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Abstract

Periodicity is an important property of speech signals. It is the basis of the signal’s fundamental 

frequency and the pitch of voice, which is crucial to speech communication. This paper presents a 

novel framework of periodicity enhancement for noisy speech. The enhancement is applied to the 

linear prediction residual of speech. The residual signal goes through a constant-pitch time 

warping process and two sequential lapped-frequency transforms, by which the periodic 

component is concentrated in certain transform coefficients. By emphasizing the respective 

transform coefficients, periodicity enhancement of noisy residual signal is achieved. The enhanced 

residual signal and estimated linear prediction filter parameters are used to synthesize the output 

speech. An adaptive algorithm is proposed for adjusting the weights for the periodic and aperiodic 

components. Effectiveness of the proposed approach is demonstrated via experimental evaluation. 

It is observed that harmonic structure of the original speech could be properly restored to improve 

the perceptual quality of enhanced speech.
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1. Introduction

Periodicity is an important property of speech signals. In the time domain, it is defined by 

the repetition of signal waveforms. In the frequency domain, periodicity is reflected by the 

appearance of strong spectral components at equally spaced harmonic frequencies. From the 
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perspective of speech production, periodicity in acoustic signal is the result of periodic 

vibration of vocal cords when voiced speech is produced. Periodicity determines the 

fundamental frequency (i.e., pitch), which is essential in speech communication. Important 

high-level linguistic information, for example, intonation, lexical tones, stress and focus, is 

conveyed in the pitch contour of an utterance. In particular, pitch is essential for tonal 

languages, where the meaning of a word depends on its pitch contour.

Waveform periodicity is important for speech and pitch perception (Cardozo and Ritsma, 

1968). There have been many attempts to restore the periodicity of noisy speech signal, with 

the goal of improving perceptual quality. The approaches can be broadly categorized as 

spectral-domain harmonicity restoration techniques and time-domain waveform periodicity 

enhancement methods. Comb-filtering was a commonly used method to suppress non-

harmonic spectral components (Nehorai and Porat, 1986). In (Plapous et al., 2005, 2006), a 

regeneration method was proposed to recover the harmonic structure of speech. In 

(Zavarehei et al., 2007), harmonicity enhancement was performed based on the harmonic

+noise model of speech. In recent studies, harmonicity enhancement was typically applied 

as a post-processing step to refine the output of other speech enhancement systems. There 

have been relatively few studies on enhancing time-domain waveform periodicity. This is 

due to the difficulty of identifying and separating the periodic component of a time-domain 

speech signal. In the area of hearing research, temporal periodicity enhancement has been 

shown Effective in improving pitch and tone perception. The commonly used techniques 

include increasing the modulation depth and simplifying the waveform of temporal envelope 

(Yuan et al., 2009). These methods introduce severe nonlinear distortion and therefore lead 

to degradation of speech quality.

In this paper, we present a new method of periodicity enhancement by exploiting a speech 

representation model, which aims at a compact and complete representation of speech 

signals (Kleijn, 2000; Nilsson, 2006). The redundancy related to waveform periodicity 

forms the basis of such representation. This speech model is suitable for a wide range of 

applications, including speech coding and prosodic modification. Our work on periodicity 

enhancement leverages one important property of the model, which is the Effective periodic-

aperiodic decomposition. The decomposition is applied on the linear predictive (LP) residual 

signal of speech, which is considered to be the primary carrier of periodicity-related 

information. The LP residual signal undergoes two-stage transformations in a pitch-

synchronous manner. As a result, some of the transform coefficients represent the periodic 

component while the other coefficients represent the aperiodic components. For noise-

corrupted speech, since the interfering noise generally does not have the same periodicity 

characteristic as speech, periodicity enhancement of speech can be achieved by adjusting the 

relative contributions of the periodic and aperiodic components.

