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Abstract. Cancer progression has been linked to mechanics. Therefore, there has been recent interest in devel-
oping noninvasive imaging tools for cancer assessment that are sensitive to changes in tissue mechanical prop-
erties. We have developed one such method, modality independent elastography (MIE), that estimates the
relative elastic properties of tissue by fitting anatomical image volumes acquired before and after the application
of compression to biomechanical models. The aim of this study was to assess the accuracy and reproducibility of
the method using phantoms and a murine breast cancer model. Magnetic resonance imaging data were
acquired, and the MIE method was used to estimate relative volumetric stiffness. Accuracy was assessed
using phantom data by comparing to gold-standard mechanical testing of elasticity ratios. Validation error
was <12%. Reproducibility analysis was performed on animal data, and within-subject coefficients of variation
ranged from 2 to 13% at the bulk level and 32% at the voxel level. To our knowledge, this is the first study to
assess the reproducibility of an elasticity imaging metric in a preclinical cancer model. Our results suggest that
the MIE method can reproducibly generate accurate estimates of the relative mechanical stiffness and provide
guidance on the degree of change needed in order to declare biological changes rather than experimental error
in future therapeutic studies. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.3.036001]
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1 Introduction
Elastography is an imaging technique that allows for non-
invasive assessment of the mechanical stiffness in a tissue of
interest.1–3 Typically, mechanical excitation (either dynamic
or quasistatic) is applied and the tissue response is imaged.
Model-based inverse schemes or direct solution based on
an assumed constitutive equation then yields estimates of the
mechanical properties of a tissue of interest. A common appli-
cation of elastographic imaging is in the assessment of the stiff-
ness of cancerous tissue.4–7

The biological basis for elastographic assessment of cancer is
based on strong in vitro evidence that supports a fundamental
link between mechanical stiffness and cancer. Mechanical sig-
naling has been distinctly implicated in cancer development and
progression,8–12 and the mechanobiological basis for this asso-
ciation continues to be uncovered. For example, the mechanical
architecture of the extracellular matrix in cancer has been
identified to enhance growth, differentiation and motility.13–17

The aggressive behavior of cancer cells has been shown to be
strongly correlated to the mechanical nature of the extracellular

matrix through mechanisms linked to invadopodia, contractility
and assembly of focal adhesions.18–24

Tumor stiffness, measured ex vivo, has been positively cor-
related with cancer stage in breast cancer, with malignant tumors
exhibiting significantly increased stiffness over benign tumors
and background healthy adipose or fibroglandular tissue.25,26

Elastography has also recently been explored as a tool to mon-
itor therapy-induced changes in tumor stiffness in response to
neoadjuvant chemotherapy. For example, Falou et al. showed
significant decreases beginning at four weeks after initiation of
therapy in ultrasound strain imaging longitudinal strain ratio
(correlated to tissue stiffness) of patients who achieved a patho-
logical complete response (i.e., complete disappearance of tumor
as determined at surgery following neoadjuvant therapy) com-
pared to patients with residual tumor burden.27

Investigations of therapy-induced changes in tumor stiffness
have continued in the preclinical setting, where Li et al. found
a significant decrease in bulk stiffness as assessed by magnetic
resonance (MR) elastography 24 h after administration of a
vascular disrupting agent in a murine model of breast cancer.28

Interestingly, elasticity was seen to exhibit significant changes
at this early imaging time point while another quantitative
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imaging biomarker, the apparent diffusion coefficient from dif-
fusion-weighted MR imaging, did not. Pepin et al. have also
used MR elastography to assess therapy-induced changes in
tumor stiffness and have shown a significant decrease in stiff-
ness in response to cytotoxic therapy in a murine lymphoma
xenograft model.29 However, extensive study of the elasticity
imaging biomarker in the preclinical setting has been limited
due to association with difficulties at the much smaller length
scale. Common traditional MR elasticity imaging methods
employ vibratory mechanical excitation which is hampered
by significant attenuation at the high frequencies required for
sufficient resolution in small specimens as well as difficulties
coupling the high-frequency excitation with the tissue of inter-
est. This has been shown to result in high variability of extracted
stiffness parameters as well as spatially dependent limited res-
olution at the tumor boundary.29

The vast majority of elastography methods previously
reported in the literature are often characterized by a single ena-
bling imaging technology, typically through ultrasound30–34 or
MR imaging.4,35–38 In this work, we have utilized a different
approach that is more akin to nonrigid image registration,
whereby the natural image contrast available in routine anatomi-
cal imaging is used in the reconstruction. As a result, the frame-
work is somewhat independent of any particular modality.
Our approach also employs quasistatic deformation excitation,
ameliorating difficulties with high-frequency vibratory excita-
tions. The method, modality independent elastography (MIE),
requires two imaging volumes to be acquired that capture the
tissue of interest before and after a static/quasistatic mechanical
excitation. A model-based nonrigid image registration is then
performed whereby mechanical stiffness controls the registra-
tion parameters using image similarity to drive the objective
function. We have previously applied this general approach to
x-ray computed tomography, MR and optical imaging data from
both preclinical and clinical settings.39–45 The MIE approach
is a novel elastographic imaging technique that is automated,
straightforward and capable of implementation across length
scales and modalities.

Elasticity imaging via MIE may have applications in both
indicating/predicting response to therapy and investigating/
designing potential therapeutic agents. Thus, it is critical to
understand the error associated with the methodology. We
have previously reported an initial and preliminary reproducibil-
ity characterization of the method,46 and in this work, we present
a robust assessment of the MIE elasticity biomarker for charac-
terizing preclinical cancer mechanical stiffness. In particular,
this assessment establishes the accuracy and reproducibility of
the method, which is necessary for design and interpretation of
future experimental studies of treatment response. For proper
statistical determination of therapeutic response, we need to
determine the magnitude of change required to discriminate
between biological changes in mechanical stiffness and exper-
imental error.

2 Methods

2.1 MRI Data Acquisition

Anatomical T2-weighted image volumes were acquired using
a 7.0T MRI scanner [Agilent Technologies (formerly Varian),
Palo Alto, California] with a 38-mm quadrature radiofrequency
(RF) coil (Doty Scientific, Columbia, South Carolina). These
data were acquired before and after compression using a fast

spin echo multislice sequence and a 256 × 256 × 15 acquisition
matrix over a 3.0 cm × 3.0 cm × 1.5 cm transverse field of view
with two signal acquisitions and repetition time∕echo time ¼
5500∕36 ms. Compression was applied by inflation of a 5-cc
balloon catheter controlled by a syringe driver that was placed
within the MR imaging coil.

