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Abstract

Objectives—In patients with intractable epilepsy, predicting seizures above chance and with 

clinically acceptable performance has yet to be demonstrated. In this study, an intracranial EEG-

based seizure prediction method using measures of similarity with a reference state is proposed.

Methods—1565 h of continuous intracranial EEG data from 17 patients with mesial temporal 

lobe epilepsy were investigated. The recordings included 175 seizures. In each patient the data was 

split into a training set and a testing set. EEG segments were analyzed using continuous wavelet 

transform. During training, a reference state was defined in the immediate preictal data and used to 

derive three features quantifying the discrimination between preictal and interictal states. A 

classifier was then trained in the feature space. Its performance was assessed using testing set and 

compared with a random predictor for statistical validation.

Results—Better than random prediction performance was achieved in 7 patients. The sensitivity 

was higher than 85%, the warning rate was less than 0.35/h and the proportion of time under 

warning was less than 30%.

Conclusion—Seizures are predicted above chance in 41% of patients using measures of state 

similarity.

Significance—Sensitivity and specificity levels are potentially interesting for closed-loop 

seizure control applications.
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1. Introduction

Research on epileptic seizure prediction has been driven by the need of an alternative 

therapeutic solution for patients who fail antiepileptic drugs and for whom surgical treatment 

is not possible or did not have a satisfactory outcome. A system capable of alerting patients 

to approaching seizures could make a considerable contribution to improving their well-

being (Schulze-Bonhage and Kühn, 2008). Such a system could be an implantable device 

that ‘silently’ abates seizures by altering their generation mechanism in response to 

warnings. The ability to control seizures using other modalities than anti-epileptic drugs has 

been demonstrated experimentally and through clinical trials. Focal cooling of the cortex and 

optical activation of inhibitory neurotransmitters have shown promising results in 

suppressing experimental seizures (Rothman, 2008). Stimulating the vagus nerve (Fisher and 

Handforth, 1999; Thompson et al., 2012) and the trigeminal nerve (DeGiorgio et al., 2009) 

proved to be effective in supressing seizures. Stimulation targeting brain structures, mainly 

the anterior nucleus of the thalamus and seizure foci, has been investigated through 

randomized controlled trials and showed efficacy in reducing seizure frequency (Fisher et 

al., 2010; Morrell, 2011).

The majority of the aforementioned modalities have been investigated in an open-loop 

protocol. However, responsively controlling seizures is appealing: a closed-loop system has 

the advantage of requiring less power than open-loop systems (Krieger and Litt, 2008). Also, 

dose-dependent side effects of antiepileptic drugs (Gomer et al., 2007) are expected to be 

alleviated in systems using closed-loop drug delivery, as treatment becomes only 

interventional rather than continuous.

A seizure prediction method driving a closed-loop seizure control device has to demonstrate 

a clinically acceptable performance. The levels of acceptable sensitivity and specificity 

along with the required intervention time are generally patient and application dependant 

and they are unknown during development of the seizure prediction method. It was therefore 

recommended that a seizure prediction method be assessed for a range of intervention 

periods (Maiwald et al., 2004). As a minimum requirement, prediction performance needs to 

be above chance (Andrzejak et al., 2009).

For a long time, statistical validation was overlooked in seizure prediction. Most early 

studies did not investigate whether the performance was statistically significant. It is only in 

recent studies that rigorous statistical validation were included (Mormann et al., 2007). Such 

a validation is generally based on Monte Carlo simulations (Andrzejak et al., 2003; Kreuz et 

al., 2004) or naïve prediction schemes (Winterhalder et al., 2003; Schelter et al., 2006). 