There are existing studies on manipulating LP residual signal for enhancement of noise-

corrupted speech (Yegnanarayana et al., 1999) and reverberant speech (Yegnanarayana and 

Murthy, 2000). In these studies, it was believed that it could be in vain to enhance signal 

regions where the interference is too strong. Signal segments with high signal-to-noise ratio 

(SNR) and high signal-to-reverberant ratio (SRR) were detected by analyzing the LP 

residual signal with short analysis window of 1 – 3 ms. The time-domain samples of residual 
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signal were weighted to produce enhanced output. The approach investigated in our study 

aims specifically at analyzing the periodicity property of LP residual signal and improving 

the periodicity against noise interference.

Fig. 1 illustrates the framework of the proposed approach to speech periodicity 

enhancement. There are two basic components that contribute to the Effectiveness of 

enhancement. They are the periodic-aperiodic decomposer implemented by two-stage 

frequency transforms and the robust pitch estimator. In Section 2, we will review the two-

stage transforms (Kleijn, 2000; Nilsson, 2006) and the pitch estimation algorithm (Huang 

and Lee, 2012a, 2013) that are being used in this study. The principle of periodicity 

enhancement is explained with illustrative examples in Section 3. An adaptive algorithm of 

adjusting transform coefficient weights for periodicity enhancement is described in Section 

4, and a few practical issues are discussed in Section 5. Section 6 gives experimental results, 

followed by conclusions in Section 7.

2. Review

2.1. Two-stage transforms for periodic-aperiodic decomposition

Effective periodic-aperiodic decomposition is the foundation for speech periodicity 

enhancement. In this study, the decomposition is performed on LP residual signal using the 

approach proposed as in Kleijn (2000); Nilsson (2006). The LP residual signal e(n) is time-

warped to have a constant pitch. The warping process requires an estimated pitch track of 

the input speech. For each pitch cycle, the residual signal is up-sampled to have P0 new 

samples. By placing these samples in equal interval over on a new time axis ν, a warped 

signal ewrp(ν) with a constant pitch period of P0 is obtained.

If a signal segment contains both periodic and aperiodic components, they are concentrated 

mainly in low- and high-frequency bands, respectively. Thus, to derive an intuitive 

representation with energy concentration, the warped signal ewrp(ν) is first divided into 

different frequency channels. This pitch-synchronous transform is implemented with a 

DCT-IV transform. The window size is 2P0 with 50% overlapping between neighboring 

windows. Let  denote the kth pitch-synchronous frame, i.e., 

, ⋯, 2P0 − 1. The first-stage transform coefficients f (k, l) are 

obtained by

(1)

where l = 0, 1, ⋯, P0 − 1 is the channel index, and d(ν) denotes the square-root Hann 

window.

The second-stage transform aims to separate the periodic component from the aperiodic 

ones. At a particular frequency channel, the periodic component does not change 

significantly from one pitch cycle to the next cycle. A modulation transform is applied to 

extract this signal component at each channel. This is implemented with a DCT-II transform. 

Given a signal segment of Q pitch-synchronous frames, the coefficients of channel l, f(k, l), 
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k = 0, 1, ⋯, Q − 1, (i.e., f(0, l), f(1, l), ⋯, f(Q − 1, l)) are transformed to generate Q output 

coefficients g(q, l), q = 0, 1, ⋯, Q − 1, (i.e., g(0, l), g(1, l), ⋯, g(Q − 1, l)) by,

(2)

where q = 0, 1, ⋯, Q − 1 is the modulation band index, and , and c(q) = 1 for q 

≠ 0. With the transformation as shown in Eq.(2) carried out for all the P0 channels (i.e., l = 

0, 1, ⋯, P0 − 1), transform coefficients of modulation band q, i.e., g(q, 0), g(q, 1), ⋯, g(q, 

P0 − 1), can be obtained.

The LP residual signal of an input utterance is divided into a number of segments, and each 

segment contains many pitch cycles. The segment boundaries are determined such that the 

energy concentration in the first modulation band is maximized for each segment (Nilsson, 

2006, pp.A12). In this way, successive frames with similar properties, e.g., voiced or 

unvoiced speech, are grouped into the same segment.

