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Abstract

Ketamine was developed in the early 1960s as an anesthetic 
and has been used for medical and veterinary procedures 
since then. Its unique profi le of effects has led to its use at 
subanesthetic doses for a variety of other purposes: it is an 
effective analgesic and can prevent certain types of patho-
logical pain; it produces schizophrenia-like effects and so is 
used in both clinical studies and preclinical animal models to 
better understand this disorder; it has rapid-acting and long-
lasting antidepressant effects; and it is popular as a drug of 
abuse both among young people at dance parties and raves 
and among spiritual seekers. In this article we summarize 
recent research that provides insight into the myriad uses of 
ketamine. Clinical research is discussed, but the focus is on 
preclinical animal research, including recent fi ndings from 
our own laboratory. Of particular note, although ketamine is 
normally considered a locomotor stimulant at subanesthetic 
doses, we have found locomotor depressant effects at very 
low subanesthetic doses. Thus, rather than a monotonic dose-
dependent increase in activity, ketamine produces a more 
complex dose response. Additional work explores the mech-
anism of action of ketamine, ketamine-induced neuroadapta-
tions, and ketamine reward. The fi ndings described will 
inform future research on ketamine and lead to a better un-
derstanding of both its clinical uses and its abuse. 

Key Words: analgesia; anesthesia; animal model; antide-
pressant; drug abuse; glutamate; ketamine; reward; schizo-
phrenia

K etamine was initially developed in the 1960s as a 
safer alternative to phencyclidine (PCP1) for anes-
thetic procedures. It produces a state of dissociation 

similar to PCP but is shorter-acting, less potent, and less 
likely to induce agitation and violence (Gill and Stajic 2000; 
Krystal et al. 1994; Newcomer et al. 1999). The dissociative 
state allows ketamine-treated patients to be conscious but 
cognitively separated from the environment and unrespon-
sive to pain. Because of these unique qualities ketamine is 
ideal for treating burn victims as well as for use in emergency 
surgical procedures and in acute trauma situations (Bergman 
1999; Craven 2007; Domino 2010; Haas and Harper 1992; 
Sinner and Graf 2008). 

In addition to its use as an anesthetic in both animals and 
humans, ketamine is increasingly used for a variety of other 
purposes (Domino 2010; Jansen 2000; Sinner and Graf 2008; 
Wolff and Winstock 2006). Refl ecting the increased uses of 
ketamine, the attention given to the drug in published papers 
has escalated tremendously. A PubMed search reveals that in 
1969 only 19 published articles used “ketamine” as a key 
word and that the number has increased over the years to 
well over 500 in 2008–2009 (Figure 1). 

This review presents a summary of recent research on 
the uses and effects of ketamine at subanesthetic doses. The 
focus is on preclinical animal research as a means to better 
understand its myriad effects, both in its clinical and preclini-
cal use for various disorders and conditions and in its in-
creasingly popular abuse. 

Uses of Ketamine 

Anesthesia and Analgesia

A complete discussion of the anesthetic and analgesic ef-
fects of ketamine is beyond the scope of this article. How-
ever, it is important to mention these effects as they are the 
clinical actions for which ketamine is most often used. 

The fi rst publication on ketamine (called CI-581 at the 
time) described it as a potent anesthetic that did not produce 
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respiratory depression at anesthetic doses (McCarthy et al. 
1965). This feature, which distinguishes ketamine from more 
traditional central nervous system (CNS) depressant anes-
thetics, makes it particularly useful for emergency situations 
(such as battlefi eld injuries) and procedures in which breath-
ing assistance is unavailable or contraindicated. 

Among the other features of ketamine that make it par-
ticularly useful are its rapid onset and predictable duration of 
action; its analgesic, anxiolytic, and amnestic effects; and its 
mild effects on cardiovascular function (Domino 1990; Haas 
and Harper 1992; White et al. 1982).

Given these qualities, ketamine soon became, and re-
mains, an important tool in the armamentarium of surgeons 
and anesthesiologists as well as veterinarians. In fact, one of 
the biggest sources of ketamine for recreational use is diver-
sion from veterinary sources (Freese et al. 2002; Ross 2008; 
Wolff and Winstock 2006). 

The analgesic properties of ketamine in humans were de-
scribed soon after its discovery. Domino and colleagues 
(1965) reported a numbness of the entire body and a com-
plete lack of reaction to “pain-inducing procedures” (includ-
ing skin crush with hemostats), although sensation to touch 
was unaffected. But the analgesia was accompanied by strong 
psychoactive effects, such as changes in mood and body im-
age, vivid dreams and hallucinations, and a psychological 
state in which subjects appeared to be disconnected from 
their surrounding environment. The latter prompted Domino 
and colleagues (1965) to coin the term “dissociative” to de-
scribe ketamine and related drugs, apparently inspired by 
Domino’s wife (Domino 2010). 

Although early work focused on relatively high doses of 
ketamine for analgesia, recent discoveries have led to the use 
of subanesthetic doses for pain relief (for review, Kronenberg 
2002; Visser and Schug 2006). For example, certain types 
of pathological pain result from a process known as “central 
sensitization,” in which pain responses become hypersensi-
tive (Latremoliere and Woolf 2009; Woolf 2011). The devel-
opment of central sensitization involves N-methyl-d-aspartate 
(NMDA1) receptors. Because, as described below, ketamine 
is an effective NMDA receptor antagonist, it has been used 
in the treatment of certain types of pathological pain condi-
tions that involve central sensitization (Craven 2007; Haas 
and Harper 1992; Hocking and Cousins 2003; Latremoliere and 
Woolf 2009; Mao 1999; Sinner and Graf 2008; Subramaniam 
et al. 2004; Woolf 2011). 