Translating statistical evaluation into clinical utility for seizure warning or seizure control 

devices has been a subject of debate. Snyder et al. (2008) proposed a statistical approach to 

practically evaluate seizure prediction algorithms. Addressing the question of variability in 

temporal relationship between algorithm warnings and seizure onset, their approach is based 

on a new seizure warning protocol and a model for chance predictor with new performance 

metrics and methods for hypothesis testing.
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An EEG based prediction method performs above chance when (1) there exists a preictal 

change in cortical dynamics, (2) the EEG measure is sensitive to this change and (3) 

electrode contacts are placed in areas where the preictal change is detectable. If the 

mechanisms underlying the preictal state in focal seizures engender spatially localized 

activity in the brain, then electrode location becomes of crucial importance. With ictogenesis 

yet to be fully understood, defining cortical areas where best prediction performance could 

be achieved remains hypothetic. In a recent study (Gadhoumi et al., 2012), we demonstrated 

that preictal and interictal states could be distinguished in EEG recordings from depth 

electrode contacts in the seizure onset zone. Other studies claimed that sites remote to the 

seizure onset zone also carried predictive power (Mormann et al., 2003; D’Alessandro et al., 

2005; Kuhlmann et al., 2010).

In this study, we present and evaluate an intracerebral EEG based seizure prediction method 

for patients with mesial temporal lobe epilepsy. We use measures of similarity between the 

brain state underlying an EEG epoch and a reference state to identify EEG changes leading 

to seizures in a classification based approach. The premise of the method relies on our study 

of the discrimination between preictal and interictal epochs using high frequency content of 

intracerebral EEG (Gadhoumi et al., 2012). Because of the variability across patients in 

preictal and interictal EEG patterns, the method is patient-specific: in-sample optimization is 

carried out during training for each patient. Special care was taken not to use test data set 

during training. We assume that seizures are stereotypical within patients. Such an 

assumption is essential for a good generalization of the training performance over test data.

The method performance and its superiority to chance are evaluated using the statistical 

framework proposed by Snyder et al. (2008). The ultimate goal is to design a reliable seizure 

prediction method that proves utility in clinical applications. For this, we test the method in 

quasi-prospective setting using long-lasting multi-day raw EEG recordings and report the 

results of sensitivity and specificity suggested in the statistical framework.

2. Materials and methods

2.1. Materials

Seventeen consecutive patients admitted in the Montreal Neurological Institute between 

2004 and 2011 for presurgical intracerebral depth electrodes investigation, were evaluated. 

The patients responded to two inclusion criteria: a diagnosis of mesial temporal lobe 

epilepsy and a minimum number of 5 seizures (2 for training and 3 for testing) recorded at 

2000 Hz. In total, 1565 h of intracerebral EEG recorded using a 128-channel Harmonie 

monitoring system (Stellate Systems Inc.) filtered at 500 Hz and sampled at 2000 Hz were 

analyzed. Of this data, 1446 h were continuous long-lasting EEG recordings that were used 

in testing. The remaining 119 h were used for training. Up to three preictal epochs, lasting 

up to 22 min each, were selected for each patient in the training procedure. The 22 min 

maximum duration of a training preictal epoch was chosen based on our earlier study 

(Gadhoumi et al., 2012). The actual training preictal epoch duration varied depending on the 

availability of continuous uninterrupted preictal EEG recordings. It ranged between 6.3 and 

22 min. Five interictal epochs lasting approximately 1 h each and separated by at least 1 h 

were selected for each patient for training. These epochs were at least 4 h from any seizure.
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Out of 214 seizures, 39 were rejected from the analysis as they were not separated by at least 

2 h. This criterion was used to minimize the impact of postictal dynamics on the EEG 

analysis. Seizure electrographic onsets were determined by an experienced neurologist. Only 

bipolar channels from the 4 deepest contacts of bilaterally implanted electrodes in the 

amygdala, hippocampus and parahippocampus were analyzed. The total number of analyzed 

channels per patient ranged between 9 and 18 depending on the number of electrodes 

implanted in the mesial structures. Tables 1 and 2 summarize the details of seizures and EEG 

data.

2.2. Concepts

The seizure prediction method is based on the study by Gadhoumi et al. (2012). In the 

following sections we first summarize the concepts and the methodology of that study: we 

briefly review the feature definitions and how preictal and interictal epochs are discriminated 

using those features. We then describe in detail the processing blocks of the proposed 

method.

2.2.1. The reference state and similarity measure features—Preictal and interictal 

epochs are analyzed using continuous wavelet transform by calculating in different 

frequency bands the wavelet energy and entropy in a 2 s non-overlapping sliding window. 

