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Background. The use of auxiliary endpoints may provide efficiencies for clinical trial design, but such endpoints may not have in-
trinsic clinical relevance or clear linkage to more meaningful endpoints. The purpose of this study was to generate a novel endpoint
that considers both overall survival (OS) and earlier events such as progression-free survival (PFS) and determine whether such an
endpoint could increase efficiency in the design of glioblastoma clinical trials.

Methods. Recognizing that the association between PFS and OS varies depending on therapy and tumor type, we developed a
statistical model to predict OS based on PFS as the trial progresses. We then evaluated the efficiency of our model using simu-
lations of adaptively randomized trials incorporating PFS and OS distributions from prior published trials in neuro-oncology.

Results. When treatment effects on PFS and OS are concordant, our proposed approach results in efficiency gains compared with
randomization based on OS alone while sacrificing minimal efficiency compared with using PFS as the primary endpoint. When
treatment effects are limited to PFS, our approach provides randomization probabilities that are close to those based on OS alone.

Conclusion. Use of OS as the primary endpoint, combined with statistical modeling of the relationship between OS and PFS during
the course of the trial, results in more robust and efficient trial designs than using either endpoint alone.
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Background
Glioblastoma (GBM) has a poor prognosis despite multimodal-
ity therapy, and therapeutic advances have been few.1,2

Recently, there has been increasing frustration with inefficien-
cies created by the cancer research bureaucracy3 and interest
in finding ways to speed up the conduct and analysis of clinical
trials. One potential way to shorten the time from trial initiation
to results is to use primary endpoints that incorporate imaging-
based assessments of progression, such as progression-free
survival (PFS), with earlier times to event than overall survival
(OS).4 Furthermore, since experimental therapies most directly
influence the time until progression, it is generally easier to
detect effects on PFS, especially if there is long and heteroge-
neous survival post progression.5

There has been some concern, however, regarding the use
of progression-based endpoints for clinical trials in neuro-
oncology.6 While outcomes, such as survival time, may have

clear clinical relevance, endpoints based on imaging assess-
ments, such as response or progression status, are not as
clearly linked to patient benefit. Furthermore, while impacts
on these endpoints may be associated with impacts on OS,
this relationship is not uniformly consistent across different
tumor types and different therapies,7,8 which adds further
complexity. In other words, it can be difficult to anticipate
how positive effects on overall response rate or PFS will
translate to effects on OS. For example, two recent phase III tri-
als in GBM demonstrated improvements in PFS with no effect
on OS,7,8 while prior trial data seemed to suggest a stronger
link.4

Given the controversy regarding the use of early endpoints
to guide clinical trial decision-making but also recognizing the
potential value of these endpoints,4,6 we created a composite
endpoint model to use in clinical trials for newly diagnosed
GBM patients. This model remains anchored to identifying ef-
fects on OS but allows substantial efficiency gains when PFS
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data both support positive treatment effects on progression
and anticipate OS treatment effects. We tested the composite
model’s performance through simulations in the context of a
multiarm Bayesian, adaptively randomized clinical trial.9,10

Methods
We defined an adaptive randomization procedure for multiarm
trials based on a model for PFS and OS outcomes. The model

Fig. 1. Kaplan-Meier survival curves from EORTC 26981/NCIC CE.3 (reprinted with permission from Massachusetts Medical Society),14 RTOG 0525
(reprinted with permission. # 2013 American Society of Clinical Oncology. All rights reserved.),20 AVAglio (reprinted with permission from
Massachusetts Medical Society),7 and RTOG 0825 (reprinted with permission from Massachusetts Medical Society)8 trials.
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includes (K + 1) PFS distributions (G0, . . ., GK) and (K + 1) OS dis-
tributions (F0, . . ., FK), one for each of the K experimental arms,
and k¼ 0 corresponding to the control arm. We evaluated two
models for auxiliary and primary endpoints: an additive model5

and a joint proportional hazards (PHs) model. Under the addi-
tive model, Gk can differ from G0, but survival post progression
(SPP) (defined at the individual level as SPP¼ OS-PFS) is as-
sumed to be independent of treatment assignment. This
leads to an adaptive randomization procedure based entirely
on PFS data.