In the early 1990s it was discovered that ketamine, along 
with other NMDA receptor antagonists, can inhibit the de-
velopment of opiate tolerance (Trujillo and Akil 1991, 1994), 
a fi nding that has been confi rmed by many others (for re-
view, Trujillo 2000). Furthermore, a number of preclinical 
studies have found that ketamine enhances opiate analgesia 
(Baker et al. 2002; Dambisya and Lee 1994; Hoffmann et al. 
2003; Holtman et al. 2003; Joo et al. 2000; Kosson et al. 
2008; Nadeson et al. 2002; Pellissier et al. 2003), leading to 
its use in combination therapy for pain. Clinical studies show 
that combinations of ketamine and opioids result in more ef-
fective pain relief (and/or lower doses of opiates) and thus fewer 
side effects (Bell 2009; Bell et al. 2003, 2005; Subramaniam 
et al. 2004). 

Antidepressant Effects

Ketamine has recently been studied for its relevance to the 
treatment of major depression. Exciting evidence in humans 
demonstrates that ketamine has very rapid and long-lasting 
antidepressant effects when administered at subanesthetic 
doses (Berman et al. 2000; Diazgranados et al. 2011; Zarate 
et al. 2006). This evidence is supported by research using 
animal models involving learned helplessness, inescapable 
stress, forced swim, and tail suspension (for review, Paul and 
Skolnick 2003; Skolnick 1999; Skolnick et al. 2009). 

Remarkably, ketamine’s antidepressant action is evident 
within hours and lasts for up to 2 weeks postadministration, 
a fi nding that has been replicated in humans (Zarate et al. 
2006) and rodent models (Yilmaz et al. 2002; Maeng et al. 
2008) (however, Popik et al. 2008 were unable to replicate 
the long-lasting antidepressant effect of ketamine in a rodent 
model). Ketamine’s rapid and long-lasting antidepressant 
effects are unusual: currently used medications, such as tri-
cyclic antidepressants and selective serotonin reuptake in-
hibitors (SSRIs), have a 3- to 6-week delay in onset and 
require daily administration to achieve and maintain antide-
pressant effects (Schatzberg and Nemeroff 2009). However, 
currently used antidepressants act primarily on monoamine 
neurotransmitter systems, whereas ketamine acts on glutamate 
(see details below), resulting in the emergence of theories 

Figure 1 Number of publications on ketamine indexed in PubMed 
each year from 1969 to 2009, based on key word “ketamine” and 
publication date. A total of 19 publications appeared in 1969; the 
number remained below 200 per year through the 1970s, and began 
an upward trend in the early 1980s. By 2007–2009 publications on 
ketamine exceeded 500/year. 
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about the role of glutamate in major depressive disorder 
(Hashimoto 2009; Machado-Vieira et al. 2009; Skolnick 
1999; Skolnick et al. 2009). 

Unfortunately, the usefulness of ketamine as an antide-
pressant is limited because of adverse side effects, including 
the psychotomimetic effects described above. Further research 
is necessary to better understand the mechanisms and antide-
pressant effects of ketamine and to explore the development 
of antidepressant glutamatergic compounds that have fewer 
side effects.

Models of Schizophrenia

Early clinical studies on ketamine and PCP led researchers 
to believe that these drugs were psychotomimetic and could 
offer insight into schizophrenia (Davies and Beech 1960; 
Domino et al. 1965; Luby et al. 1959). Effects of subanes-
thetic doses include cognitive dysfunction and perceptual 
changes in healthy volunteers, and exacerbation of symp-
toms in schizophrenic patients (Adler et al. 1998, 1999; 
Krystal et al. 1994; Lahti et al. 1995, 2001; Malhotra et al. 
1997b; van Berckel et al. 1998). Ketamine’s ability to pro-
duce both negative and positive symptoms of schizophrenia, 
as well as cognitive dysfunction, is noteworthy as more tra-
ditional stimulant models induce primarily positive symp-
toms and thus provide an incomplete model of schizophrenia 
symptomology (Angrist et al. 1974; Janowsky and Risch 1979; 
Krystal et al. 2005b). 

The effects in humans have led to the use of ketamine (as 
well as PCP and related drugs) in animal models of schizo-
phrenia, and to the related theory that glutamatergic dys-
function is involved in schizophrenia (more on glutamatergic 
hypotheses below). In rodent models, the ability of drugs to 
block the behavioral actions of ketamine is often used as a 
preclinical assay of antipsychotic effects (Becker et al. 2003; 
Gilmour et al. 2009; Jentsch and Roth 1999; Lees et al. 2004; 
Neill et al. 2010). Notably, atypical antipsychotics (drugs 
such as clozapine, olanzapine, and risperidone, which pro-
duce fewer motoric side effects than traditional antipsychotics) 
are effective at blocking ketamine’s behavioral effects in both 
humans and rodents (Krystal et al. 1999, 2005a; Malhotra 
et al. 1997a). 