These two measures are extracted from lines of local maxima in the wavelet domain to 

characterize singularities (Mallat and Hwang, 1992). Each epoch is represented by its 

distribution of (energy, entropy) points in a 2-dimentional space (this distribution is hereafter 

referred to as energy and entropy profile). The state underlying an epoch is characterized by 

its relative similarity with a reference state defined from preictal epochs of a training subset. 

To quantify this similarity, the reference state is represented in the 2-dimentional space with 

a disk in which the center and the radius are learned from the training preictal epochs subset. 

Then three features are introduced (see Fig. A1): (1) the distance of an epoch energy and 

entropy profile to the center of the disk, (2) the percentage of points included in the disk in 

an epoch energy and entropy profile and (3) the duration corresponding to the maximum 

number of points in an epoch energy and entropy profile remaining consecutively (in time) 

confined in the disk. Similarity features are computed for an epoch in a 1 min sliding 

window with 75% overlap between windows.

2.2.2. State discrimination—Epochs are split into training and testing subsets. Using 

discriminant analysis and in-sample cross validation applied to the data set of features 

calculated, the training subset is used to learn a classifier and to preselect the frequency band 

and the set of channels that best discriminate preictal and interictal epochs. The testing 

subset is then used to assess the performance of the classifier in discriminating preictal and 

interictal states by measuring the sensitivity and specificity of preictal and interictal epochs 

classification, analyzing only the pre-selected channels and preselected frequency band.

2.3. The seizure prediction method

The method has training and testing parts. In each part, the analysis is performed 

independently on each channel. Main procedures in each part are illustrated in Fig. 1.
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2.3.1. Training—Training is based on the study by (Gadhoumi et al., 2012). A detailed 

summary of its main procedures is presented in Appendix A.

2.3.2. Testing—The method is tested on continuous EEG data independent from the 

training data. Recording interruptions present in data are not analyzed. Using the disk DN, 

features are calculated in a sliding window for the selected channels and the frequency band 

as described in the training procedure (see Appendix A). The window length is set to 1 min 

and the overlap between windows is set to 75% as in training. For all selected channels, 

features data calculated in each window are classified into a ‘preictal’ or ‘interictal’ class 

using the final classifier. Majority voting rule is then applied to window classification results 

of each channel and the class of the window is determined.

Consecutive preictal classifications are interpreted as seizure warnings. We set the 

consecutive number of preictal classifications needed to raise a warning to 5. This means 

that a warning is raised whenever 2 min of EEG is continuously classified as ‘preictal’. 

Warnings are raised according to persistence of warning lights protocol (Snyder et al., 2008) 

whereby a warning remains active (illuminated light) for as long as five new consecutive 

preictal classifications are detected within a given time horizon, in which condition, the 

original warning light is extended for another duration τ. Uninterrupted illumination of the 

warning light is considered a single warning, regardless of its duration. The period τ, 

originally referred to as persistence parameter in the study by Snyder et al. (2008), is 

referred to as the persistence-τ to avoid confusion with the terminology used in our study. 

The persistence-τ corresponds to sum of the seizure occurrence period (the period during 

which the seizure is to be expected) and the seizure prediction horizon (a minimum window 

of time between warning and the beginning of the seizure occurrence period) as defined by 

Winterhalder et al. (2003) and Schelter et al. (2006).

Since the information on the state of patients (ictal or interictal) during interruption of EEG 

recording is missing, warnings are discarded if they are followed, within the period of the 

light illumination, by an interruption that lasts more than the duration of a seizure. In 

temporal lobe epilepsy, a typical seizure lasts up to 2 min. We discarded warnings followed 

by interruptions of 3 min or more. The epoch between the light illumination and the 

beginning of interruption is removed from the analysis.