2.2 Modality-Independent Elastography
Reconstruction

2.2.1 Finite element model creation

MR image volumes were semiautomatically processed to segment
the object of interest (phantom or murine tumor/adjacent tissue)
from surrounding background using Analyze (AnalyzeDirect,
Overland Park, Kansas). Smoothed boundary surfaces were gen-
erated through the use of a marching cubes extraction47 followed
by radial basis function smoothing (FastRBF toolkit, FarField
Technology, Christchurch, New Zealand). Tetrahedral finite
element meshes were generated with a nominal edge length of
∼3 μm using custom mesh generation software.48

2.2.2 Elasticity reconstruction

Relative volumetric elasticity is estimated from the phantom and
murine image volumes by the MIE method, which analyzes ana-
tomical image volumes under differing states of application of
mechanical compression.40 A schematic of the method is shown
in Fig. 1. Following the finite element model creation step
(Sec. 2.2.1), a demons nonrigid image registration framework49

is used to register the postcompression image volume to the pre-
compression image volume using multiresolution diffeomorphic
demons50,51 with a sigma value of 0.8 and three sequential
multiresolution steps. Boundary conditions for biomechanical
simulation are then automatically extracted from the calculated

Fig. 1 Schematic of the modality independent elastography (MIE)
framework. A computer model is created from acquired magnetic res-
onance (MR) image volumes (pre- and postcompression), boundary
conditions are extracted using nonrigid image registration, regions for
reconstruction are assigned, and an estimate of the elastic properties
is iteratively reconstructed by comparing the model-deformed image
to the acquired deformed image inside of comparison zones using
an image correlation coefficient similarity metric.
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nonrigid registration deformation field at the boundary surface
of the finite element model mesh. As shown in Ref. 44, this
automatic boundary condition extraction process eliminates
the problematic and tedious process of manual designation of
boundary conditions, while maintaining desirable elasticity
reconstruction results. Further details on the automated boun-
dary condition extraction process can be found in Ref. 44.
Deformation between the precompression image volume and
the postcompression image volume is then simulated using
a computational mechanical model that assumes isotropic
Hookean linear elasticity. While tissue is known to exhibit com-
plex mechanical behavior, we approximate the system as linear
as the strains observed in this work were <20%, with an average
strain <10%. Distributions of volumetric mechanical elasticity
within the domain are then iteratively reconstructed using
a Polak-Ribière52 conjugate gradient53 algorithm. The adjoint
method54 is used to evaluate the gradient, because it allows
for a significantly more efficient calculation of the parameter
sensitivity over traditional computational finite-difference based
Jacobian matrix evaluation methods.55 The optimization is the
minimization of the objective function, Eq. (1), which utilizes
an image volume zone-based image correlation coefficient
metric that determines the residual error between the model-
deformed image volume and the experimentally deformed
acquired image volume.

ψ ¼ jSTRUE − SESTj2: (1)

STRUE and SEST are the similarity correlation coefficient
values for comparing the experimentally deformed acquired
image volume to itself and the model-deformed image volume,
respectively. Following parameter reconstruction, the output
metric is a volumetric spatial distribution of relative mechanical
elasticity. Gaussian smoothing with an in-plane kernel width of
5 pixels and standard deviation of 1.0 is applied to smooth
the resulting elasticity maps. The algorithms used in this work
were custom-developed in C++ and utilize algorithms based
on the Visualization Toolkit56 and Insight Segmentation and
Registration Toolkit.57 Further details regarding the MIE com-
putational methodology can be found in Refs. 42 and 44.

2.2.3 Enforcing spatial prior constraints

As acquisition of image volumes is necessary to apply the MIE
methodology, it is natural to make use of the spatial information
contained in the imaging data during reconstruction of the
elasticity parameters. Separate tissues of interest are grouped
for property estimation by a k-means clustering58 algorithm
that includes a Markov random field spatial constraint59 step,
which classifies the T2-weighted anatomical MR image volume
signal intensity information. The Markov random field step is
used to enforce spatial continuity to the k-means clustering
step and produces more biologically significant tissue clusters
than traditional k-means clustering alone. The number of clus-
ters designated for tissue classification is determined based on a
priori information regarding the tissue composition of the sam-
ple of interest and was selected as two for both phantom (reflect-
ing soft/hard phantom materials) and murine studies (reflecting
tumor/adjacent muscle). After tissue classification based on spa-
tial priors, geometric regions that define areas for mechanical
property estimation are identified through geometrical sub-
clustering of the identified tissue classes. The size of these
geometrical subclusters, “regions,” defines the resolution of

the reconstructed elasticity image. For both the murine and
the phantom studies, the number of reconstruction regions
was selected to correspond to a resolution with nominal spheri-
cal radius of 1 mm. This resulted in 200 regions for the tumor
tissue and 150 regions for the adjacent muscle tissue based on an
average tissue volume across all animals included in the study.

Similar to previous work in elasticity imaging that utilizes
spatial prior constraints to improve elasticity parameter
reconstruction results,60–62 we use anatomical information as
a soft constraint, with a weighted penalty function applied to
the calculated gradient during parameter inversion. As the penal-
ized gradient term is used during iterative parameter estimation
to calculate the spatial mechanical elasticity, this step penalizes
large deviations within a tissue type via identified spatial priors.
This soft prior constraint step acts to enforce regions that belong
to the same tissue class to retain similar mechanical elasticity
and is enforced using Eq. (2):

gS ¼ g − βLTg; (2)

where gs and g are the soft prior penalized gradient and calcu-
lated gradient, respectively. β is defined as the magnitude of
the soft prior weighting constraint and is empirically selected
between 0 and 1 (where 0 provides no prior constraint and 1
provides a strict enforcement of a constant regional property,
i.e., hard prior). L is an n × n spatial constraint matrix, with
n number of reconstruction regions, defined as

Lði; jÞ ¼
2
4−1∕n − 1; prior ðregioniÞ ¼ prior ðregionjÞ
1; regioni ¼ regionj
0; otherwise

:

(3)

