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Abstract

New technologies in mass spectrometry are beginning to mature and show unique advantages for 

the identification and quantitation of proteins. In recent years, one of the significant goals of 

clinical proteomics has been to identify biomarkers that can be used for clinical diagnosis. As 

technology has progressed, the list of potential biomarkers has grown. However, the verification 

and validation of these potential biomarkers is increasingly challenging and require high-

throughput quantitative assays, targeting specific candidates. Targeted proteomics bridges the gap 

between biomarker discovery and the development of clinically applicable biomarker assays.
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One of the goals of clinical proteomics has been the discovery of protein biomarkers, which 

could translate into relatively cost–effective assays for the early detection, diagnosis and 

even prognosis of disease. The field has produced thousands of publications outlining 

potential biomarkers based on discovery experiments [1,2], yet there are relatively few 

biomarker assays available for clinical use [3]. Only about 100 US FDA-approved protein 

assays exist, 80% of which were developed before 1993, few of them contain panels of 

proteins [3]. There is a growing consensus among leaders in the field that the development 

of quantitative high-throughput assays for the candidate proteins represents a bottleneck 

between biomarker discovery and fully validated assays for use in the clinic [4–10]. 

Targeted proteomics affords the potential for the development of assays that are sensitive, 

reproducible, quantitative and possess a high enough throughput that statistically relevant 

conclusions can be drawn about the potential clinical value of a biomarker [5,11–15].

Selected reaction monitoring

The pipeline for evaluation of potential biomarkers after initial discovery requires the 

verification and validation of biomarkers through analysis of hundreds and even thousands 

of biological samples [9]. This pipeline requires the development of assays that are sensitive, 

reproducible, quantitative and high throughput enough that a statistically significant 
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evaluation can be made concerning the clinical value of each target [6–10]. To address these 

needs, assays have been developed using a technique known as selected reaction monitoring 

(SRM), which is a mass spectrometry technique that has recently been applied to the 

evaluation of quantitative differences between biological samples [5,11,12,16–18].

This SRM technique has been used widely for the analysis of small molecules [19]. It 

normally involves the coupling of in-line chromatography [20,21] with electrospray 

ionization for introduction into a triple quadrupole mass spectrometer [22–26]. In a triple 

quadrupole format, the mass spectrometer analyzes a (normally tryptic) peptide of interest 

by isolating a ‘precursor’ ion in the first quadrupole, after which the precursor ion is 

delivered to the second quadrupole where the ion is fragmented, resulting in ‘product’ ions 

that are delivered to the third quadrupole where they are scanned one at a time in separate 

scanning events [27–29]. Each precursor–product ion pair can be thought of as a separate 

scanning event, known as a ‘transition’, which must be programmed for mass spectrometry 

acquisition prior to analysis, and normally at least three daughter ions per target are 

recommended to insure optimum selectivity [30]. Verifying more than one transition per 

peptide and multiple peptides from the target protein is also important for controlling for 

matrix effects [28,31,32]. It has become common to use standards containing stable isotopes 

as internal standards in a technique known as isotope dilution mass spectrometry [33]. This 

technique allows for normalization and controls for variability and allows for relative 

quantitation based on the ratio of ‘heavy’ isotope containing standards to ‘light’ endogenous 

molecules, thus improving reproducibility and allowing for quantitation [23–26]. Another 

advantage of this technique is the relatively large dynamic range and sensitivity associated 

with isolating unique precursor-product ion transitions one at a time [34–38]. This strategy 

has also been used with SRM in tissue culture experiments through the use of stable isotope 

labeling by amino acids [39], which has benefited SRM by being used to quantitate proteins 

and to achieve absolute quantitation in biological samples by use of addition of a known 

amount of stable isotope synthetic peptide [40].

Advantages of SRM

Other techniques exist for targeted analysis, such as western blot and ELISA. Although 

western blot techniques have low throughput and are less quantitative, SRM and ELISA 

assays have shown a good degree of correlation [41]. Though ELISA assays can achieve a 

very high degree of sensitivity and specificity, the degree of sensitivity and specificity is 

dependent on the quality of the paired antibodies used. In addition, the development of new 

antibodies normally requires a large investment of money, time and effort for the 

development of antibodies if they are not already available and has a high failure rate [42–

44]. ELISA assays, once developed, have a high degree of reproducibility and sensitivity on 

the order of sub-ng/ml. Though systems such as XMAP-Luminex and others have the ability 

to multiplex more than 40 proteins, they are not feasible for verification of a large number of 

potential biomarkers. One advantage of SRM is that, in contrast to the effort involved in 

developing an antibody, the development of an SRM assay is faster and more cost–effective 

[43,44].

Harlan and Zhang Page 2

Expert Rev Proteomics. Author manuscript; available in PMC 2015 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another significant advantage that SRM has over ELISA is the ability to multiplex large 

numbers of SRM assays with a high degree of reproducibility. The ability to multiplex SRM 

assays, known as multiple reaction monitoring (MRM), has allowed the targeted quantitation 

of potentially hundreds of proteins in a single analysis by scanning for specific peptides only 

during specific scanning windows, based on retention time [42]. This technique requires 

prior knowledge of retention time, but has allowed for the quantitation of hundreds of targets 

in a single analysis, though SRM remains the basis of this trend [45–47].