To assess the performance of the prediction method, we evaluate its sensitivity and 

specificity. The sensitivity is defined as the probability of correctly predicting a seizure 

within a time horizon. We measure the sensitivity by calculating the proportion of seizures 

within the light illumination. One measure of specificity is the rate of false predictions per 

hour. In the chosen warning protocol, this measure is not suitable as it does not provide 

information on the amount of time spent in warning therefore it could potentially lead to 

misinterpreted results. We adopt instead the proportion of time under warning ρ and the 

warning rate r as specificity-related measures. These measures provide more practical 

information from patient and closed-loop intervention system perspectives since they assess 

the frequency and duration of the inconvenience caused by warnings.
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2.3.3. Comparison of classifier performance in training and testing—To compare 

the performance of the final classifier in separating preictal and interictal epochs of training 

dataset and its performance in testing dataset, we compare the average score  of the three 

selected channels in training with a score Ptest that combines the sensitivity and the 

specificity of the method as measured by predicting seizures of testing dataset using selected 

channels. We define the score Ptest by using the sensitivity S and the proportion of time 

under warning ρ:

(1)

2.4. Statistical validation

The performance of the proposed method is tested for it superiority to chance level. A naïve 

prediction scheme based on a Poisson process is chosen as the chance predictor. A Poisson 

process uses no information from the EEG signal and generates preictal classification 

according to uniformly distributed probability. One way to measure the improvement-over-

chance is to evaluate the difference between the sensitivity of the proposed method and that 

of the chance predictor (Snyder et al., 2008). In fact, it is demonstrated that the sensitivity of 

the chance predictor is approximately equal to the proportion of time under warning ρ. The 

predictive ability of the proposed method is therefore measured by the difference between 

sensitivity and the proportion of time under warning. Only if the sensitivity significantly 

exceeds the proportion of time under warning can the method claim to demonstrate 

predictive power above chance.

Given that n of N seizures are correctly predicted by the proposed method and Snc is the 

sensitivity of the chance predictor, the one-sided p-value estimation of the significance of the 

improvement over chance is:

(2)

using Eq. (2), we assess the statistical significance of the improvement over chance in the 

proposed method at the 5% level.

2.5. Predictors of method performance

Assuming seizures are predictable above chance level in a subgroup of patients, we 

statistically analyze a set of patient characteristics for a possible association with seizures 

predictability. Patient characteristics included age, sex and history of neurobiological 

(duration of epilepsy, generalized tonic clonic seizures, status epilepticus, febrile seizures at 

childhood, bilateral independent epileptic foci) and neuroimaging investigations (mesial 

temporal atrophy detected at MRI).
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3. Results

3.1. Performance

We evaluated the sensitivity, the proportion of time under warning and the warning rate for a 

range of persistence-τ values between 5 and 60 min. For each value of persistence-τ, we 

assessed the significance of the improvement over chance. Fig. 2a shows the mean across 

patients of the performance metrics in the 17 patients.

In 7 patients (group A, 56 test seizures), sensitivity was significantly higher than the 

proportion of time under warning (p < 0.05) for persistence-τ values between 30 and 60 min. 

In remaining patients (group B), sensitivity values were not significantly higher than 

proportion of time under warning for any of persistence-τ values. Fig. 2b shows mean values 

of performance metrics across patients of group A. For persistence-τ values above 30 min, 

the mean sensitivity was higher than 85%, the mean proportion of time under warning was 

less than 30% and the mean warning rate was less than 0.35/h.

Fig. 3 shows the median across correctly predicted seizures in patients of group A of the 

warning time for the evaluated range of persistence-τ. The warning time is the duration 

between the rise of a warning and the occurrence of the correctly predicted seizure. For 

persistence-τ values above 30 min, the median warning time was around 36 min.

The average false prediction rate across patients of group A was below 0.10/h for 

persistence-τ values above 30 min (Fig. 4a). For the same group, the positive predictive 

value was higher than 73% for persistence-τ values above 30 min (Fig. 4b).

3.2. Best performing channels and frequency band

Performance scores  of selected channels in training ranged between 0.49 and 1 for all 

patients. Table 3 shows score values of selected channels and the selected frequency band in 

groups A and B. There was no significant difference between channel score distributions in 

both groups using an unpaired two-sample comparison t-test with no assumption of variance 

equality (p = 0.09).

We compared the average performance score of selected channels in training  and in 

testing P̄
test (we averaged performance scores across persistence-τ values) for both groups of 

patients. The difference between scores was significantly smaller in group A than in group B 

(p < 0.05, unpaired t-test with unequal variances). Fig. 5 shows average scores in both 

groups.