Fig. 2 gives an example of applying constant-pitch warping and the two-stage transforms on 

a voiced speech segment. It shows the LP residual signal extracted from the orignal speech 

and the warped residual signal, as well as the normalized magnitudes of the transform 

coefficients. It is noticed that the signal energy is concentrated in the low modulation bands, 

especially the first band.

2.2. Robust pitch estimation

Pitch estimation algorithm with high accuracy is essential in the above decomposition 

process. In (Huang and Lee, 2012a), a sparsity-based pitch estimation method was 

developed and shown to have robust performance on a variety of SNR conditions (Huang 

and Lee, 2013). This algorithm is used in this study and it is described briefly as follows.

For each short-time frame of speech, a temporal-spectral representation of speech harmonic 

structures, namely temporally accumulated peak spectrum (TAPS) (Huang and Lee, 2010), 

is defined as

(3)

where ⌊·⌋ is the floor function. pk is the peak spectrum vector of the kth frame. It is obtained 

by retaining only the peaks of the DFT magnitude spectrum and setting the other magnitudes 

to zero. K is the number of frames over which the peak spectrum vectors are accumulated. In 

the TAPS representation, harmonic-related peaks are concentrated around the fundamental 

frequency and its multiples, while noise peaks are irregularly located with relatively small 

magnitudes.

Let A = [p̄1 p̄2 ⋯ p̄N], A ∈ ℛM×N and N ≫ M, be a prior information matrix representing a 

large and complete set of peak spectrum exemplars that are obtained from clean speech. 

Based on Eq. (3), an observed TAPS vector y can be represented as a sparse linear 

combination of the exemplars, i.e.,
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(4)

where x ∈ ℛN is a sparse weight vector, with most of its elements being 0. The number of 

non-zero elements in x depends on the coverage of A and is related to the number of 

accumulated frames K. v represents the noise Effect in the peak spectrum domain. The 

algorithm for estimating x is provided in Appendix A. In this study, we assume v is 

Gaussian distributed with mean vector 0 and identity covariance matrix.

With the estimated weights x̂ = [x̂1 x̂2 ⋯ x̂N]T, the harmonic structure in y can be analyzed 

in terms of the non-zero elements in x̂, and hence a set of pitch candidates are obtained. 

Each pitch candidate has a corresponding weight. The candidate with the highest weight can 

be taken as the pitch estimation result. In addition, a confidence measure for the estimated 

pitch can be defined as (Huang and Lee, 2012b),

(5)

where x̂* is the weight associated with the estimated pitch. The larger the Pc, the more 

confident the estimation.

3. Speech periodicity enhancement

3.1. Periodic-aperiodic decomposition

As illustrated in Fig. 2, with the estimated pitch track, the LP residual signal is time-warped 

to be of constant pitch period. By the two-stage transforms, the signal energy is concentrated 

in the transform coefficients of the low modulation bands. The transform coefficients of the 

first modulation band represent the periodic component of the signal, while the remaining 

coefficients describe the aperiodic component. This can be easily understood by considering 

a strictly periodic signal. In such a signal, all pitch-synchronous frames are identical by 

definition. Hence applying the first-stage transform lead to the same results, i.e., f(i, l) = f(j, 

l) for i, j = 0, 1, ⋯, Q − 1 and l = 0, 1, ⋯, P0 − 1. This means that the subsequent 

modulation transform is applied to a constant data sequence. As a result, there is only one 

non-zero coefficient, which is in the first modulation band. This property suggests that 

periodic-aperiodic decomposition can be achieved by separating the low modulation band 

coefficients from the others.