These fi ndings provide evidence for the use of ketamine 
in schizophrenia research, and are leading to a better under-
standing of the disorder and the development of novel 
treatments.

Ketamine Abuse

In the 1980s and the 1990s there was a dramatic increase in 
the recreational use of ketamine (Dillon et al. 2003; Freese 
et al. 2002; Jansen 1993; Ross 2008; Smith et al. 2002), espe-
cially at raves and dance parties, leading to its classifi cation 
as a “club drug” (Freese et al. 2002; Jansen 2000; Jansen and 
Darracot-Cankovic 2001; Kelly et al. 2006; Smith et al. 
2002). In addition, because of its unique psychoactive 

effects, some people use it for psychic exploration, aiming for 
mystical experiences, self-transcendence, and spiritual growth 
(Jansen 2000; Jansen and Darracot-Cankovic 2001).

On the streets, ketamine is known as “Special K,” “Vi-
tamin K,” “cat valium,” or “K.” It is commercially avail-
able as an injectable liquid but most commonly abused in 
a powder form and either snorted or smoked, although 
some use it orally or via intramuscular or intravenous in-
jection (Dillon et al. 2003; Freese et al. 2002; Smith et al. 
2002). 

Ketamine abusers claim that the drug is rewarding and 
can produce a variety of psychoactive effects. At relatively 
low doses, users report stimulation and excitement, eupho-
ria, sensory distortions, lucid intoxication, and heightened 
feelings of empathy (Dillon et al. 2003; Jansen 2000; Jansen 
and Darracot-Cankovic 2001). At higher doses, ketamine 
produces a hallucinatory state referred to as a “K-hole,” an 
intense dissociative experience that includes visions and dis-
tortion of time, sense, and identity, and sometimes out-of-
body, near death, or rebirth experiences. Users often report 
the K-hole as a frightening or aversive experience (Dillon 
et al. 2003).

The rise in ketamine abuse is associated with an in-
crease in ketamine-related emergency room visits (Dillon 
et al. 2003; Jansen 2000; Jansen and Darracot-Cankovic 
2001). Because of the drug’s dissociative state, burns, falls, 
drowning, traffi c accidents, and “date rape” are some of the 
consequences linked to ketamine-related impairment (Dillon 
et al. 2003; Freese et al. 2002; Jansen 2000; Smith et al. 
2002). Despite such aversive experiences, case reports of 
ketamine addiction indicate that ketamine seeking can be-
come compulsive, and users often express concern about 
the potential for addiction and dependence (Dillon et al. 
2003; Jansen and Darracot-Cankovic 2001; Muetzelfeldt 
et al. 2008).

The potential dangers and increased abuse of ketamine 
prompted the US Drug Enforcement Administration (DEA) 
to classify ketamine as a schedule III2 drug in 1999 (DEA 
1999).

Neurochemical Effects of Ketamine

NMDA Receptors and Glutamate

Glutamatergic transmission is mediated by three ionotropic 
glutamate receptors: AMPA1 (α-amino-3-hydroxy-5methyl-
4-isoxazoleproprionic acid), NMDA, and kainate. It wasn’t 
until the 1980s, nearly 20 years after its discovery, that ket-
amine was found to exert its physiological and behavioral 
effects as an antagonist of NMDA receptors (Anis et al. 
1983; Lodge et al. 1982). 

2According to the DEA website, “Substances in this schedule have a 
potential for abuse, [which] may lead to moderate or low physical 
dependence or high psychological dependence” (www.deadiversion.usdoj.
gov/schedules; accessed on June 3, 2011). 
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NMDA receptors are ligand-gated cation channels that 
open in response to the binding of glutamate and glycine 
(Collingridge and Watkins 1995; Yamakura and Shimoji 1999). 
This opening leads to an infl ux of calcium, which can act in 
a second messenger cascade and is essential to NMDA re-
ceptor function. 

PCP and ketamine are NMDA antagonists and selec-
tively bind to the “PCP site,” which is located in the NMDA 
ion channel (Collingridge and Watkins 1995; Sinner and 
Graf 2008; Wood et al. 1990; Yamakura and Shimoji 1999). 
Because of their ability to block NMDA receptor function 
without inhibiting the binding of glutamate, these drugs are 
referred to as noncompetitive antagonists. Specifi cally, ket-
amine blocks the open ion channel, reduces the amount of 
open time, and decreases the frequency of channel openings 
(for review see Sinner and Graf 2008). However, ketamine 
binds to this site with a lower affi nity than PCP (Collingridge 
and Watkins 1995), refl ecting its decreased behavioral ef-
fects relative to PCP. 

Hypo- or Hyperglutamatergic? 

The reigning explanation for the actions of ketamine is the 
hypoglutamatergic hypothesis: ketamine produces its effects 
by blocking the ability of glutamate to activate NMDA re-
ceptors. More recently, however, it has been suggested that 
the subjective and behavioral effects of ketamine may result 
from more complex effects on glutamatergic signaling. Ac-
cording to this hypothesis, ketamine, PCP, and related dis-
sociatives may actually increase glutamate in certain brain 
areas and thereby produce some of the drugs’ behavioral ef-
fects (Adams and Moghaddam 1998; Farber et al. 2002a,b; 
Krystal et al. 2003; Maeng et al. 2008; Moghaddam et al. 
1997; Olney et al. 1999). Thus, rather than producing their 
effects via a hypoglutamatergic mechanism, dissociatives 
may act via hyperglutamatergic actions. 