2.3 Phantom Validation Study

A phantom study was performed to validate the accuracy of the
MIE method using independent mechanical testing as a gold
standard. Three different two-material phantoms were con-
structed that span a range of mechanical elasticity ratios and
geometrical arrangement. Phantoms were composed of poly-
vinyl alcohol (PVA) cryogel or agarose. Phantom A utilized
8% (weight/volume) PVA with different mechanical stiffnesses
as determined by the number of freeze-thaw cycles the material
underwent. Each freeze-thaw cycle consisted of 12 h of freezing
at −20°C and 12 h of thawing at room temperature. The phan-
tom was made using a layered construction with one stiff
layer (two freeze-thaw cycles) that was doped with an MR con-
trast agent, 1% (volume/volume) gadopentetate dimeglumine,
gadopentetate dimeglumine (Gd-DTPA) (Magnevist, Wayne,
New Jersey), on the top of one soft layer (one freeze-thaw
cycle), which was not doped with contrast agent. Phantom B
utilized a different PVA cryogel formulation with a glycerol
plasticizer in order to enhance the stiffness ratio between the
two materials. Phantom B utilized 7% (weight/volume) PVA,
10% (volume/volume) glycerol and was made using a layered
construction with two stiff layers (two freeze-thaw cycles),
which were doped with 1% (volume/volume) Gd-DTPA, on
the top and bottom of one soft layer (one freeze-thaw cycle)
which was not doped with contrast agent. Phantom C was
composed of a 2% (weight/volume) agarose gel inclusion sub-
merged within a 1% (weight/volume) agarose gel background.
All phantoms were cylindrical and constructed with a diameter
of ∼22 mm and height of ∼13 mm.
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MIE was performed on all phantoms and the relative elastic-
ity contrast ratio between the stiff material and the soft material
was calculated for each phantom based on the average value
throughout the reconstructed volume. For each phantom, the
reconstructed volumetric elasticity maps were normalized to
the average elasticity value calculated within the soft layer.
Independent evaluation of the elasticity ratio between the stiff
and soft phantom materials was performed through material
testing using an Enduratec Electroforce 3100 mechanical tester
(Bose, Enduratec Systems Group, Minnetonka, Minnesota).
Compression mechanical testing was performed on three sam-
ples of each material using a range of strain levels between 1 and
10%. Incremental unconfined step compressions to specified
strain levels were applied, followed by a 60-s dwell period to
dissipate viscoelastic behavior of the material. Force and
displacement data were recorded at the end of the dwell, con-
verted to Young’s modulus, and results were averaged over all
samples of each material and reported with 95% confidence
intervals (CI).

2.4 Murine Reproducibility Study

Four- to six-week-old female athymic nude Foxn1nu∕nu mice
(Harlan, Indianapolis, Indiana) were injected subcutaneously
in the right flank with ∼107 MDA-MB-231 cells in a 30%
Matrigel suspension (Corning Life Sciences, Tewksbury,
Massachusetts). Tumors were allowed to grow to a size of
∼250 to 500 mm3, which occured in approximately six to
eight weeks postinjection. During MRI, inhalation anesthesia
was induced and maintained via a 2%/98% isoflurane/oxygen
mixture. All animal procedures were approved by the Vanderbilt
University Institutional Animal Care and Use Committee.

Assessment of MIE reproducibility on seven mice was per-
formed using a test/retest approach, in which animals were
removed between consecutive MIE scans and allowed to recover
from anesthesia; this approach simulated the normal—and
unavoidable—repositioning of an animal that occurs during
a longitudinal treatment study. Each MIE scan represents
two separate individual MR acquisitions (i.e., undeformed
and deformed) followed by an individual offline MIE
reconstruction. As the method is limited to relative measures
of elasticity due to the indeterminate nature of displacement
based boundary conditions, the reconstructed volumetric elastic-
ity maps were normalized to the average tumor elasticity value
to facilitate side-by-side comparisons. Therefore, elasticity
maps are displayed relative to an average tumor value of one.
Bulk-level reproducibility of elasticity dispersion was assessed
using Bland–Altman analysis63 on extracted histogram data
dispersion metrics: quartiles (25, 50, and 75%), interquartile
range, peak height, and peak location. Voxel-level reproducibil-
ity was assessed through coregistration of repeated MIE scans
by a demons nonrigid image registration49–51 of the T2-weighted
MR data. The resulting deformation field is used to transform
the elasticity maps from independent scans into the same image
space. Following registration, prior to the assessment of voxel-
level reproducibility, a 4 × 4 kernel in-plane moving average
smoothing filter was applied in order to reduce the effects of
local misregistration.

2.5 Reproducibility Statistics

Reproducibility statistics were calculated as previously
described,64,65 following the methods described by Bland and

Altman.63 The root mean square deviation (rMSD) was calculated
from the differences between repeated measurements, d, as

rMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiP

d2

n

r
; (4)

where n is the number of repeated measurements. The within-
subject standard deviation (wSD) was calculated as

wSD ¼ rMSDffiffiffi
2

p : (5)

The within-subject coefficient of variation (wCV) was calcu-
lated by dividing wSD by the overall mean of the parameter.
This value allows comparisons of precision across different
analysis metrics. The 95% CI was calculated as

CI ¼ � tstat · stdðdÞffiffiffi
n

p ; (6)

where std is the standard deviation of the differences between
repeat measurements and tstat is the appropriate t-statistic for
the number of degrees of freedom. 95% CIs define the range
of expected variability within a group of animals; i.e., a change
from a group of animals greater than this value would indicate
significance at the 5% level. The coefficient of repeatability, r,
was calculated as

r ¼ 2.77 · wSD; (7)

and is defined as the magnitude of the maximum difference that
would be expected in 95% of the paired scans, i.e., the threshold
for significance for an individual measurement. Therefore, an
observed difference that is greater than the coefficient of repeat-
ability between scans from an individual animal indicates a
significant difference at the 5% level. Intraclass correlation coef-
ficients (ICC) using two-way random single measures were used
to calculate reliability.66

2.6 Histology

Following MRI, animals were sacrificed and tumors were
excised, fixed in 10% formalin, dehydrated, embedded in
paraffin, and sectioned for histology. Hematoxylin and eosin
(H&E) and Masson’s trichrome blue stained sections were
obtained along with collagen I immunohistochemisty and slides
were scanned with a Leica SCN400 Slide Scanner (Leica
Microsystems, Buffalo Grove, Illinois). For immunohistoche-
misty, antigen retrieval was performed using citrate buffer,
pH 6, and a Decloaking Chamber (Biocare Medical, Walnut
Creek, California). Anti-collagen I (Rockland Immunochemicals,
Limerick, Pennsylvania, catalog # 600-401-103) was used with
a dilution of 1:1600, overnight incubation at 4°C, and detected
with an Envision DAB kit (Dako, Carpinteria, California).

3 Results

3.1 Phantom Validation Study

A phantom validation study was performed by comparing MIE
to gold-standard material testing to assess the accuracy of the
method using three multimaterial property phantoms with vary-
ing elasticity ratios between the stiff material and the soft
material. MR anatomical image volumes were acquired before
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and after the application of deformation, and MIE was used to
reconstruct estimates of mechanical elasticity throughout the
volume. For phantom A, a cylindrical bilayer phantom was com-
posed of PVA cryogel with two different freeze-thaw cycles;
mechanical testing of each material determined a ground-truth
elasticity ratio of 5.20 to 1. MIE yielded a ratio of 5.69 to 1,
representing an error in the MIE method of 9.4%. For phantom
B, a cylindrical three-layer phantom was composed of two
different PVA cryogel materials with different elasticity as deter-
mined by freeze-thaw cycle; mechanical testing determined a
ground-truth elasticity ratio of 27.4 to 1. MIE generated an elas-
ticity ratio of 25.2 to 1, reflecting an error of 8.1%. Phantom C,
a cylindrical two-property phantom composed of a stiff agarose
gel inclusion submerged in a soft agarose gel background was
found to have a ground-truth mechanical testing elasticity ratio
of 14.9 to 1. The MIE method reconstructed an elasticity ratio of
13.1 to 1, representing an error of 12.1%. Central slice images of
the acquired undeformed and deformed MR images and asso-
ciated MIE elasticity reconstructions are shown in Fig. 2 for all
phantoms. Values of the reconstructed elasticity were averaged
throughout the volume within each material and the elasticity
ratios are reported in Table 1 for each phantom, along with
values from independent mechanical testing.