3.2. Periodicity enhancement by transform coefficient weighting

In the presence of additive noise, the waveform periodicity of a speech signal is 

contaminated. Let us investigate how the transform-domain coefficients are affected by 

noise via the example in Fig. 3. Fig. 3a shows the waveform of a noise-corrupted speech 

segment, which is obtained by adding white noise to the clean segment in Fig. 2a. The SNR 

is 5dB. Fig. 3b shows the LP residual signal extracted from the noisy speech. Using the pitch 

track estimated from clean speech, we obtain the transform-domain coefficients as depicted 

in Fig. 3c. Comparing Fig. 3c with Fig. 2d, it is observed that the noise leads to an increase 
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of energy in the high bands. However, there is still a high level of energy concentration in 

the first modulation band, which contains the periodic component.

As demonstrated in (Huang et al., 2010), we can restore the periodicity of noise-corrupted 

speech by adjusting energy balance among the modulation bands. That is, larger weights are 

assigned to the transform coefficients from the lower bands and smaller weights to the 

higher bands. Let wq denote the weighting factor for modulation band q. The modified 

transform coefficient ĝ(q, l) is obtained as

(6)

The enhanced residual signal is synthesized from ĝ(q, l).

There are many different ways of assigning the value of wq. For example, a set of empirical 

weights can be defined as

(7)

i.e., w0 = 1, w1 = 2/3, w2 = 1/3, and wq = 0 for q ≥ 3. By applying these empirical weights on 

the example of Fig. 3, we obtain the enhanced LP residual and the synthesized speech 

waveform as in Fig. 4. By comparing Fig. 3a with 4b and Fig. 3b with 4a, it can be observed 

that the additive noise is noticeably suppressed and the speech waveform periodicity is 

Effectively restored.

4. Adaptive coefficient weights

Natural speech contains both voiced and unvoiced speech. For an unvoiced speech segment, 

the signal energy is distributed across the high modulation bands, because the signal is not 

periodic. The empirical coefficient weights in Eq. (7) would cause undesirable attenuation of 

unvoiced speech and introduce artificial periodicity in the enhanced residual signal. On the 

other hand, the accuracy of pitch estimation declines as the SNR decreases. With erroneous 

pitch track, the energy of the periodic component may leak to the high modulation bands 

and get attenuated if the simple empirical weights are applied. As a result, significant 

perceptual distortion would be caused in the synthesized speech output.

To properly handle unvoiced speech and alleviate the negative Effects of pitch estimation 

errors, an adaptive scheme is developed to determine the coefficient weights of different 

modulation bands. The weights are dynamically adjusted according to the degree of voicing 

and the pitch estimation confidence.

4.1. Degree of voicing

It is not a trivial task to distinguish voiced speech from unvoiced speech. Numerous 

algorithms of unvoiced-voiced decision (UVD) were proposed (Siegel and Bessey, 1982; 

Krubsack and Niederjohn, 1991; Fisher et al., 2006). In general, an UVD algorithm can be 

regarded as a binary classifier, where the classification problem is solved by setting 

thresholds for specific acoustic features related to voicing, for examples, zero-crossing rate, 
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short-time energy, and/or median values of cepstrum peaks. A detection accuracy of 78% 

with white Gaussian noise at 0 dB SNR was reported in Fisher et al. (2006).

In this study, we propose to measure the degree of voicing based on the transform-domain 

energy concentration property as discussed in Section 3.1. It is assumed that the energy of 

voiced speech is concentrated mostly in the first modulation band, while the energy of 

unvoiced speech is not concentrated in any specific band. The signal energy in the first 

modulation band is given by

(8)

Let ξ be the root-mean-square (RMS) value of the signal segment. The normalized energy of 

the first modulation band is computed as (Huang et al., 2011),

(9)

A large value of Ẽ1st implies that the speech segment tends to be voiced. This can be shown 

by analyzing a database of 40 speech utterances with and without additive noise. The 

statistical distributions of Ẽ1st are shown by the histograms in Fig. 5. Table 1 gives the 

detection accuracy (ACC) and the corresponding decision boundary (BND) of Ẽ1st. It can be 

seen that Ẽ1st is Effective in discriminating voiced and unvoiced speech, even at −5 dB 

SNR. The accuracy at 0 dB SNR is about the same as the noise-free case.