The PH model is defined by PHs for PFS and OS distributions,
via positive parameters l¼ (l1, . . ., lK) and u¼ (u1, . . ., uK) such
that Gk(· ≥ t) = G0(· ≥ t)lk and Fk(· ≥ t) = F0(· ≥ t)uk . Our poste-
rior computations use the factorization:

p(u,l|data)/ p(u,l) × PL(PFS.data|l) × PL(OS.data|u) (1)

where p(u,l) is the prior distribution on the unknown parame-
ters, and PL stands for partial likelihood. Two choices that sim-
plify computations are the use of partial likelihoods and the
separation of PFS and OS data into two distinct terms. The dis-
tribution p(u,l|data) generated by (1) is a practical approxima-
tion that we used for adapting randomization probabilities. The
prior, p(u, l), is the model component through which PFS data
from the early stage of the trial can affect prediction of the
treatment effects on OS. Typically, uk and lk are positively cor-
related a priori, so that promising PFS data from the k-th arm
translates into optimistic prediction for the OS effect in the
same arm.

Our Bayesian adaptive randomization (BAR) procedure has a
similar interpretation to that previously described.11 Specifi-
cally, the probability, pi,k, that the i-th enrolled patient will be
randomized to the k-th arm, is a function of the posterior
distribution:

pi,k/

p(OS0 ≪ OSK | available data)g(i)∑K
j=1 p(OS0 ≪ OSK | available data)g(i)

k = 1, . . . ,K,

1
K

exp(max(ni,1, . . . ,ni,K) −ni,0)h(i) k = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

where ni,k is the count of randomizations to arm k before the
enrollment of the i-th patient, OS0 ≪ OSK indicating a positive
OS treatment effect of the k-th arm, and both g(i) and h(i) are
increasing functions.

We analyzed BAR with auxiliary and primary endpoints. We
considered both scenarios in which a positive OS effect is and is
not anticipated by a PFS improvement, as seen in prior glioma
data.6 – 8,12,13 Because our goal was to evaluate BAR robust-
ness, the ratios of the accrual rate to PFS and OS times are crit-
ical. For instance, adaptation is impractical if PFS times exceed
the accrual period. Therefore, we used an extensive set of sce-
narios to investigate BAR.

We considered several relationships between PFS and OS
based on actual clinical trial data in GBM. Examples of these
scenarios from large phase III trials are summarized in
Fig. 1 and Table 1. The left column of Fig. 2 shows scenarios
with 3 experimental arms and 1 control arm. The sample
size was 240, and we assumed an accrual rate of 15 patients
per month. In scenario 1, hypothetical treatment 1 is detri-
mental to PFS but has a positive effect on OS, as would be hy-
pothetically seen in pseudoprogression related to standard
treatment13 or possibly immunotherapy. In scenario 2, treat-
ment 1 has positive effects on both PFS and OS, while in sce-
nario 3 an improvement in PFS is accompanied by no effect on
OS. Scenario 4 shows no impact on either PFS or OS. To evalu-
ate adaptive randomization with the joint PH model, we also
considered scenarios where the additive model held. Scenari-
os similar to the first panel of Fig. 2 were defined with PFS
distributions identical to the EORTC/NCIC CE.3 trial14 in Fig. 1
and gamma-distributed SPP times, with mean equal to 1, 3,
or 6 months. We compared BAR based on the joint PH
model to BAR based on PFS (in accordance with the additive
model) or OS.

Results
We first evaluated the performance of the BAR design with the
composite endpoint model considering different accrual
rates. The x-axis in column 2 of Fig. 2 shows the ratio of the
actual accrual rates to the estimate of 15 patients per
month. In the most extreme case shown, accrual is more
than 4-fold faster. The solid lines in the right column show
the mean number of patients randomized to each arm
under various scenarios, with adaptive randomization based
on the joint PH model. These panels also provide the frequent-
ist power of the adaptive design (dashed lines) for rejecting
the null hypothesis of zero or the detrimental treatment ef-
fect on OS; for these computations, we assumed complete

Table 1. Relationship between progression-free survival and overall survival from 3 clinical trials in newly diagnosed glioblastoma

