signaling cascades controlled by the activation of 

PI3K and Ras. PI3K and Ras regulate Akt and ERK, which in turn induce changes in 

intermediate metabolism to promote anabolic processes. In addition, they also induce the 

activation of mTORC1, thus further supporting the rewiring of cellular metabolism towards 

anabolic processes. Through various mechanisms Akt, ERK and mTORC1 stimulate mRNA 

translation, aerobic glycolysis, glutamine anaplerosis, lipid synthesis, the pentose phosphate 

and pyrimidine synthesis, thus producing the major components necessary for cell growth 

and proliferation.
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Fig. 2. Regulation of intermediate metabolism by nutrient and energy sensors
Nutrient and energy-responsive pathways fine-tune the output of signaling cascades, 

allowing for the correct balance between the availability of nutrients and the cellular 

capacity to use them effectively. AMPK and SIRT1 respond to the energy status of the cells 

through sensing of AMP and NAD+ levels respectively. When energy is scarce these sensors 

are activated inducing a rewiring of intermediate metabolism to catabolic processes in order 

to produce energy and restore homeostasis. When nutrients (such as glucose and amino 

acids) and energy are available, AMPK, SIRT1, SIRT3 and SIRT6 are repressed and 

mTORC1 is active, thus promoting a shift towards anabolic processes and energy 

production. These networks of signaling cascades, their interconnection and regulation allow 

the cells to maintain energetic balance and allow for the physiological adaptation to the 

ever-changing environment.
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