Expert commentary

It has long been thought that circulating blood contains molecular markers for disease due to 

the access this biological fluid has to every organ in the body. In addition, within the field of 

clinical chemistry, blood is the predominate biological sample procured from patients being 

diagnosed by medical clinics. Consequently, the plasma proteome is considered an attractive 

source of potential biomarkers, which contains as many as 10,000 unique proteins [48]. The 

clinical relevance can be seen in the assays that have been developed for quantitation of 

specific targets in the plasma proteome, for example blood levels of cardiac troponin after 

myocardial infarction [49,50]. In addition, cancer diagnostic biomarkers have been 

discovered, for example, thyroglobulin detection for metastatic thyroid cancer after thyroid 

removal [51]. These biomarker assays, which are now routinely used in a clinical setting, 

demonstrate proof of principle and inspire hope that many more biomarker tests may be 

validated for routine clinical use [3].

Five-year view

Despite these successes, the field of proteomics has relatively few fully validated assays for 

clinical use. Though SRM has greatly increased the feasibility of targeted assay 

development, hurdles remain due to high throughput and reproducible sample preparation to 

generate peptides from targeted proteins, appropriate transitions specifically designed for 

each protein target, the cost associated with the development of assays using mass 

spectrometry and stable isotope peptides, the development of highly multiplexed 

SRM/MRM assays and the enrichment reagents and methods for low-abundant targets 

[27,29,52]. To address the first hurdle, there is need for sample preparation and automation 

[53]. To address the second hurdle, publically available tools are available, such as 

PASSEL, NIST peptide library and SRMAtlas, which list spectral libraries, which can be 

used to develop SRM assays [5,54,55]. However, there is still a need for accurately 

predicting the fragmentation patterns and collision energies that will yield the most 

sensitivity in a triple quad instrument. This has been addressed in large part by the 

development of high-resolution scan of product ions which has allowed for the development 

of a technique known as multiple reaction monitoring high resolution [56]. The multiple 

reaction monitoring high-resolution technique scans for precursor ions performs 

fragmentation and detects daughter ions in a high-resolution unit, allowing for the collection 

a full spectrum of the daughter ions, eliminating the need for the determination of precise 

collision energy and optimum daughter ion charge state [56]. To address the third hurdle of 

expense associated with stable isotope internal standards, effective and inexpensive ways, at 

least for tagging large numbers of peptides, have been developed such as mass differential 
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tags for relative and absolute quantitation [57,58], tandem mass tag [59] and 18O labeling 

[60,61] and dimethyl labeling [62], which also allow for normalization and quantitation, thus 

eliminating the need to purchase stable isotope standards. In addition, mass spectrometers 

have been developed with specific goals for targeted analysis to reduce the cost of using 

high-end mass spectrometers for targeted analysis. To address the fourth issue of 

multiplexed SRM/MRM, methods for using retention time standards have been developed, 

which allow the transfer of retention times from one chromatography platform to be 

transferred to another [63,64]. However, there is a concern with the number of targets to 

analyze in a single liquid chromatography–mass spectrometry analysis, and data 

independent acquisition approach such as energy dependent fragmentation and sequential 

window acquisition of all theoretical fragment-ion spectra techniques provides a solution 

[65,66]. To address the last issue, the low-abundant targets were enriched using upfront 

target enrichment followed by SRM analysis [67,68].

In the next 5 years, it is conceivable to imagine that these tools and others like them could be 

used to rapidly create fully quantitative targeted assays that are transferable and cost–

effective. It is hoped that this will lead to the verification of many potential biomarkers with 

greater degrees of confidence. If this possibility is realized, then full FDA validation of 

novel biomarkers using targeted proteomics may be on the near horizon.
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Key issues

• The field of proteomics has produced many publications outlining potential 

biomarkers based on discovery experiments, yet there are relatively few 

biomarker assays available for clinical use.

• There is a growing consensus among leaders in the field that the development of 

quantitative high-throughput assays for the candidate proteins represents a 

bottleneck between biomarker discovery and fully validated assays for use in the 

clinic.

• Targeted proteomics affords the potential for the development of assays that are 

sensitive, reproducible, quantitative and possess a high enough throughput that 

statistically relevant conclusions can be drawn about the potential clinical value 

of a biomarker.

• To address these needs, assays have been developed using a technique known as 

selected reaction monitoring (SRM), which is a mass spectrometry technique 

that has recently been applied to the evaluation of quantitative differences 

between biological samples.

• The advantage of SRM assays is faster development time, the ability to 

multiplex large numbers of assays and cost–effectiveness in assay development.

• It has long been thought that circulating blood contains molecular markers for 

disease due to the access this biological fluid has to every organ in the body and 

is hoped that many more biomarker tests may be validated for routine clinical 

use.

• Though SRM has greatly increased the feasibility of targeted assay 

development, hurdles remain due to issues such as sample preparation, assay 

development costs and sensitivity.

• Tools such as SRMAtlas and retention time standards have been created to 

address these challenges. It is conceivable to imagine that these tools and others 

like them could be used to rapidly create fully quantitative targeted assays that 

are transferable and cost–effective, leading to validation of biomarkers for 

clinical use.
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