Excluding 2 patients with unilateral implantation, bilateral independent foci or unclear focus 

in each group, selected channels were relatively more preponderant in the ipsilateral side of 

seizure onset zone (SOZ) in group A (10 ipsilateral and 5 contralateral channels) (Fig. 6). 

This preponderance was less significant in group B (13 ipsilateral and 11 contralateral 

channels). A chi-square test however, showed no relationship between the number of 

channels selected ipsilaterally or contralaterally and seizure predictability above chance (p = 

0.44).
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Of 10 patients in whom selected channels were partially or totally in the contralateral side of 

the SOZ, only 4 have seizures origins exclusively from one hemisphere. The remaining 6 

patients have seizures preponderantly originating from one hemisphere.

Using Fisher’s exact test to compare selected frequency bands in groups A and B of patients, 

we found no association between the selected frequency band and seizure predictability 

above chance (p = 0.08).

3.3. Preictal changes and seizure onset

In patients of group A, we analyzed preictal changes that triggered true seizure warnings in 

test epochs using a persistence-τ value of 30 min in order to determine the laterality of 

detected changes with reference to SOZ. For each seizure correctly predicted, we determined 

whether channels with ‘preictal’ classifications that led to warning were ipsilateral, 

contralateral or bilateral to SOZ.

Table 4 depicts the results of this analysis. Seizures of 2 patients for whom SOZ was 

reported unclear were excluded from this analysis. In the 37 correctly predicted seizures of 

the remaining 5 patients, preictal changes were either bilateral (in 23 seizures) or ipsilateral 

(in 13 seizures) to SOZ. The only exception was one patient, in whom contralateral preictal 

changes were found solely in one of his seizures.

3.4. Predictors of performance outcome

Two-tailed Mann–Whitney test showed no significant difference in the age (p = 0.69) and 

duration of epilepsy (p = 0.94) between groups A and B. Using Fisher’s exact test, no 

significant difference was found in foci laterality (p = 1), history of febrile seizures (p = 1), 

history of generalized tonic clonic seizures (p = 0.61), and presence of mesial temporal lobe 

atrophy (p = 0.64). However, history of status epilepticus showed a significant difference 

between the 2 groups (p < 0.05) with patients of group A having 4 patients with history of 

status epilepticus versus none in group B.

4. Discussion

Gadhoumi et al. (2012) demonstrated that selected preictal and interictal epochs of 

intracerebral EEG could be distinguished using measures of wavelet entropy and energy. We 

have applied the framework of this study to seizure prediction and proposed a new method 

capable of anticipating seizure occurrence in patients with intractable mesial temporal lobe 

epilepsy. Above chance prediction performance was obtained in a subgroup of 7 patients 

which could not be pre-identified, making the use of the method depend on trial, with a 

chance of obtaining successful results in around 40% of patients.

Choosing a seizure occurrence period above 30 min, the method performed above chance 

with sensitivities higher than 85%, proportions of time under warning less than 30%, 

warning rates below 0.35/h and false prediction rates below 0.1/h. These results cannot be 

judged independently from a clinical application context where the method is applied. With 

warning raised around 48 min before seizure occurrence, the method cannot evidently be 

used in a patient advisory seizure prediction system; in fact patients do not require more than 
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3 to 5 min warning time of an impending seizure (Arthurs et al., 2010). Rather, the method 

could be used in a closed loop system where the action time of therapeutic intervention is in 

the range of the warning time, providing the system’s required levels of sensitivity and 

specificity are also within method’s range.

One feature of this study is that EEG datasets were analysed without preprocessing to 

remove noise and artefacts. Electrode disconnections and reconnection fluctuations and out-

of-range signal amplitudes are inherently filtered out by the wavelet analysis. In fact, the 

local modulus maxima coefficients from which energy and entropy were calculated would 

only carry relevant information about the EEG at the frequency range we analysed (Mallat 

and Hwang, 1992). We did not separately assess the robustness of denoising the EEG by 

means of wavelet analysis but pre-identification and removal of noise and artifacts may 

enhance the method performance particularity by reducing false predictions. Whether this 

enhancement would be significant enough to justify the implementation a separate 

preprocessing method is to be explored.