4.2. Pitch estimation confidence

In Section 2.2, the pitch estimation confidence Pc is defined as in Eq. (5). The Effectiveness 

of Pc is investigated by analyzing the same set of speech utterances as in Section 4.1.

Estimated pitch is obtained for each short-time signal frame. Estimated pitch values of 

voiced frames are divided into two types: gross pitch error (GPE) and fine pitch error (FPE) 

(Rabiner et al., 1976). If the estimated pitch is within a close proximity of the true value 

(Huang and Lee, 2012a), it is referred to as FPE. Otherwise, it is referred as GPE.

The distributions of Pc for clean and noisy speech are shown by the histograms in Fig. 6. 

Note that unvoiced speech frames are included in the distributions. For clean speech (Fig. 

6a), the values of Pc from FPE frames are large and approach to 1. The values of Pc tend to 

be small for voiced GPE frames and unvoiced frames. In the presence of noise (Fig. 6b and 

6c), the values of Pc for FPE frames decrease as the SNR decreases. The distribution of Pc 

for unvoiced frames does not show a significant change. The FPE frames are highly 

distinguishable from the others.

Pc is utilized to perform the following two classification tasks:
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FPE–(GPE+U) FPE frames versus GPE plus unvoiced frames;

FPE–GPE voiced FPE frames versus voiced GPE frames.

The classification accuracy and the corresponding optimal decision boundary are shown as 

in Table 2.

4.3. Adaptive weighting scheme

Based on the discussions above, we propose an adaptive scheme for assigning coefficient 

weights to achieve periodicity enhancement. For signal segments with large values of Ẽ1st 

and Pc, heavier weights are assigned to the low modulation bands so that the periodic 

component is emphasized. For signal segments that have low degree of voicing or low 

confidence on the estimated pitch, the coefficient weights are set to reduce the Effect of 

noise and at the same time preserve the original signal composition. The adaptive weighting 

scheme is formulated as,

(10)

where P̄c is the average Pc over all frames in the signal segment. s1(·, ·) and s2(·, ·) are 

functions of Ẽ1st and P̄c that control the balance between periodicity enhancement and signal 

preservation. For enhancing waveform periodicity, the output values of s1 are set to be close 

to 1. The values of s2 are negative, meaning that wq would decrease as q increases. For the 

purpose of retaining existing signal components across all modulation bands, s1 generates 

positive values smaller than 1, and s2 is made close to 0. s2 = 0 implies the same degree of 

energy attenuation for all bands. In this study, s1(·, ·) and s2(·, ·) are defined based on the 

sigmoid function, i.e.,

(11)

(12)

where the parameters αE and βE are used to control the transition range and center of Ẽ1st, 

αP and βP to control the transition range and center of P̄c, and 0 ≤ A < 1. Figure 7 gives an 

illustration of the function . In Eq. (11) and (12), wE > 0 and wP 

> 0, with wE + wP = 1, are the fusion weights for Ẽ1st and P̄c, respectively. When the pitch 

estimation confidence P̄c is very small or very large, we assign a higher fusion weight to the 

contribution of Pc̄
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(13)

Table 3 demonstrates the typical values of s1(Ẽ1st, P̄c) and s2(Ẽ1st, P̄c) given by Eq. (11) and 

(12).

To apply the above scheme, the parameters, αE αP, βE, βP and A, need to be set. As seen 

from Fig. 7, αE and αP control respectively the transition ranges for Ẽ1st, and P̄c, where 

intermediate weights between periodicity enhancement and noise reduction are assigned. αE 

and αP are set so that the transition ranges are reasonable, i.e., neither too wide nor too 

narrow. The values of αE and αP are also related to the numerical value range of Ẽ1st, and 

P̄c, respectively. Based on the observation on the numerical values of Ẽ1st and P̄c (cf. Table 

1 and 2), we empirically set αE = 0.1 and αP = 23. βE and βP correspond to the boundaries 

between periodicity-enhancement scenario and noise-reduction scenario. If SNR is known, 

βE and βP could be optimally set to the decision boundaries as shown in Table 1 and 2. 