3.2 Murine Reproducibility Study

Representative anatomical MR images, acquired before and
after the application of compression, associated MIE elasticity
reconstructions and histograms of relative elasticity from
repeated scans are shown in Fig. 3. The location of the defor-
mation source is noted by the arrowheads in Fig. 3(a). It is
important to note that while representative images are shown
for the two-dimensional center slice plane, MR acquisitions and

MIE reconstructions are performed for the full three-dimen-
sional tumor volume. Each row in Fig. 3 represents a single
MIE scan performed on the same animal from corresponding
central slices. Qualitatively, the method appears to provide
similar stiffness values and distribution within the tumor paren-
chyma and core in both of the test-retest scans. Table 2 reports
the reproducibility statistics from the bulk-level histogram
analysis and the voxel-level analysis across the full three-dimen-
sional tumor volume. The 95% CI and wCV for all bulk-level
histogram metrics was <13%. The wCV for voxel-level analysis
was 32.15%. ICCs for all metrics show substantial agreement
between repeat measures with all values>0.70 (note that ICC >
0.61 is considered substantial agreement66). Bland–Altman
plots of the difference versus the average between repeat scans
for each analysis metric are shown in Fig. 4. The mean differ-
ence, 95% CI, and repeatability ranges are plotted as a solid
line, dotted line, and dashed line, respectively.

Fig. 2 MR images and MIE reconstruction results from the phantom validation study for [(a) to (c)] phan-
tom A, [(d) to (f)] phantom B, and [(g) to (i)] phantom C. Multiproperty gel phantoms were constructed of
polyvinyl alcohol cryogel (phantoms A and B) or agarose (phantom C) with two different mechanical
stiffness, as dictated by material formulation. Undeformed [(a), (d), and (g)] and deformed [(b), (e),
and (h)] image volumes were used in the MIE methodology (outlined in Fig. 1) to reconstruct volumetric
estimates of the relative mechanical elasticity [(c), (f), and (i)]. A balloon catheter controlled by
a syringe driver was used to deform the top surface of each phantom. Note that the color bars for
each phantom have different scales and represent relative elasticity (i.e., elasticity ratio), normalized to
the average value estimated within the softer phantom material and expressed as arbitrary units (au).

Table 1 Modality independent elastography (MIE) validation results
from the phantom study. MIE reconstructed mechanical elasticity ratio
of phantoms A, B, and C are shown to exhibit agreement with inde-
pendent mechanical testing. Mechanical testing ratios are expressed
as the average value from three samples of each material with 95%
confidence interval (CI) as shown.

Phantom MIE ratio Mechanical testing ratio Error

A 5.69:1 5.20∶1 �0.44∶1 9.4%

B 25.2:1 27.4∶1 �3.08∶1 8.1%

C 13.1:1 14.9∶1 �1.26∶1 12.1%
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Fig. 3 (a) Reproducibility assessment from a representative murine tumor showing two separate MIE
scans of the same mouse (top row and bottom row). T 2-weighted MR image volumes in the undeformed
(left column) and deformed (middle column) states are used to reconstruct volumetric estimates of the
relative mechanical elasticity (right column). These data are the in vivo analogue of the data presented in
Fig. 2. The MIE method produces estimates of elasticity with similar distributions emerging within the
tumor region for two independent assessments of the same mouse. White arrowheads designate the
position of the deformation source. Note that the color bars represent relative elasticity (i.e., elasticity
ratio), normalized to the average value estimated within the tumor and expressed as arbitrary units.
(b) Histogram distributions for relative elasticity from each of the MIE scans of the same mouse.

Table 2 Repeatability statistics for region of interest histogram summary metrics (25, 50, and 75% quartiles, interquartile range, peak location,
peak height) and voxel-level analyses. Mean, mean difference, 95% CI for mean difference, within-subject standard deviation, within-subject
coefficient of variation, repeatability coefficient, and interclass correlation coefficient. n ¼ 7 test/retest datasets.

Metric Mean Mean difference 95% CI wSD wCV Repeatability ICC

25% quartile 0.67 0.0451 �0.0555 (8.2%) 0.0506 7.50% 0.1403 0.96

50% quartile (median) 0.99 0.0254 �0.0570 (5.7%) 0.0442 4.42% 0.1225 0.75

75% quartile 1.31 −0.0281 �0.0312 (2.4%) 0.0297 2.27% 0.0824 0.97

Interquartile range 0.63 −0.0733 �0.0649 (10.3%) 0.0693 10.96% 0.1920 0.97

Peak location 0.76 0.0286 �0.0699 (9.1%) 0.0535 6.99% 0.1482 0.99

Peak height 1673 172 �252.9 (15.1%) 216.42 12.94% 599.89 0.97

Voxel level 1.00 4.09 × 10−7 �0.4204 (42.0%) 0.3215 32.15% 0.8910 0.70

Note: wSD, within-subject standard deviation; wCV, within-subject coefficient of variation; ICC, intraclass correlation coefficient.
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Notably, as shown in Fig. 5, there is significant focal regional
heterogeneity in the MIE elasticity map within the tumor
[Fig. 5(b)], with an elevated stiffness observed in the core of
the tumor. The significant heterogeneity of the tumor extracel-
lular matrix was confirmed by histological staining for H&E,
Masson’s trichrome, and collagen I immunohistochemistry.
H&E staining shows a relative lack of cell nuclei in the core
of the tumor relative to the periphery, indicating central necrosis.
Masson’s trichrome staining [Figs. 5(d) and 5(g)] shows blue
staining throughout the tumor stroma, including within the
tumor core, reflecting the presence of collagen in this area.
Collagen I immunohistochemistry [Figs. 5(e) and 5(h)] confirms
this finding as an elevation of type I collagen.