Channels preselected in training did not always have optimal score values (close to 1). This 

was equally true for all patients studied. Although high performance scores of preselected 

channels in training were not associated with prediction performance in testing, it was 

interesting that the average performance score of preselected channels measured in test data 

was closer to the average performance score in training in patients with seizures predicted 

above chance than in the remaining patients. This suggests that in cases where seizures are 

predictable above chance, improving the classification performance in training may lead to 

improving the prediction performance of the method. One possible improvement to 

classification performance is to use a classifier based on Support Vector Machines (SVMs). 

SVMs have been shown to outperform LDA on a variety of datasets (Gokcen and Peng, 

2002). The use of SVMs based classifier may potentially enhance the prediction 

performance for seizures predicted above chance but may also provide superiority to the 

chance level in predicting other seizures. This can be investigated in a future study.

Compared to what has been found in our previous study (Gadhoumi et al., 2012), 

preselected channels were not all ipsilateral to seizure onset zone, though they were 67% 

more preponderant ipsilaterally in patients with seizures predictable above chance, 

compared to 54% in remaining patients. This discrepancy may be attributed to data 

sampling. In fact selected channels are sensitive to a selection criterion where only the 3 top 

channel scorers are kept. If the 4th best channel has a score almost as high as the third it will 

still be rejected. A different sampling of training data may lead to selecting a new set of 

channels. This sensitivity was minimized in the previous study by using a bootstrapping 

approach, which could not be implemented in this study because of the quasiprospective 

design. Reducing the variability in training results can always be addressed in a seizure 

prediction method if more data can be allocated to training and computational cost can be 

adequately handled.

Frequency bands preselected in training varied between patients. This variability suggests 

that the predictive information is patient-specific and could be spectrally limited. In order to 

detect a preictal state with high sensitivity and specificity using EEG, an analysis of a broad 
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spectrum and the identification of a frequency band with the highest discrimination between 

preictal and interictal states may be important.

A noteworthy finding is that preictal changes were almost never detected exclusively 

contralateral to seizure onset. Preictal change appears always to be detectable in the area 

where upcoming seizure will occur and in some cases also contralaterally. EEG studies on 

seizure prediction reported in general discordant findings about sites of first preictal change; 

These were found ipsilaterally (Martinerie et al., 1998; Le Van Quyen et al., 2001) and 

contralaterally (Mormann et al., 2003; D’Alessandro et al., 2005; Kuhlmann et al., 2010). 

Recent studies using microelectrodes (Bower et al., 2012) have reported preictal changes in 

temporal lobe structures located within and outside the seizure onset zone, although the 

specificity of these changes could not be assessed in the context of seizure prediction. A 

recommendation on areas where to place sensing electrodes of a seizure prediction system 

however, is yet to be made. Based on our studies, we believe that preictal changes can be 

better detected in sites of preponderant seizure onset. A further support to this claim is the 

rather consistency of preictal changes laterality within patient’s seizures.

In an attempt to unravel predictors of seizures predictability, retrospective analysis of 

demographic, neurobiological and neuroimaging characteristics revealed in general no 

association with predictability of seizures above chance. A history of status epilepticus could 

however be linked to patients in whom seizures were predicted above chance. As important 

as this finding might be, it must be interpreted with caution. Its statistical significance is 

limited by the size of patient’s sample and needs to be confirmed on a larger sample.

While disease characteristics do not seem to help identify a priori patients in whom seizures 

would be predicated above chance, other hypotheses need to be verified as they may provide 

more insight on seizure predictability. In particular, if ictogenesis is a rather spatially local 

mechanism in the seizure onset zone, electrode contacts need to be abundant enough to 

cover a large volume (covering the seizure onset zone) and able to record from small enough 

volume in order to pick up any preictal change. Such electrode contacts do exist in the form 

of micro-contacts (Kelly et al., 2007; Stead et al., 2010) and studies on seizure prediction 

analysing data recorded with these electrodes are expected to provide answers to important 

questions on seizure predictability.