However, in this study we do not assume prior knowledge of the input SNR. In the 

experiments (Session 6), βE and βP are set as the average of Ẽ1st and P̄c of the silent 

segments, respectively. The parameter A determines the degree of signal attenuation for 

segments with low degree of voicing or low pitch estimation confidence. To attenuate noise, 

A could be set as small as possible. However, small A would also attenuate the desired 

speech components. Recall that the above weighting process is applied to the LP residual 

signal. To generate the output speech, estimated LP coefficients and LP residual gain are 

applied as well. The estimated residual gain also plays an important role in reducing the 

noise. Therefore, we consider a moderate value for A and experimentally set A = 0.5 for the 

evaluation in Section 6. We will demonstrate the system performance with different values 

of A at the end of Section 6.2

5. Implementation Aspects

5.1. Segmentation and boundary smoothing

As discussed in Section 2.1, the LP residual signal for an input utterance needs to be 

segmented based on an energy concentration criterion. For speech coding, non-overlapping 

segments are preferred. In the proposed system of periodicity enhancement, since the 

coefficient weights are different from one segment to the other, discontinuities of energy 

level are likely to appear at the segment boundaries. To address this problem, an overlapping 

of two pitch-synchronized frames is imposed between neighboring segments. At the 

synthesis stage, signals at segment boundaries are smoothed by overlap-and-add with 

trapezoid windows.

5.2. LP coefficient estimation

The LP filter coefficients capture the short-term dependencies that are caused by vocal tract 

resonances. They are very important to the quality of synthesized speech. The problem of 

estimating LP parameters from noisy speech has been studied for years. The approaches 

include noise compensation (Kay, 1980; Davila, 1998), codebook-driven estimation 
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(Kuropatwinski and Kleijn, 2010; Srinivasan et al., 2006) and Kalman filtering (Gibson et 

al., 1991; Kuropatwinski and Kleijn, 2006). In this study, the codebook-driven approach 

(Kuropatwinski and Kleijn, 2010) and the iterative Kalman filtering approach (Gibson et al., 

1991) are adopted for the generation of enhanced speech. The codebook method is data-

driven, where the LP filter coefficients are estimated by searching over pre-trained 

codebooks of clean speech and noise for a codeword pair that has the highest probability to 

produce the noisy observation. In the Kalman filter approach, the filter coefficients are 

estimated iteratively. Each frame of speech is first enhanced by the Kalman filter that is 

initialized using noisy speech. A set of new coefficients are then estimated from the 

enhanced speech. The process goes on iteratively until convergence is reached (Gibson et 

al., 1991).

6. Experiments

The performance of the proposed method is evaluated in two aspects: (1) the Effectiveness 

of periodicity enhancement on LP residual signals, and (2) the overall performance of 

speech periodicity enhancement with estimated LP parameters. The evaluation data consists 

of a total of 48 speech utterances from 3 different languages: American English, Mandarin 

and Cantonese. While English is used to represent western languages, Mandarin and 

Cantonese are among the most representative tonal languages, in which pitch is used to 

differentiate words. There are 16 utterances (equal number of male and female speakers) for 

each language. They are taken from TIMIT (English), 863 (Mandarin) and CUSENT 

(Cantonese), respectively. Mean utterance duration is about 4–5 seconds. Speech activity 

ratio1 of the data set is 85% on average. Speech signals were down-sampled to 8 kHz. 

Twelfth-order LP analysis is applied to obtain the residual signals. The analysis frame is 20 

ms long, with 50% overlap.

6.1. Evaluation of periodicity enhancement on LP residuals

In the first experiment, speech signals are degraded by two types of noise: white noise and 

first-order AR noise (simulating car noise (Kuropatwinski and Kleijn, 2006)), at SNR of −5, 

0 and 5 dB, respectively. Periodicity enhancement is performed on the noisy LP residual 

signals.