4 Discussion
While we have previously studied the use of the general MIE
method,39–44 we have recently fundamentally advanced the

automation, translation, and application toward the preclinical
setting.45 MIE is now positioned as a noninvasive imaging meth-
odology that can provide quantitative characterization of tissue
mechanical status. In this work, we evaluate the accuracy and
reproducibility of the MIE method in a preclinical model of
breast cancer. This study is an initial realization toward a
more systematic study of MIE in characterizing the mechanical
properties of cancer. The method accurately estimates mechani-
cal elasticity ratios, with errors <12% over a range of elasticity
ratios in phantoms, and reproducibly, with test/retest reproduc-
ibility wCVof 2 to 13% at the bulk level and 32% at the voxel
level. Our results provide guidance for a future treatment
response study where we would be able to declare statistical sig-
nificance for chances in MIE elasticity metrics that lie beyond
the indicated 95% CI for each metric using a similar sample size.
For example, if we expect chemotherapeutic treatment to reduce
the tumor stiffness, we would anticipate a leftward shift in the

Fig. 4 Bland-Altman plots (difference versus average between each repeat scan) for histogram
dispersion metrics: (a) 25% quartile, (b) 50% quartile, (c) 75% quartile, (d) interquartile range,
(e) peak height, and (f) peak location. Mean difference is indicated by the solid line, 95% confidence
interval (CI) of mean difference is indicated by the dashed line, and Bland-Altman limits of agreement
bounds (95% CI of the limits of agreement) is indicated by the dotted lines. n ¼ 7 test/retest datasets.
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histogram, reducing the right-hand tail of the histogram and
the location of the peak.

While other metrics assessed from quantitative MRI in pre-
clinical cancer models have recently progressed to providing
validated and repeatable measurements, to our knowledge,
this study is the first to assess the reproducibility of an elasticity
imaging biomarker in a preclinical murine cancer model, so
direct comparisons to other results are unavailable. However,
our results are in agreement with previously reported reproduc-
ibility analyses for other elastography methods reported in the
clinical setting for hepatic and brain elasticity measurements.
The reproducibility of MRE has been reported with wCVs
from 6.07 to 10.78% and ICCs from 0.85 to 0.94 for measure-
ments of human hepatic elasticity in healthy and fibrotic
patients67 and coefficient of variation of 1% for healthy
whole brain, following edge artifact correction.68 In ultrasound
elastography, the reproducibility of transient elastography has
been reported with ICCs of 0.98 for clinical assessment of
hepatic elasticity.69 Ultrasound shear wave elastography assess-
ment of hepatic elasticity has been reported with wCVs from 12
to 17% and ICCs from 0.65 to 0.95.70 Our results are also in
agreement with reproducibility analysis for other types of quan-
titative MRI data previously reported.65,71–73 In a similar mouse
model of breast cancer, Barnes et al. reported wCVs from 8.3 to
15.6% and 95% CIs from 7.5 to 14.3% for metrics extracted

from standard pharmacokinetic analysis of dynamic contrast
enhanced MRI (DCE-MRI) data over the tumor region of
interest for repeat scans.71 Similarly, Whisenant et al. reported
a wCV of 12.0% and 95% CI of 11.8% for a metric extracted
from repeated diffusion weighted MRI (DW-MRI) scans.65 As
our animal model is similar to these studies, the MIE elasticity
biomarker is shown to exhibit a precision similar to DCE-MRI
and DW-MRI analyses.

In Fig. 5, we show an elasticity map alongside histological
staining for collagen content from similar sections. As shown in
the Masson’s trichrome and collagen I staining, there is support-
ing collagen present throughout the tumor stroma, with clear
structure compactness and observable collagen density in the
necrotic region which was shown to be stiffer by MIE. There
is currently a paucity of elastography studies with independent
histological confirmation, especially in murine breast cancer
model systems. Consistent with the results of our study,
Chamming’s et al. found elevated stiffness in the central region
of murine xenograft tumors, with a significant correlation
between ultrasound shear wave elasticity and fibrosis deter-
mined by histological findings of the presence of collagen in
Masson’s trichrome staining and the absence of cell nuclei
(r ¼ 0.83, p < 0.0001).74 This study also confirms a finding
previously reported by our group, showing that the total colla-
gen content in murine mammary tumors is related to bulk

Fig. 5 Comparison of MRI, MIE, and histology. (a) T 2-weighted MRI, (b) MIE elasticity reconstruction,
(c) H&E staining, (d) Masson’s trichrome blue staining, and (e) collagen I immunohistochemistry with
magnifications as indicated by the dotted outline; (f), (g), and (h) indicate the presence of central necrosis
and collagen throughout the tumor stroma. Elevated focal stiffness is seen in the elasticity map for the
core of the tumor. Masson’s trichrome blue and collagen I histological staining indicate presence of
collagen in the tumor core. Scale bar, in (h), equals 100 microns.

Journal of Medical Imaging 036001-8 Jul–Sep 2015 • Vol. 2(3)

Weis et al.: Assessing the accuracy and reproducibility of modality independent elastography. . .



mechanical stiffness.75 Though preliminary, this result is sug-
gestive that elastography may be able to noninvasively assess
tumor extracellular matrix properties. It will be important in
future studies to further assess the molecular underpinnings
of elastography in preclinical cancer models by examining
the elastic properties of tumors alongside in-depth histological
examination.

We also recognize that there are several limitations with our
current approach. Due to the indeterminate nature of displace-
ment based boundary conditions, the method is limited to
relative measures of elasticity rather than absolute values. To
facilitate direct comparisons, we normalized our results to the
average value within the tumor. As we would not expect the
average elasticity to change during the time course of the present
study, this normalization does not affect our results. However,
when extending the method to assess longitudinal changes in
elasticity, possibly in response to administration of chemothera-
peutics, relative elasticity measures could potentially confound
results. While changes in the data dispersion, as assessed by
histogram metrics, could yield valuable results, quantitative val-
ues of reduction/increase in elasticity over time would not be
possible with the current approach. We have previously inves-
tigated, with success, the use of an offset material with a known
modulus of elasticity to serve as an internal control to scale elas-
ticity values,76 and we anticipate the use of this approach when
moving forward toward longitudinal studies. Another limitation
is that comparisons between scans are inexact. In our experi-
mental protocol, we simulated the repositioning that would
occur during a treatment study by removing the animal and
allowing for recovery from anesthesia between repeat scans.
While voxel-level analyses were performed following a nonrigid
image registration, inaccurate voxel-level registration remains
a possibility even following correction through the use of a
smoothing kernel. An additional limitation is due to the discre-
tization of the number of tissue clusters and reconstruction
regions for subsequent elasticity reconstruction. Our reproduc-
ibility statistics are valid only for the selected parameters in this
study. While we expect that an increase or decrease in the num-
ber of regions used for elasticity reconstruction would affect
reconstruction resolution with minimal impact on reproducibil-
ity, future studies need to be performed in order to characterize
this effect.

In summary, we have assessed the accuracy and reproducibil-
ity of MIE within the context of a preclinical animal model of
breast cancer. This assessment provides guidance on the mag-
nitude of changes required to declare significant statistical
differences in tissue elasticity assessed by MIE during a course
of therapy in a preclinical model of breast cancer. The level of
accuracy and precision reported for our elasticity imaging bio-
marker provides a significant degree of enthusiasm for future
studies directed at investigating the potential changes in
mechanical stiffness of tumors in response to cancer therapeutic
agents.