In alignment with the glutamate hyperactivity hypothe-
sis, researchers have demonstrated that NMDA receptor 
blockade induced by PCP or ketamine results in release of 
glutamate in the cerebral cortex (Adams and Moghaddam 
1998, 2001; Lorrain et al. 2003a,b; Moghaddam et al. 1997; 
Razoux et al. 2007; Takahata and Moghaddam 2003). 
GABAergic neurons normally inhibit glutamatergic inputs to 
the cortex; however, blockade of NMDA receptors on these 
GABAergic neurons by the dissociatives blocks the inhibi-
tion, resulting in activation of the glutamatergic neurons and 
increased glutamate release. The increased glutamate concen-
trations produce stimulation of non-NMDA glutamate recep-
tors (AMPA receptors) and the drugs’ cognitive and behavioral 
effects. 

In support of this idea, PCP and ketamine have been 
shown to increase glutamatergic neurotransmission at AMPA 
receptors (Adams and Moghaddam 1998; Moghaddam et al. 
1997; Razoux et al. 2007), and studies have shown that 
AMPA receptor (AMPAR1) antagonists attenuate certain be-
havioral and neurochemical effects of dissociatives (Hauber 

and Andersen 1993; Hauber and Waldenmeier 1994; Li et al. 
2010; Maeng et al. 2008; Takahata and Moghaddam 2003). 
Together, these results suggest that NMDA receptor block-
ade leads to the release of glutamate, which acts on AMPA 
receptors to evoke behavioral effects of the dissociatives. 

A role for AMPAR mediation (after glutamate release) 
has been found for the antidepressant effects of ketamine. 
When administered before a forced swim test in mice, ket-
amine and other NMDA receptor antagonists decrease im-
mobility (such a decrease is a sign of antidepressant action), 
and this effect can be blocked by pretreatment with the 
AMPAR blocker NBQX (Maeng et al. 2008), as can down-
stream consequences of ketamine action (Li et al. 2010).

The glutamate hyperactivity hypothesis has been investi-
gated indirectly, using drugs that act on different aspects of 
glutamate function. For example, as noted above, AMPAR 
antagonists have been found to inhibit specifi c effects of ket-
amine and PCP, suggesting a role for AMPAR activation in 
the actions of these drugs. Furthermore, group II metabotro-
pic receptor agonists (which can lower glutamate release) 
can decrease certain motor and cognitive effects of PCP 
(Krystal et al. 2005a; Lorrain et al. 2003a,b; Moghaddam 
and Adams 1998). 

Although the studies described above suggest that en-
hanced glutamate release is involved in the effects of disso-
ciatives, other studies, using compounds that inhibit glutamate 
release, suggest that the hypothesis is incomplete. 

Inconsistent Research Results about the Role 
of Glutamate

Lamotrigine (3,5-diamino-6[2,3-dichorphenyl]-1,2,4-triazine) 
and riluzole (2-amino-6-trigluromethoxy benzothiazole) are 
two compounds that inhibit release of glutamate, and both 
are seeing increased use as potential therapies for psychiat-
ric disorders, including depression, bipolar disorder, and 
schizophrenia (Amann et al. 2010; Goff 2009; Kugaya and 
Sanacora 2005; Large et al. 2005; Mathew et al. 2008; Pittenger 
et al. 2008; Premkumar and Pick 2006; Zarate and Manji 
2008). 

If the glutamate hyperactivity hypothesis is correct, then 
riluzole and lamotrigine should inhibit the behavioral ac-
tions of dissociatives. However, studies of the effects of these 
drugs on ketamine-induced behavior have yielded confl ict-
ing results. For example, in a study using human participants 
Anand and colleagues (2000) found that lamotrigine de-
creased ketamine-induced symptoms of schizophrenia and 
impairments in learning and memory, but increased the im-
mediate mood-elevating effects of ketamine. Similarly, 
Brody and colleagues (2003) demonstrated in rats that lamo-
trigine prevented ketamine-induced disruptions in prepulse 
inhibition; however, this fi nding was not replicated in later 
research (Cilia et al. 2007). Another study demonstrated 
that lamotrigine increased PCP-induced hyperlocomotion 
(Williams et al. 2006), an effect that is opposite to the gluta-
mate hyperactivity hypothesis. In related work, Lourenço Da 
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Silva and colleagues (2003) found no effect of riluzole on the 
locomotor stimulation produced by MK-801, a potent dis-
sociative drug. Thus, while some studies have obtained fi nd-
ings that are consistent with the hypothesis, others are in 
contradiction. 

In our laboratory we have performed a series of studies 
to systematically assess the ability of riluzole and lamotri-
gine to affect the locomotor stimulant actions of ketamine 
and PCP. Extensive dose response experiments have revealed 
no consistent effects of these drugs on ketamine- or PCP-
induced hyperlocomotion, stereotypy, or ataxia (Trujillo, 
Smith, and Heller, unpublished results). 