We use the Mean Segmental Harmonicity (SegHarm) (Yu and Wang, 2004) and the global 

SNR of the residual signal as the performance indices. SegHarm measures the overall 

energy ratio between the harmonic peaks and their surrounding noise in the target signal. It 

is computed from all voiced segments of the utterances.

Three kinds of pitch are involved in the evaluations:

1Duration of speech (excluding silence) over duration of the whole utterance.
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pitch is obtained from clean speech using time-domain autocorrelation method, and manually verified with the 

waveform epochs.  is treated as the true pitch, and used as reference for computing SegHarm. With this 
reference pitch, avarage SegHarm value of the clean residual signals of the evaluation data is 1.89.

pitch estimated from clean speech using the algorithm described in Section 2.2.

pitch is estimated from noisy speech using the algorithm described in Section 2.2.

 and  are used for periodicity enhancement of the residual signals. Table 4 gives the 

SegHarm and global SNR of the residual signals before and after the enhancement. 

Significant improvements can be observed on both types of noise at all input SNR levels. 

The average value of SegHarm increases from 0.94 to 1.66 and 1.43, when  and  are 

used respectively.

6.2. Objective quality assessment of enhanced speech

We also evaluate the quality of periodicity enhanced speech. Enhanced speech obtained with 

the following methods /settings are compared:

KF Iterative Kalman filtering (Gibson et al., 1991) (without enhancing the LP residual);

KF+PE Iterative Kalman filtering + Periodicity enhanced LP residual;

CB Codebook-driven LP parameter estimation (Kuropatwinski and Kleijn, 2010) (without enhancing the 
LP residual);

CB+PE Codebook-driven LP parameter estimation + Periodicity enhanced LP residual;

CleanLP+PE Clean LP parameters + Periodicity enhanced LP residual;

CombF Comb-filter method (Nehorai and Porat, 1986).

The speech utterances are corrupted by additive AR noise at 0 dB SNR.  is used for 

residual enhancement. For codebook-based LP parameter estimation, the speech codebooks 

are language-dependent. For each language, 24 utterances that are different from the test 

data are used to train a codebook with 2048 codewords. The size of noise codebook is 48. It 

is trained with a noise signal of 2-second length.

Global SNR, frequency-weighted segmental SNR (fwSegSNR), cepstrum distance (CEP) 

and the perceptual evaluation of speech quality (PESQ) are used as quality measures (Hu 

and Loizou, 2008). The results are shown in Table 5. It can be seen that both approaches of 

LP parameter estimation (CB and KF) can improve the speech quality to certain extent. CB 
is more Effective than KF. With periodicity enhancement of residual signals, the speech 

quality is further improved. The PESQ value attained by CB+PE is 2.57, as compared to 

1.93 by CB and 1.71 by CompF. The PESQ value of CleanLP+PE, i.e., 3.16, can be 

considered as the performance upper bound of the proposed approach in this noise 

condition.
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Table 6 compares the performance between the fixed weights (Eq.(7)) and the adaptive 

weights (Eq.(10)) for periodicity enhancement (CB+PE). It is clearly shown that the 

adaptive coefficient weighting is more Effective than the simple fixed weight method.

Fig. 8 gives an example that shows the waveform and spectrograms of speech output 

enhanced by CB and CB+PE. It can be seen that CB is useful to recover the formant 

structure. With the use of periodicity enhanced residual signal, the harmonic structure can be 

Effectively restored. This is especially noticeable in the high-frequency region.

Table 7 shows the performance of CB+PE with different values of A for the adaptive 

weighting. The parameter A (0 ≤ A < 1) in Eq. (11) controls the degree of signal attenuation 

for segments with low degree of voicing or low pitch estimation confidence. From the 

results, it can be seen that system performance degrades when A becomes too small (0.1) or 

too large (0.9). This is because small A largely attenuates noise as well as desired speech 

components, while large A preserves desired signal but is in Effective in reducing noise. A = 

0.5 gives a good trade-off between noise reduction and desired signal preservation.