Trial Arm Median PFS PFS, HR Median OS OS, HR

EORTC 26981/NCIC CE.314 RT 5.0 12.1
RT/TMZ 6.9 0.56 14.6 0.63

RTOG 052520 RT/TMZ 5.5 14.9
RT/ddTMZ 6.7 0.87 16.6 1.03

RTOG 08258 RT/TMZ 7.3 16.1
RT/TMZ/bevacizumab 10.7 0.79 15.7 1.13

AVAglio7 RT/TMZ 6.2 16.7
RT/TMZ/bevacizumab 10.6 0.64 16.8 0.88

Abbreviations: dd, dose-dense; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; RT, radiotherapy; TMZ, temozolomide.
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Fig. 2. Comparison of average arm-specific sample sizes for various scenarios. The left column represents scenarios with different outcome
distributions. Each panel contains multiple curves. The lower curves are progression-free survival (PFS), while the upper curves are overall
survival (OS). Each arm is denoted by a different color. The right column shows both the arm-specific expected sample sizes and the
frequentist power of detecting a positive treatment effect with a significance level of 0.1 for our adaptive design (dashed lines) and balanced
randomization (dotted lines) for varying accrual rates (x-axis). In the absence of a positive OS treatment effect (Scenarios 3 and 4), the type I
error probabilities are displayed instead of power. The estimates in each panel were obtained using 106 simulated trials.
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follow-up after completion of the accrual period and an
a-level of 0.1. For comparison, the dotted lines show the
power of a standard balanced randomized design. We used
a previously described procedure for hypothesis testing in
this setting.15,16 Our results have an intuitive explanation:
the higher the accrual rate, the more difficult it becomes to
augment randomization toward the best treatment option.
In some of our scenarios, we further increased this difficulty
by assuming treatment effects on PFS disagreed with the
OS distributions. Despite these challenges, BAR is remark-
ably robust across all scenarios we considered. When we
compared BAR with balanced randomization, in only a few im-
plausible cases did BAR fail to improve the power or to in-
crease the number of patients assigned to the best available
treatment.

We then summarized the sensitivity of the operating charac-
teristics to several variations of the BAR trial design. We first
evaluated the consequences of adding experimental arms. Ad-
ditional arms with no treatment effect result in a further in-
crease of the average sample size for the effective arm and
the control, which in turn results in an increase in power. For ex-
ample, in scenarios 1 and 2 of Fig. 2, the probability of rejecting
the null hypothesis of no treatment effects with one additional
experimental arm increases by 1.3% and 0.8%, respectively.
The choice of scenarios with at most a single effective treat-
ment is consistent with the limited number of drugs approved
for GBM in the last two decades.

Next, we added early stopping rules, dropping an experi-
mental arm when the posterior probability of a treatment
effect on OS with hazard ratio (HR) , 0.9 became , 0.1. We ob-
served negligible variation of the operating characteristics after
this change. We then evaluated robustness of the design, as-
suming a data acquisition delay of up to 4 weeks due to man-
agement inefficiencies. The randomization probabilities were

updated monthly when we observed small changes in the av-
erage number of patients assigned to each arm (,2 patients
across all scenarios).

We then evaluated the testing procedure: the P value for the
k-th arm was obtained through a bootstrap estimate of the log-
rank statistics, accounting for the adaptive design as described
previously.15,16 We observed differences , 0.35% between the
type I error rate and the nominal significance level at a¼ 0.05,
0.1, and 0.15 across all scenarios as well as variations of sce-
narios 1 and 2 without any effective arm.

Our simulations under different concordance levels of PFS
and OS times, evaluated by Harrell’s C index, suggested little in-
fluence on the arm-specific sample sizes distributions. Fig. 3
contrasts arm-specific sample sizes when assuming a high con-
cordance index of 1, versus a low concordance of 0.6, for sce-
nario 1. In Fig. 3, dark and light gray are associated to high and
low concordance, respectively, with an intermediate shade for
the overlapping part of the histograms showing a very modest
difference.