In addition, we tested the same hypothesis using the 
AMPA antagonist GYKI-52466, reasoning that AMPAR 
blockade should attenuate any behaviors that were due to 
increased availability of glutamate at AMPA receptors. As 
with the riluzole and lamotrigine, GYKI-52466 had no effect 
on ketamine- or PCP-induced hyperlocomotion, stereotypy, 
or ataxia at a dose that did not, by itself, inhibit locomotor 
behavior (Trujillo and Smith, unpublished results). 

Thus, the fi ndings do not consistently support the gluta-
mate hyperactivity hypothesis. One potential explanation for 
these mixed fi ndings is that only certain behavioral effects of 
ketamine are mediated by an increase in glutamate release 
and subsequent AMPAR activation, and others are mediated 
by NMDA receptor blockade. This possibility is consistent 
with the fi ndings of Anand and colleagues (2000), who found 
that lamotrigine decreased certain effects of ketamine and 
increased others. Furthermore, the ketamine-induced in-
crease in glutamate release appears delayed relative to the 
locomotor stimulant effects of ketamine. For example, gluta-
mate release increases signifi cantly only 40 to 60 minutes 
postadministration (Lorrain et al. 2003a; Moghaddam et al. 
1997), whereas the locomotor stimulant effects, stereotypy, 
and ataxia induced by moderate doses of ketamine occur im-
mediately and subside within 20 minutes (Garcia and Trujillo 
2007; Heller and Trujillo 2007; Sullivan and Trujillo 2007). 
This time discrepancy, along with results of studies using 
riluzole and lamotrigine, suggests that the motor effects of 
ketamine are independent of glutamate release. 

Other Neurochemical Effects of Ketamine

Ketamine affects many neurotransmitter systems other than 
glutamate. There is, for example, considerable interest in the 
interactions between ketamine and dopamine as well as ket-
amine and endogenous opioids. A full consideration of these 
effects is beyond the scope of this article; summaries are 
available (Bergman 1999; Seeman 2009; Sinner and Graf 
2008; White and Ryan 1996).

Together, the results discussed in this section suggest 
that the psychoactive and behavioral effects of ketamine may 
be more complex than either the glutamate hypo- or hyper-
activity hypothesis suggests, with perhaps only a subset of 
responses mediated by an increase in glutamate release and 
AMPAR activation, others mediated more directly by block-

ade of NMDA receptors, and yet others mediated by neu-
rotransmitters other than glutamate. 

Behavioral Effects of Ketamine: 
Locomotor Activity

Locomotor activation in rodents is an important target in 
models of drug abuse and certain psychiatric disorders, such 
as schizophrenia. The effects of ketamine on locomotor be-
havior have been well characterized, beginning with the 
1965 paper reporting that subanesthetic doses of ketamine 
produced locomotor stimulation accompanied by ataxia in 
mice and rats (McCarthy et al. 1965). Since then, innumer-
able studies have replicated the ability of ketamine and re-
lated drugs to produce locomotor stimulation, ataxia, and 
stereotypy at subanesthetic doses. 

Because subanesthetic doses of ketamine can induce a 
schizophrenia-like syndrome in humans, it was a natural ex-
tension to consider locomotor activation as a marker of the 
psychoactive effects of the drug in rodent models of schizo-
phrenia. Consequently, the ability of a drug to block the loco-
motor effects of ketamine has been used to identify potential 
antipsychotics. Atypical antipsychotics are particularly effec-
tive at blocking ketamine-induced locomotion. 

Locomotor activation has also been associated with posi-
tive reinforcing effects of drugs, leading to a psychomotor 
stimulant theory of drug reward (Robinson and Berridge 
2001, 2002; Trujillo et al. 1993; Wise 1988; Wise and Bozarth 
1987). Drug-induced locomotor activation has therefore some-
times been used as a surrogate marker of drug reward (more 
on ketamine and reward below). 

Data from our laboratory illustrate increases in activity, 
ataxia, and stereotypy associated with ketamine administra-
tion (Figure 2). At a low, subanesthetic dose (15.8 mg/kg), 
ketamine produces increases in ambulatory activity accom-
panied by mild ataxia and stereotypy; at a higher dose 
(50 mg/kg), stimulation, ataxia, and stereotypy dramatically 
increase. As anesthetic doses are approached (100 mg/kg 
and higher), ataxia overwhelms the locomotor activation, re-
sulting in a complex progression from low levels of activity 
to considerable ataxia, stereotypy, and locomotor activation 
as the anesthesia wears off (not shown). 

We have assessed the locomotor responses of Sprague-
Dawley rats at subanesthetic doses of ketamine and obtained 
quite surprising results at the low end of the dose range. We 
found that the drug reliably depresses locomotor activity, 
relative to control animals, at doses of 10 mg/kg or less (ad-
ministered by intraperitoneal [i.p.] injection) (Figure 3). The 
locomotor depressant effects were not accompanied by no-
ticeable incoordination or ataxia. Therefore, rather than a 
monotonic increase in activity reported by most laboratories, 
ketamine produces more complex dose-dependent effects, 
with decreases in activity at very low subanesthetic doses 
(5–10 mg/kg), increases at higher doses (15–50 mg/kg), and 
decreases again at anesthetic levels (100 mg/kg and higher). 
Moreover, even at stimulant doses, the increase in activity 
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was followed by a rebound decrease in behavior, relative to 
control animals, as the stimulant effect abated (Garcia and 
Trujillo 2007; Mercado et al. 2009). 