7. Conclusions and discussion

A novel framework of speech enhancement has been proposed and evaluated. It has been 

shown that enhancement of speech and/or suppression of noise can be Effectively achieved 

by processing the LP parameters and the residual signal separately. The focus of this paper 

is on enhancing the pitch-related periodicity characteristic in the residual signal. With pitch 

track robustly estimated from noisy speech, the proposed method demonstrates significant 

improvement in both the signal-to-noise ratio and the perceptual quality of speech.

The importance of waveform periodicity for different languages could be different. In our 

previous study (Huang et al., 2010), subjective listening test indicates that the proposed 

periodicity enhancement approach tends to be more Effective for tonal languages than non-

tonal languages. One future direction is to systematically evaluate the benefits of periodicity 

enhancement for different languages.
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Appendix A. Estimation of the sparse weights

For the sparse representation in Eq. (4), assume that the probability distribution function of v 
can be described by a mixture of Gaussians, i.e.,

(A.1)
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where  μi and Σi are the mean vector and covariance matrix of the ith Gaussian 

component. x is estimated so that the likelihood of y is maximized. This is done by 

minimizing the following negative log-likelihood function,

(A.2)

In general, fml(Ax) is not convex. Since − log(·) is convex and  with zi > 0, it can 

be derived that (Huang and Lee, 2013)

(A.3)

where

(A.4)

with . ful(Ax) is a quadratic function of x. Given z̄i > 0 and Σi ≻ 0, 

the quadratic function is convex. So x is obtained by

(A.5)

The parameter γ is set according to the number of accumulated frames in the computation of 

TAPS.
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Figure 1. 
Framework of speech periodicity enhancement.
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Figure 2. 
An example of constant-pitch warping and lapped frequency transforms of a voiced speech 

segment. P0 = 68 (Huang et al., 2010).
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Figure 3. 
Effect of noise on transform coefficients (Huang et al., 2010).
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Figure 4. 
Periodicity enhanced residual and speech waveforms. (Blue solid: enhanced signal; Black 

dashed: the clean counterpart.) (Huang et al., 2010)
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Figure 5. 
Histogram of Ẽ1st (Huang et al., 2011)
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Figure 6. 
Distributions of pitch estimation confidence Pc. The histograms of unvoiced frames are 

normalized by the total number of unvoiced frames. The histograms of GPE and FPE frames 

are normalized by the total number of voiced frames (Huang and Lee, 2012b).
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Figure 7. 

Illustration of the sigmoid function .
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Figure 8. 
Waveforms and spectrograms of clean, noisy(0dB, AR noise), CB enhanced and CB+PE 
enhanced speech (from top to bottom). Audio samples are available at http://

www.ee.cuhk.edu.hk/~fhuang/pe_jnl.html.
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Table 3

Typical values of s1(Ẽ1st, P̄c) and s2(Ẽ1st, P̄c).

Periodicity Enhancement → Noise Reduction

s1(Ẽ1st, P̄c) 1 → A

s2(Ẽ1st, P̄c) → 0
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Table 5

Performance of the evaluated speech enhancement methods.

SNR
(dB)

fwSNRseg
(dB)

CEP PESQ

Input 0 3.27 6.10 1.49

KF 2.13 4.28 5.15 1.68

CB 3.97 6.22 4.60 1.93

KF+PE 2.45 5.27 4.83 2.02

CB+PE 4.89 7.39 4.34 2.57

CleanLP+PE 4.98 10.30 2.50 3.16

CombF 2.88 3.98 5.92 1.71
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Table 6

Comparison of fixed weights and adaptive weights (CB+PE).

SNR
(dB)

fwSNRseg
(dB)

CEP PESQ

Fixed weights (Eq.(7)) 4.34 6.56 4.47 2.14

Adaptive weights (Eq.(10)) 4.89 7.39 4.34 2.57
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