Fig. 4 demonstrates how our adaptive algorithm, based on
the joint model, performs in comparison with models that
adapt only using PFS or OS. The left column displays two dif-
ferent scenarios. In the top row, a positive OS effect for one
arm is predicted by the PFS effect, while in the bottom row a
positive OS effect is combined with a contraction on PFS times.
The middle and right columns show how these two scenarios
differ midway through the trial with respect to the estimation
of HR and posterior probability of a treatment effect, respec-
tively. In the top scenario, because there is agreement be-
tween PFS and OS, the joint model approximates the OS HR,
leveraging on PFS data. The estimates based only on PFS
data (dotted lines) match the inferred effects under the addi-
tive model. This provides a comparison of the two modeling
approaches. We observed only small differences in the

Fig. 3. Negligible effects on the trial operating characteristics of different concordance levels between progression-free survival (PFS) and overall
survival (OS). We considered PFS and OS to be marginal distributions, as displayed in Scenario 1 of Fig. 2, and constructed joint distributions with
high concordance (Harrell’s C index equal to 1) and low concordance (Harrell’s C index equal to 0.6) between PFS and OS. The panels contrast these
joint distributions and display the number of patients randomized to Arm 1 and to the control arm across 105 simulations.
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number of patients assigned to each arm across various sce-
narios consistent with the additive model. In the most ex-
treme case, we observed an average reduction of 4.1 out of
180 patients assigned to the effective arm for the PH model
compared with the additive model. This increased efficiency
from the additive model comes at a price when the treatment
effects on PFS and OS do not agree. The lower row displays one
example.

Figure 4 illustrates the estimates across stimulations at a
chosen time point during the trial. Fig. 5 shows how randomi-
zation probabilities changed during the course of the trial. The
scenarios underlying the left and right panels are the empirical
distributions of the EORTC 26981/NCIC CE.3 and RTOG 0825 tri-
als (displayed in Fig. 1). In the first case, PFS and OS treatment
effects agree, while there is a PFS benefit without an OS benefit
in the second scenario. In the left panel, the joint model (solid
lines) results in efficiency gains compared with an OS-only
model (dashed lines) as the effective (red) arm has a higher
probability of randomization (y-axis) at earlier points in the
trial (x-axis). When the early PFS signal is misleading, as in
the right panel scenario, the initial increase in randomization
probability (red solid line) generated by the PFS signal wanes
over the course of the study.

Discussion

Improving the length and quality of life are clear goals of clin-
ical research. For trials in GBM, the variability and length of post-
progression survival is unfortunately limited, arguing against
the substitution with alternative endpoints such as PFS for
more clinically meaningful ones such as OS.5,6 Even so, effective
use of surrogate endpoints offers the promise of more efficient
clinical trials by providing earlier answers to questions of ther-
apeutic efficacy. In particular, auxiliary endpoints are valuable
when considering an adaptively randomized trial in which
timely information is brought to bear on decision-making dur-
ing the course of the study. However, adaptively randomized
studies are potentially vulnerable from incorporating mislead-
ing results into the adaptive procedure. While treatment effects
on PFS may have correlated well with OS effects in past GBM
studies,4,17,18 there is no guarantee that experimental thera-
pies will maintain these previously described associations.
There is also some evidence against a generalizable correlation
between auxiliary endpoint and OS effects that remains valid
across treatments.7,8

One solution to addressing auxiliary endpoint uncertainty is
to employ a composite model that ‘learns’ the relationship with

Fig. 4. Randomization probabilities using adaptation on overall survival (OS) only versus the proposed joint use of progression-free survival (PFS)
and OS outcomes. The panels on the left show 2 hypothetical scenarios. The panels in the middle show early hazard ratio (HR) estimates
contrasting Arm 1 with the control arm across 105 simulations. The estimates are given at the enrollment of the 120th patient out of 240
patients. Dotted and dashed lines refer to estimates based only on PFS and OS data, respectively. The solid lines refer to OS HR estimates
based on a joint prior distribution that incorporates correlation of PFS and OS treatment effects. The right panels contrast early posterior
probabilities of a positive treatment effect for Arm 1 across simulations when the investigator only uses OS data versus the OS and PFS joint model.
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a primary endpoint during the course of the study. A notable
example of this is the I-SPY 2 trial, in which MRI assessments
of breast cancer response to neoadjuvant chemotherapy are
used for prediction of the primary endpoint (complete patho-
logical response) during the course of the trial.19 For past
GBM trials, the PFS median lead time has been 7.4 months
for newly diagnosed tumors and 4.2 months for recurrent tu-
mors,4 thus providing potentially useful earlier results to inform
randomization.