In examining the literature, we found at least one refer-
ence to locomotor depressant effects of subanesthetic doses 
of ketamine. Becker and colleagues (2003), in attempting to 
develop a ketamine-based rodent model of schizophrenia, 
noted a locomotor depressant effect of the drug at 30 mg/kg 
(a dose that frequently produces stimulation). However, this 
result was not studied systematically and was presented as a 
single fi gure among others characterizing different behav-
ioral responses to the drug. 

Ketamine in Combination with Other Drugs

The locomotor depressant effects of ketamine are most evident 
when it is administered with other psychomotor stimulants. 
We examined the interaction of ketamine with methamphet-
amine, a potent and widely abused psychomotor stimulant 
that is often used in combination with ketamine (Dillon et al. 
2003). The behavioral effects of this combination are largely 
unknown. 

To better understand the effects of ketamine and metham-
phetamine combined, we explored the locomotor effects of 
each drug alone and of both mixed together in a “cocktail.” We 
hypothesized that the combination would produce an effect 
greater than either drug alone, similar to the “speedball” effect 
seen with combinations of opiates and psychomotor stimulants 
(Leri et al. 2003). Methamphetamine administration produced 
the expected psychomotor stimulation, while ketamine pro-
duced a mild depressant effect at lower doses (5 and 10 mg/kg, 
subcutaneous [s.c.] administration) and stimulation followed by 
locomotor depression at a higher dose (20 mg/kg s.c.). In con-
trast to our hypothesis, at all doses ketamine potently inhibited 
the locomotor stimulant effect of methamphetamine. 

Studies of the combined effects of cocaine and ketamine 
confi rm that ketamine can attenuate the behavioral effects of 
psychostimulants. Uzbay and colleagues (2000) examined 
the impact of ketamine on cocaine-induced locomotor stim-
ulation and showed that ketamine produced a dose-dependent 
inhibition of the stimulant effect of cocaine. These results, 
together with our observations, suggest that ketamine pro-
duces potent locomotor depression, an effect that is particu-
larly evident when the drug is administered with psychomotor 
stimulants. 

Research Implications

The fi nding that ketamine produces locomotor depression at 
low doses has important implications for preclinical research 
on the drug. For example, as noted above, locomotor stimu-
lation in rodents is used as an index of the psychotomimetic 
effects of ketamine, but this effect occurs only at moderate to 
high doses, whereas the doses used in clinical studies to in-
duce such effects in humans are quite low (Krystal et al. 
1994; van Berckel et al. 1998). 

Figure 2 Dose-dependent effects of ketamine (Ket) on motor be-
havior in laboratory rats. Adult male Sprague-Dawley rats (n = 6/
group) were placed in photocell locomotor chambers (Kinder Sci-
entifi c Open Field Motor Monitor) for a 30-minute habituation, fol-
lowed by injection of saline (1 ml/kg) or ketamine (15.6 or 50 mg/
kg). Ataxia and stereotypy were assessed according to Castellani 
and Adams (1981). Locomotor activity represents the mean (+ 
SEM) total photocell counts (basic movements) for 60 min after 
injection in each group. Ataxia and stereotypy are the mean (+ 
SEM) peak scores for each group. SEM, standard error of the 
mean
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This discrepancy raises the question of whether the low-
dose depressant effects in rats may more accurately refl ect 
the clinical research and lead to a better animal model of 
schizophrenia. Indeed, studies that have examined prepulse 
inhibition of startle in rats to model schizophrenia-related 
defi cits in sensorimotor gating have typically used ketamine 
doses in the range that we have found to depress behavior 
(10 mg/kg or less) (Imre et al. 2006; Mansbach et al. 2001; 
Mansbach and Geyer 1991; Ong et al. 2005; Swerdlow et al. 
1998). 

The lower end of the dose range may also be a better 
target in animal studies of the rewarding effects of ketamine. 
Studies using conditioned place preference in laboratory rats 
(see below) have found rewarding effects at low doses, com-
parable to those that produce locomotor depression. And in-
dividuals who use ketamine to enhance their experience at 
dance clubs and raves aim for doses that do not produce sig-
nifi cant incoordination or ataxia. Together, the fi ndings sug-
gest that research should be aimed at better understanding 
the low-dose depressant effects of ketamine. 

Ketamine Neuroadaptations

Repeated administration of psychoactive drugs typically leads 
to neuroadaptations in the form of tolerance or sensitization. 

Tolerance and Sensitization

Tolerance is a decrease in response after repeated use of a 
drug and sensitization is “reverse tolerance,” or an increase 
in response. An individual may develop tolerance to some 
psychoactive and behavioral effects of a drug, and sensitiza-
tion to others. Furthermore, the development of tolerance 
and sensitization can be infl uenced by a variety of factors, 
such as dose, the interval between doses, and environmental 
infl uences. 

Tolerance and sensitization are important to the clinical 
use of drugs as well as drug abuse and addiction. Tolerance 
to the therapeutic effect of a drug will make it less effective 
over time, while sensitization to a side effect will produce 
escalating problems with repeated use. Similarly, tolerance 
to the desired effect of an abused drug may lead to increases 
in use to overcome the decreased effect, while sensitization 
has been linked to the craving that is prominent in addiction. 