Acknowledgments
This work was supported by the National Cancer Institute
through R01CA138599, R25CA092043, U01CA142565,
and U01CA174706. This work was also supported by the
Vanderbilt Initiative in Surgery and Engineering Pilot Award
Program and the Vanderbilt University School of Engineering
Summer Research Program. We thank Dr. Melinda Sanders
for assistance with examining histological data. We also

acknowledge the services of the Vanderbilt University Transla-
tional Pathology Shared Resource and the Vanderbilt University
Digital Histology Shared Resource. We thank the Kleberg
Foundation for the generous support of our biomedical imaging
program.

References
1. K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastog-

raphy applications and recent developments,” J. Magn. Reson. Imaging
36(4), 757–774 (2012).

2. Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance
elastography: a review,” Clin. Anal. 23(5), 497–511 (2010).

3. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic
properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1),
R1–R29 (2011).

4. A. L. McKnight et al., “MR elastography of breast cancer: preliminary
results,” Am. J. Roentgenol. 178(6), 1411–1417 (2002).

5. S. K. Venkatesh et al., “MR elastography of liver tumors: preliminary
results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).

6. P. Garteiser et al., “MR elastography of liver tumours: value of visco-
elastic properties for tumour characterisation,” Eur. Radiol. 22(10),
2169–2177 (2012).

7. D. W. Good et al., “Elasticity as a biomarker for prostate cancer: a sys-
tematic review,” BJU Int. 113(4), 523–534 (2014).

8. M. J. Paszek and V. M. Weaver, “The tension mounts: mechanics meets
morphogenesis and malignancy,” J. Mammary Gland Biol. Neoplasia
9(4), 325–342 (2004).

9. M. J. Paszek et al., “Tensional homeostasis and the malignant pheno-
type,” Cancer Cell 8(3), 241–254 (2005).

10. M. J. Paszek et al., “Mechano-signaling in mammary morphogenesis
and tumorigenesis,” Mol. Biol. Cell 15, 241A (2004)..

11. S. Huang and D. E. Ingber, “Cell tension, matrix mechanics, and cancer
development,” Cancer Cell 8(3), 175–176 (2005).

12. A. C. Shieh, “Biomechanical forces shape the tumor microenviron-
ment,” Ann. Biomed. Eng. 39(5), 1379–1389 (2011).

13. A. J. Engler et al., “Substrate compliance alters human mesenchymal
stem cell morphology,” Mol. Biol. Cell 15, 298A (2004).

14. A. J. Engler et al., “Cells on gels: skeletal muscle cell differentiation and
adhesion on flexible substrates,” Mol. Biol. Cell 13, 63A (2002).

15. A. J. Engler et al., “Substrate elasticity directs adult mesenchymal stem
cell differentiation,” Biorheology 42(1–2), 33–33 (2005).

16. C. M. Lo et al., “Cell movement is guided by the rigidity of the sub-
strate,” Biophys. J. 79(1), 144–152 (2000).

17. T. Yeung et al., “Effects of substrate stiffness on cell morphology, cytos-
keletal structure, and adhesion,” Cell Motil. Cytoskeleton 60(1), 24–34
(2005).

18. K. Burridge and R. Doughman, “Front and back by Rho and Rac,”
Nat. Cell Biol. 8(8), 781–782 (2006).

19. K. Roovers and R. K. Assoian, “Effects of rho kinase and actin stress
fibers on sustained extracellular signal-regulated kinase activity and
activation of G(1) phase cyclin-dependent kinases,” Mol. Cell Biol.
23(12), 4283–4294 (2003).

20. G. Helmlinger et al., “Solid stress inhibits the growth of multicellular
tumor spheroids,” Nat. Biotechnol. 15(8), 778–783 (1997).

21. T. A. Ulrich, E. M. de Juan Pardo, and S. Kumar, “The mechanical
rigidity of the extracellular matrix regulates the structure, motility,
and proliferation of glioma cells,” Cancer Res. 69(10), 4167–4174
(2009).

22. M. H. Zaman et al., “Migration of tumor cells in 3D matrices is gov-
erned by matrix stiffness along with cell-matrix adhesion and proteoly-
sis,” Proc. Natl. Acad. Sci. U S A 103(29), 10889–10894 (2006).

23. A. M. Stein et al., “A mathematical model of glioblastoma tumor sphe-
roid invasion in a three-dimensional in vitro experiment,” Biophys. J.
92(1), 356–365 (2007).

24. G. Cheng et al., “Micro-environmental mechanical stress controls tumor
spheroid size and morphology by suppressing proliferation and induc-
ing apoptosis in cancer cells,” PLoS One 4(2), e4632 (2009).

25. A. Samani and D. Plewes, “An inverse problem solution for measuring
the elastic modulus of intact ex vivo breast tissue tumours,” Phys. Med.
Biol. 52(5), 1247–1260 (2007).

Journal of Medical Imaging 036001-9 Jul–Sep 2015 • Vol. 2(3)

Weis et al.: Assessing the accuracy and reproducibility of modality independent elastography. . .

http://dx.doi.org/10.1002/jmri.23597
http://dx.doi.org/10.1002/ca.21006
http://dx.doi.org/10.1088/0031-9155/56/1/R01
http://dx.doi.org/10.2214/ajr.178.6.1781411
http://dx.doi.org/10.2214/AJR.07.3123
http://dx.doi.org/10.1007/s00330-012-2474-6
http://dx.doi.org/10.1111/bju.12236
http://dx.doi.org/10.1007/s10911-004-1404-x
http://dx.doi.org/10.1016/j.ccr.2005.08.010
http://dx.doi.org/10.1016/j.ccr.2005.08.009
http://dx.doi.org/10.1007/s10439-011-0252-2
http://dx.doi.org/10.1016/S0006-3495(00)76279-5
http://dx.doi.org/10.1002/cm.20041
http://dx.doi.org/10.1038/ncb0806-781
http://dx.doi.org/10.1128/MCB.23.12.4283-4294.2003
http://dx.doi.org/10.1038/nbt0897-778
http://dx.doi.org/10.1158/0008-5472.CAN-08-4859
http://dx.doi.org/10.1073/pnas.0604460103
http://dx.doi.org/10.1529/biophysj.106.093468
http://dx.doi.org/10.1371/journal.pone.0004632
http://dx.doi.org/10.1088/0031-9155/52/5/003
http://dx.doi.org/10.1088/0031-9155/52/5/003


26. A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and
pathological human breast tissues: an inversion-technique-based inves-
tigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).

27. O. Falou et al., “Evaluation of neoadjuvant chemotherapy response in
women with locally advanced breast cancer using ultrasound elastog-
raphy,” Transl. Oncol. 6(1), 17–24 (2013).

28. J. Li et al., “Tumour biomechanical response to the vascular disrupting
agent ZD6126 in vivo assessed by magnetic resonance elastography,”
Br. J. Cancer 110(7), 1727–1732 (2014).