OS has been modeled as the sum of PFS and SPP.5 In some
cancers and for some treatments, it may be reasonable to as-
sume that treatment effects are limited to PFS and that the
various arms have identical SPP distributions. Although such a
hypothesis can be tested based on outcomes data and appro-
priately used to report treatment effects estimates, its use for
designing adaptive and/or group-sequential trials may not be
fully generalizable. Particularly in GBM, the assumption that
SPP is independent of treatment arm appears in some cases
to be inappropriate7,8 for designing trials. In this context, we
jointly modeled PFS and OS. During the course of a study, the
model, without assuming a specific relationship between OS
and PFS treatment effects, leverages accumulating data and
estimates OS and PFS distributions sequentially.

In our PH model, randomization is informed by the OS esti-
mates, which are in turn informed by the PFS data. If concor-
dance between the PFS and OS effects is low, this is learned
by the model during the course of the trial. In contrast, when

the assumptions of the additive model proposed by Broglio
and Berry (wherein SPP is independent of treatment)5 hold,
the PH model will randomize slightly fewer patients to an effec-
tive treatment arm. This might not be desirable for settings in
which the risk is low for conflicting PFS treatment effects and
OS effects. Given the small efficiency gains of using the additive
model based purely on PFS, however, GBM investigators should
have a high bar for prior knowledge of the PFS/OS relationship.
Another important consideration is that these small efficiency
differences between the additive model and the PH model are
contingent upon the GBM SPP times, which are much shorter
compared with other cancers. In contexts with longer SPP
times, however, the efficiency gain of the additive model
would become more prominent.

The additive model has additional implications since PFS ef-
fects might be diluted by SPP times. We compared testing the
null hypothesis of no treatment effects based on PFS data or
OS data when the additive assumption holds. Across our scenar-
ios and with significance level at 0.05 or 0.1, inclusion of the ad-
ditive assumption, which implies that only PFS data are used for
testing, produced a power increase between 2.2% and 5.2%
compared with testing based on OS data. The analyses should
therefore include evaluation of positive treatment effects on PFS
when there is support for the additive assumption from previous
studies and if the trial data do not invalidate such a hypothesis.

The PH model does incorporate an initial linkage of PFS and
OS effects, however. While PFS is no longer used when there is

Fig. 5. OS data vs. PFS and OS model for adaptive randomization. The panels display the average probability across simulations that the i-th
enrolled patient is randomized to each arm under the OS/PFS model (solid lines) or OS data alone (dashed lines). We constructed simulation
scenarios that reflects the PFS and OS data generated by the EORTC 26981/NCIC CE.3 and RTOG 0825 trials by automated scanning
(WebPlotDigitizer 2.6) the published Kaplan-Meier curves8,14 and then using these curves as sampling models. Control arms (black lines) and
two experimental arms (blue lines) for each panel match the empirical data control arm PFS and OS distributions. A third experimental arm
(red lines) matches the empirical distributions under the superior treatment options of the EORTC 26981/NCIC CE.3 trial (left panel) and the
RTOG 0825 trial (right panel).
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evidence of a lack of concordance with OS effects, the model
requires additional time and enrolled patients to learn; there-
fore, the randomization probabilities can be affected from a
misleading PFS signal early in the trial. Our model is a compro-
mise between the point of view that the investigator can pre-
dict a PFS/OS linkage in advance and the point of view that
OS is the only outcome that should be used. This compromise
gains efficiency over OS and mitigates error when there is no
correspondence between PFS and OS effects.

Another alternative to our model would be to use OS only.
Our results show that the OS-only adaptive design still results
in efficiency gains over a balanced randomization and sacrifices
some efficiency over the joint model but, as expected, is not
sensitive to randomizations driven by PFS effects that do not
translate into OS improvements.

Conclusions
We developed a composite endpoint model to design BAR trials
using PFS data to provide efficiency while still maintaining the
clinical relevance of OS. The potential for inefficient randomiza-
tion resulting from conflicting PFS and OS signals is mitigated in
our model compared with PFS alone, at a modest cost in terms
of efficiency. When PFS and OS effects are correlated, measur-
ing the treatment effects on PFS for decision-making results in
power gains because the dilution effect of SPP is reduced. BAR
based on OS still provides gains over balanced randomization,
however, and the trade-offs of using surrogate endpoints such
as PFS in any capacity in adaptively randomized studies should
be a significant discussion topic during trial development.
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