Early studies on repeated use of ketamine focused on 
changes induced by high doses and reported that tolerance 
developed to the anesthetic effect of the drug (Douglas and 
Dagirmanjian 1975; Hance et al. 1989; Livingston and 
Waterman 1978; Winters et al. 1988). Follow-up studies on 
subanesthetic doses of ketamine left an unclear picture of 
neuroadaptations, with some reports of tolerance, others of 
sensitization, and others showing no change after repeated 
administration (Becker et al. 2003; Lannes et al. 1991; Leccese 
et al. 1986; Nelson et al. 2002; Rocha et al. 1996; Uchihashi 
et al. 1993). 

In light of the inconsistent results, we have begun to ex-
amine the changes that take place with repeated administration 
of subanesthetic doses of ketamine. Our studies demonstrate 
potent sensitization to the locomotor effects of ketamine. 
Sensitization occurs at short or long treatment intervals and 
at a broad range of doses, and, like other drugs of abuse, is 
enhanced in the presence of specifi c environmental cues 
(Heller and Trujillo 2007). Other studies have also reported 
sensitization to ketamine locomotion (Popik et al. 2008; 
Uchihashi et al. 1993; Wiley et al. 2008). 

Because sensitization has been linked to addiction 
(Robinson and Berridge 1993, 2001), these results offer in-
sight into the potential addictive properties of ketamine and 
demonstrate that repeated use can lead to long-term changes 
in brain function. 

Research Implications of Ketamine 
Neuroadaptations

The development of sensitization to ketamine in some stud-
ies and tolerance in others raises an important methodologi-
cal concern for research on the behavioral pharmacology of 
dissociative drugs. 

Ketamine is the anesthetic of choice for a variety of sur-
gical procedures in laboratory animals. Animals that require 
surgery before testing, such as those receiving catheter im-
plants for self-administration, often receive high doses of the 

Figure 3 Locomotor depressant effects of low-dose ketamine (Ket) 
in laboratory rats. Adult male Sprague-Dawley rats (n = 6/group) 
were injected with saline (1 ml/kg) or ketamine (5 or 10 mg/kg) and 
immediately placed in photocell locomotor chambers (Kinder Sci-
entifi c Cage Rack Monitors). Locomotor activity represents the 
mean (± SEM) percent saline control for 15 min after injection in 
each group. SEM, standard error of the mean
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drug before behavioral testing. As a result, these animals 
are experienced with the drug and may have undergone sig-
nifi cant brain changes that can infl uence the outcome of 
studies. 

We recommend the use, when possible, of an alternative 
anesthetic for animals involved in studies of ketamine or 
other dissociatives to avoid potentially confounding effects 
related to tolerance or sensitization. 

Ketamine Reward

There are many reasons drugs are abused, but reward is con-
sidered to be an essential aspect of addiction (Robinson and 
Berridge 2000, 2001, 2003; Trujillo and Akil 1995). Two 
widely used and effective measures of reward in animal 
models involve self-administration and conditioned place 
preference (CPP1). 

Self-Administration

In self-administration models, an animal performs a task, 
such as pressing a lever, to obtain a drug; an increase in the 
frequency of task performance is an index of the reinforcing 
properties of the drug. There is a high correspondence be-
tween drugs that are readily self-administered by experimen-
tal animals and those that are abused by humans (Bozarth 
1987; Collins et al. 1984). 

The earliest preclinical studies of the rewarding effects 
of ketamine focused on the propensity for animals to self-
administer the drug and showed that ketamine was reinforc-
ing in a small but signifi cant number of self-administration 
experiments, the fi rst of which involved nonhuman primates. 
McCarthy and Harrigan (1977) and Moreton and colleagues 
(1977) found that rhesus monkeys self-administered ket-
amine in a dose-dependent manner, and the pattern of self-
administration behavior was similar to that seen with other 
drugs of abuse, such as methamphetamine, cocaine, mor-
phine, and heroin. Subsequent studies have replicated the 
fi nding that nonhuman primates self-administer ketamine 
(Broadbear et al. 2004; Carroll and Stotz 1983; Marquis and 
Moreton 1987; Risner 1982; Winger et al. 1989; Young and 
Woods 1981). 

One potential criticism of this early work is that the ani-
mals in these investigations nearly always had considerable 
experience self-administering other drugs, so it might be 
argued that they were sensitized or primed for drug self-
administration. But similar ketamine self-administration has 
been observed in monkeys without a history of drug self-
administration (Young and Woods 1981). Self-administration 
of ketamine has also been replicated in other species, includ-
ing dogs (Risner 1982), baboons (Lukas et al. 1984), and rats 
(Collins and Woods 2007; Collins et al. 1984; De Luca and 
Badiani 2011; Marquis et al. 1989; Marquis and Moreton 
1987; Rocha et al. 1996; van der Kam et al. 2007, 2009b). 

A very recent relevant fi nding is that ketamine self-
administration is highly dependent on environmental 

infl uences. De Luca and Badiani (2011) found that rats read-
ily self-administered ketamine when sessions occurred in an 
experimental cage, but reduced their self-administration 
when sessions occurred in the home cage. These results are 
similar to recent work from our laboratory demonstrating 
much greater ketamine sensitization when the drug was ad-
ministered in an experimental cage than in a home cage 
(Heller and Trujillo 2007). Thus environment is an important 
factor in the psychoactive effects of ketamine and can mod-
ify ketamine reward and neuroadaptations. Future studies 
should pay attention to environment when evaluating the be-
havioral and psychoactive effects of ketamine. 