29. K. M. Pepin et al., “MR elastography derived shear stiffness—a new
imaging biomarker for the assessment of early tumor response to
chemotherapy,” Magn. Reson. Med. 71(5), 1834–1840 (2014).

30. J. Ophir et al., “Elastography—a quantitative method for imaging
the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134
(1991).

31. C. L. de Korte et al., “Characterization of plaque components and vul-
nerability with intravascular ultrasound elastography,” Phys. Med. Biol.
45(6), 1465–1475 (2000).

32. M. M. Doyley, P. M. Meaney, and J. C. Bamber, “Evaluation of an iter-
ative reconstruction method for quantitative elastography,” Phys. Med.
Biol. 45(6), 1521–1540 (2000).

33. E. E. Konofagou and J. Ophir, “Precision estimation and imaging of
normal and shear components of the 3D strain tensor in elastography,”
Phys. Med. Biol. 45(6), 1553–1563 (2000).

34. A. Lorenz et al., “Ultrasound elastography of the prostate: an innovative
technique for tumour-detection,” Ultraschall Med. 21(1), 8–15
(2000).

35. R. Muthupillai et al., “Magnetic-resonance elastography by direct visu-
alization of propagating acoustic strain waves,” Science 269(5232),
1854–1857 (1995).

36. M. A. Dresner et al., “Magnetic resonance elastography of the prostate,”
Radiology 209P, 181 (1998).

37. G. H. Rose et al., “‘Palpation of the brain’ using magnetic resonance
elastography,” Radiology 209P, 425–425 (1998).

38. A. Manduca et al., “Magnetic resonance elastography: non-invasive
mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254
(2001).

39. M. I. Miga, “A new approach to elastographic imaging: modality inde-
pendent elastography,” Proc. SPIE 4684, 604–611 (2002).

40. M. I. Miga, “A new approach to elastography using mutual information
and finite elements,” Phys. Med. Biol. 48(4), 467–480 (2003).

41. M. I. Miga, M. P. Rothney, and J. J. Ou, “Modality independent elas-
tography (MIE): potential applications in dermoscopy,” Med. Phys.
32(5), 1308–1320 (2005).

42. J. J. Ou et al., “Evaluation of 3D modality-independent elastography for
breast imaging: a simulation study,” Phys. Med. Biol. 53(1), 147–163
(2008).

43. C. W. Washington and M. I. Miga, “Modality independent elastography
(MIE): a new approach to elasticity imaging,” IEEE Trans. Med.
Imaging 23(9), 1117–1128 (2004).

44. T. S. Pheiffer et al., “Automatic generation of boundary conditions using
demons nonrigid image registration for use in 3-D modality-independent
elastography,” IEEE Trans. Biomed. Eng. 58(9), 2607–2616 (2011).

45. J. A. Weis et al., “A consistent pre-clinical/clinical elastography
approach for assessing tumor mechanical properties in therapeutic
systems,” Proc. SPIE 8672, 86721F (2013).

46. J. A. Weis et al., “Validation and reproducibility assessment of modality
independent elastography in a pre-clinical model of breast cancer,”
Proc. SPIE 9038, 90381I (2014).

47. W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D
surface construction algorithm,” ACM SIGGRAPH Comput. Graph. 21,
163–169 (1987).

48. J. M. Sullivan Jr, G. Charron, and K. D. Paulsen, “A three-dimensional
mesh generator for arbitrary multiple material domains,” Finite Elem.
Anal. Des. 25(3), 219–241 (1997).

49. J. P. Thirion, “Image matching as a diffusion process: an analogy with
Maxwell’s demons,” Med. Image Anal. 2(3), 243–260 (1998).

50. T. Vercauteren et al., “Diffeomorphic demons: efficient non-parametric
image registration,” Neuroimage 45(1 Suppl), S61–72 (2009).

51. T. Vercauteren et al., “Non-parametric diffeomorphic image registration
with the demons algorithm,” Med. Image Comput. Comput. Assist.
Interv. 10(Pt 2), 319–326 (2007).

52. E. Polak and G. Ribiere, “Note surla convergence des méthodes de
directions conjuguées,” Rev. Fr. Imform. Rech. Oper. 16, 35–43 (1969).

53. R. Fletcher and C. M. Reeves, “Function minimization by conjugate
gradients,” Comput. J. 7(2), 149–154 (1964).

54. G. Chavent, “Identification of functional parameters in partial differen-
tial equations,” in R. E. Goodson and M. Polis, Eds., Identification of
Parameters in Distributed Systems, ASME Conference on Automatic
Control, 17–21 June 1974, Austin, Texas, pp. 31–48, American
Society of Mechanical Engineers, New York (1974).

55. A. A. Oberai, N. H. Gokhale, and G. R. Feijoo, “Solution of inverse
problems in elasticity imaging using the adjoint method,” Inverse
Probl. 19, 297–313 (2003).

56. W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit:
An Object-Oriented Approach to 3-D Graphics, Prentice Hall PTR,
Upper Saddle River, N.J. (1996).

57. T. S. Yoo et al., “Engineering and algorithm design for an image
processing API: a technical report on ITK—the Insight Toolkit,”
Stud. Health Technol. Inform. 85, 586–592 (2002).

58. A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Springer, Norwell, Massachusetts (1992).

59. J. Besag, “On the statistical analysis of dirty pictures,” J. R. Stat. Soc.
Series B Methodol. 48, 259–302 (1986).

60. M. McGarry et al., “Including spatial information in nonlinear inversion
MR elastography using soft prior regularization,” IEEE Trans. Med.
Imaging 32(10), 1901–1909 (2013).

61. M. M. Doyley et al., “Enhancing the performance of model-based
elastography by incorporating additional a priori information in the
modulus image reconstruction process,” Phys. Med. Biol. 51(1), 95–
112 (2006).

62. M. S. Richards and M. M. Doyley, “Investigating the impact of spatial
priors on the performance of model-based IVUS elastography,” Phys.
Med. Biol. 56(22), 7223–7246 (2011).

63. J. M. Bland and D. G. Altman, “Measuring agreement in method com-
parison studies,” Stat. Methods Med. Res/ 8(2), 135–160 (1999).

64. S. M. Galbraith et al., “Reproducibility of dynamic contrast-enhanced
MRI in human muscle and tumours: comparison of quantitative and
semi-quantitative analysis,” NMR Biomed. 15(2), 132–142 (2002).

65. J. G. Whisenant et al., “Assessing reproducibility of diffusion-weighted
magnetic resonance imaging studies in a murine model of HER2+ breast
cancer,” Magn. Reson. Imaging 32(3), 245–249 (2014).

66. J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics 33(1), 159–174 (1977).

67. N. J. Shire et al., “Test-retest repeatability of MR elastography for
noninvasive liver fibrosis assessment in hepatitis C,” J. Magn. Reson.
Imaging 34(4), 947–955 (2011).

68. M. C. Murphy et al., “Measuring the characteristic topography of brain
stiffness with magnetic resonance elastography,” PLoS One 8(12),
e81668 (2013).

69. M. Fraquelli et al., “Reproducibility of transient elastography in the
evaluation of liver fibrosis in patients with chronic liver disease,”
Gut 56(7), 968–973 (2007).

70. G. Ferraioli et al., “Reproducibility of real-time shear wave elastography
in the evaluation of liver elasticity,” Eur. J. Radiol. 81(11), 3102–3106
(2012).

71. S. L. Barnes et al., “Assessing the reproducibility of dynamic contrast
enhanced magnetic resonance imaging in a murine model of breast
cancer,” Magn. Reson. Med. 69(6), 1721–1734 (2013).

72. E. A. M. O'Flynn et al., “Diffusion weighted imaging of the normal
breast: reproducibility of apparent diffusion coefficient measurements
and variation with menstrual cycle and menopausal status,” Eur.
Radiol. 22(7), 1512–1518 (2012).

73. X. Zhang et al., “Reproducibility of magnetic resonance perfusion
imaging,” PLoS One 9(2), e89797 (2014).

74. F. Chamming’s et al., “Shear wave elastography of tumour growth in a
human breast cancer model with pathological correlation,” Eur. Radiol.
23(8), 2079–2086 (2013).

75. S. L. Barnes, P. P. Young, and M. I. Miga, “A novel model-gel-tissue
assay analysis for comparing tumor elastic properties to collagen con-
tent,” Biomech. Model. Mechanobiol. 8(4), 337–343 (2009).

76. D. K. Kim et al., “Utilizing a reference material for assessing absolute
tumor mechanical properties in modality independent elastography,”
Proc. SPIE 9038, 90381F (2014).

Journal of Medical Imaging 036001-10 Jul–Sep 2015 • Vol. 2(3)

Weis et al.: Assessing the accuracy and reproducibility of modality independent elastography. . .

http://dx.doi.org/10.1088/0031-9155/52/6/002
http://dx.doi.org/10.1593/tlo.12412
http://dx.doi.org/10.1038/bjc.2014.76
http://dx.doi.org/10.1002/mrm.24825
http://dx.doi.org/10.1177/016173469101300201
http://dx.doi.org/10.1088/0031-9155/45/6/305
http://dx.doi.org/10.1088/0031-9155/45/6/309
http://dx.doi.org/10.1088/0031-9155/45/6/309
http://dx.doi.org/10.1088/0031-9155/45/6/311
http://dx.doi.org/10.1055/s-2000-8926
http://dx.doi.org/10.1126/science.7569924
http://dx.doi.org/10.1016/S1361-8415(00)00039-6
http://dx.doi.org/10.1117/12.467203
http://dx.doi.org/10.1088/0031-9155/48/4/304
http://dx.doi.org/10.1118/1.1895795
http://dx.doi.org/10.1088/0031-9155/53/1/010
http://dx.doi.org/10.1109/TMI.2004.830532
http://dx.doi.org/10.1109/TMI.2004.830532
http://dx.doi.org/10.1109/TBME.2011.2159791
http://dx.doi.org/10.1117/12.2007425
http://dx.doi.org/10.1117/12.2042796
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1016/S0168-874X(96)00027-3
http://dx.doi.org/10.1016/S0168-874X(96)00027-3
http://dx.doi.org/10.1016/S1361-8415(98)80022-4
http://dx.doi.org/10.1016/j.neuroimage.2008.10.040
http://dx.doi.org/10.1007/978-3-540-75759-7_39
http://dx.doi.org/10.1007/978-3-540-75759-7_39
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1088/0266-5611/19/2/304
http://dx.doi.org/10.1088/0266-5611/19/2/304
http://dx.doi.org/10.1109/TMI.2013.2268978
http://dx.doi.org/10.1109/TMI.2013.2268978
http://dx.doi.org/10.1088/0031-9155/51/1/007
http://dx.doi.org/10.1088/0031-9155/56/22/014
http://dx.doi.org/10.1088/0031-9155/56/22/014
http://dx.doi.org/10.1191/096228099673819272
http://dx.doi.org/10.1002/nbm.731
http://dx.doi.org/10.1016/j.mri.2013.10.013
http://dx.doi.org/10.2307/2529310
http://dx.doi.org/10.1002/jmri.22716
http://dx.doi.org/10.1002/jmri.22716
http://dx.doi.org/10.1371/journal.pone.0081668
http://dx.doi.org/10.1136/gut.2006.111302
http://dx.doi.org/10.1016/j.ejrad.2012.05.030
http://dx.doi.org/10.1002/mrm.24422
http://dx.doi.org/10.1007/s00330-012-2399-0
http://dx.doi.org/10.1007/s00330-012-2399-0
http://dx.doi.org/10.1371/journal.pone.0089797
http://dx.doi.org/10.1007/s00330-013-2828-8
http://dx.doi.org/10.1007/s10237-009-0150-9
http://dx.doi.org/10.1117/12.2044195


Jared A. Weis is a research assistant professor of biomedical engi-
neering at Vanderbilt University. He received his BS degree
in biomedical engineering from Washington University, St. Louis,
USA, in 2005 and his MS and PhD degrees in biomedical engineering
from Vanderbilt University in 2009 and 2011, respectively. His
research interests focus on integrating computational modeling and
medical imaging to study the multiscale influences of mechanics in
cancer progression and response to therapy.

Katelyn M. Flint received her BS degree in biomedical engineering
from Vanderbilt University in 2015. Currently, she is a graduate stu-
dent in biomedical engineering at Duke University.

Violeta Sanchez is a histotechnologist and specialized tissue studies
technologist for the Vanderbilt Breast Specialized Program of
Research Excellence in the Vanderbilt-Ingram Cancer Center at
Vanderbilt University.

Thomas E. Yankeelov is an ingram professor of cancer research and
a professor of radiology and radiological sciences, physics, biomedi-
cal engineering, and cancer biology. He serves as a director of cancer
imaging research for the Vanderbilt-Ingram Cancer Center, where he
is also the coleader of the Host–Tumor Interactions Research
Program. His research focuses on the development of imaging meth-
ods for predicting treatment response in cancer and extends from
mathematical modeling to implementation in human studies.

Michael I. Miga received his BS and MS degrees in mechanical
engineering from University of Rhode Island in 1992 and 1994,
respectively, and his PhD in biomedical engineering from Dartmouth
College in 1998. He joined Vanderbilt in 2001 and is a professor
of BME. He directs the Biomedical Modeling Laboratory and is
cofounder of the Vanderbilt Initiative in Surgery and Engineering
Center. His research is in computational modeling and inverse prob-
lems for medical applications.

Journal of Medical Imaging 036001-11 Jul–Sep 2015 • Vol. 2(3)

Weis et al.: Assessing the accuracy and reproducibility of modality independent elastography. . .