Research on self-administration of ketamine is not ex-
tensive, but the similar pattern of ketamine self-administration 
in comparison with other drugs of abuse leads to the conclu-
sion that ketamine is rewarding to laboratory animals. This 
fi nding is in contrast to other classes of psychedelic drugs, 
such as LSD, which are used by humans but are not self-
administered by laboratory animals (for review, Fantegrossi 
et al. 2008). 

Conditioned Place Preference

Conditioned place preference is particularly useful in as-
sessing drug reward (Bozarth 1987; Mucha et al. 1982; 
Tzschentke 1998, 2007). This approach uses an experimen-
tal chamber with two compartments distinguished by differ-
ent cues (visual and/or tactile and/or olfactory). A test drug 
is reliably paired with one compartment and a placebo with 
the other. If, after conditioning, the animal spends more time 
in the drug-associated environment, the drug is considered 
rewarding. As with self-administration there is a high corre-
spondence between drugs that produce CPP and those abused 
by humans. 

Only in the past 10 years have there been any reported 
fi ndings regarding the ability of ketamine to produce a con-
ditioned place preference (Gao et al. 2003; Li et al. 2008; 
Suzuki et al. 2000; van der Kam et al. 2009a; Xu et al. 2006). 
The earliest work examining ketamine did not focus on its 
ability to produce a place preference but rather its interaction 
with other drugs. For example, it was reported that ketamine 
alone (3 and 10 mg/kg i.p.) produced a signifi cant place pref-
erence (Gao et al. 2003; Suzuki et al. 2000) but (at 10 mg/kg 
i.p.) blocked the development of morphine place preference. 
In contrast, ketamine (10 mg/kg) produced CPP both alone 
and in combination with methamphetamine (Xu et al. 2006). 
In each of these studies, the place conditioning produced by 
ketamine was statistically signifi cant, but typically less pro-
nounced than that induced by other drugs in the studies, such 
as morphine (Gao et al. 2003; Suzuki et al. 2000) and MK-
801 (Suzuki et al. 1999, 2000). 

More recently van der Kam and colleagues (2009a) 
assessed a variety of doses of ketamine (3.16, 10.0, and 
31.6 mg/kg) in place conditioning. Consistent with the pre-
vious studies, they noted the development of CPP at 10.0 and 
31.6 mg/kg. However, the conditioning was quite modest, 
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with animals spending only marginally greater time in the 
drug-paired compartment than the vehicle-paired compart-
ment (although the difference was statistically signifi cant).3 

We have begun to examine place conditioning to ketamine 
in laboratory rats and, like van der Kam and colleagues 
(2009a), have found that it is modest at best and very sensi-
tive to the specifi c approaches used. In a series of studies, we 
were able to show only marginally more time spent in the 
ketamine-paired (10 mg/kg) compartment relative to the 
saline-paired compartment (Sullivan and Trujillo 2010). Yet 
despite the low levels of conditioning, animals became sen-
sitized to the ketamine they received during conditioning. 
Thus, ketamine sensitization was robust and reliable, while 
ketamine place conditioning was modest and unreliable.

The results of the studies described here suggest a con-
flict between those that have used self-administration to 
study ketamine reward and those that used conditioned place 
preference. There are several possible explanations for this 
discrepancy. One likely explanation is that ketamine reward 
is accompanied by aversive effects that become apparent in 
CPP studies. 

Users of ketamine for recreational purposes often report 
a mix of reward and aversion (Dillon et al. 2003; Jansen 
2000; Jansen and Darracot-Cankovic 2001), an effect that 
has also been seen in human clinical studies with subanes-
thetic doses of ketamine (Krystal et al. 1994; van Berckel 
et al. 1998). Self-administration studies typically use very low 
doses administered intravenously, with repeated administra-
tions during a single session. Conditioned place preference 
studies typically use higher doses, with only one i.p. or s.c. 
administration during a session. The conditions used in self-
administration may lead to a bias toward ketamine reward, 
while CPP methods produce a more balanced expression of 
reward and aversion. 

Further research on ketamine self-administration, condi-
tioned place preference, and other approaches will enhance 
understanding of ketamine reward and its role in ketamine 
abuse and addiction. 

Conclusion

Ketamine is a fascinating drug that has captured the attention 
of anesthesiologists, psychiatrists, spiritual seekers, dance 
partiers, and scientists. In this review we have identifi ed a 
few aspects of particular interest in current research: the drug’s 
unique anesthetic profi le, its analgesic effects across a variety 
of doses and its ability to prevent pathological pain, its abil-
ity to mimic key symptoms of schizophrenia, its rapid and 
long-lasting antidepressant effects, its ability to evoke mysti-
cal or spiritual feelings and insight, and its euphorigenic and 
rewarding effects. 

Although much is known about ketamine’s actions, and 
there has been progress in efforts to understand the mecha-

3In contrast to all of these studies, Li and colleagues (2008) reported very 
strong place conditioning to ketamine (10 mg/kg) in rats. 

nisms that underlie its unique effects, there is still much 
more to be learned. Given the drug’s popularity both in clini-
cal use and among recreational users, research on ketamine 
using both human subjects and animal models will undoubtedly 
remain a focus of intense investigation well into the future. 
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