Finally, the use of the proposed method in patients with other forms of focal epilepsy 

(neocortical, extra-temporal) can be envisaged. Its performance has to be revalidated, as 

different types of epilepsy may exhibit different underlying mechanisms, which may lead to 

alteration of predictive performance. Preictal changes may appear exclusively in areas 

remote from the seizure onset zone and therefore it is recommended that large numbers of 

channels be analysed for an initial investigation.
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Appendix A. Training

The training procedure consists of determining: (1) a classifier, (2) a set of three channels 

and (3) a frequency band by which separation of preictal and interictal training epochs in the 

inclusion, persistence and distance features plane is possible and optimal. Based on the 

earlier study by Gadhoumi et al. (2012), the best discrimination results were obtained with 

diagonal linear discriminant analysis (dLDA). We therefore adopted dLDA approach to 

determine the parameters of the classifier.

Training is performed in 6 main stages: (1) Calculation of energy and entropy measures, (2) 

Calculation of the reference state parameters, (3) Feature computation, (4) Channel and 

frequency band selection, and (5) Construction of the final classifier. We hereafter describe 

the data set and the analysis used in each stage.

Appendix A1. Calculation of energy and entropy measures

For all training preictal and interictal epochs, continuous wavelet transform using Morse 

wavelet (Lilly and Olhede, 2010) is performed in a 2 s sliding window with 2 s gap between 

windows. Wavelet energy and entropy are calculated from lines of local maxima in 4 

frequency bands: 50–150 Hz, 150–250 Hz, 250–350 Hz and 350–450 Hz.
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Appendix A2. Calculation of the reference state parameters

Using N training preictal epochs with time interval [0 ti] each, (i = 1:N), the center CN of a 

disk DN representing the reference state is defined as the mean point of the N 90 s 

immediate preictal energy and entropy profiles. The radius RN of the disk DN is such 85% of 

the average of energy and entropy profiles of the N preictal epochs [0 ti–90s], is included in 

the disk.

Appendix A3. Features computation

Distance, inclusion and persistence features are calculated for the entire duration of each 

training interictal epoch and for time interval [0 ti–90s] of each training preictal epoch Fig. 

A1. The features are calculated in a 1 min sliding window with 75% overlap between 

windows. The distance is computed by measuring the Euclidian distance between the center 

CN and the average of all points of the energy and entropy profile of the epoch. The 

inclusion is the percentage of points of the energy and entropy profile confined within the 

disk DN. Finally the persistence is the total duration corresponding to the maximum number 

of consecutive 2 s points of the energy and entropy profile that remain confined inside the 

disk DN.

Appendix A4. Channels and frequency band selection

The training set is partitioned into subsets A and B for each patient. Subset A contains N−1 

preictal epochs and 5−1 = 4 interictal epochs. Features are calculated for all epochs of both 

subsets using a disk DN−1, the parameters of which are calculated from the N−1 preictal 

epochs of subset A. Supervised dLDA is then carried out on subset A features data in order 

to separate preictal and interictal features data groups. The performance of the resulting 

classifier is assessed on subset B which contains one preictal and one interictal epoch. This 

performance is quantified for each of the channels and the frequency bands analyzed using a 

score  combing the sensitivity and the specificity of the classification (Chaovalitwongse 

et al., 2005). For a given frequency band f and a channel ch,  is given by:

(3)

where S is the sensitivity and F is the false positive rate. In a given frequency band f, the 3 

channels with the highest  scores are considered the best ‘discriminating’ channels. We 

define the best ‘discriminating’ frequency band the one for which the sum of the three 

highest  scores is the largest.

To reduce variability, 10 rounds of the above described process are performed using 10 

different partitions of the original training data set. The scores are averaged across rounds 

for each channel and for each frequency band. The best discriminating channels and 
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frequency band determined as described above using averaged scores are retained for 

subsequent test analysis.

Appendix A5. Construction of final classifier

For each of the selected channels one final classifier is calculated. The parameters of each 

classifier are derived from a discriminant analysis of the features data calculated from the N 
preictal and 5 interictal channel epochs of the original training set. The features are 

calculated for the selected frequency band using the disk DN.
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HIGHLIGHTS

• Seizures are predictable above chance level in a subset of patients.

• Preictal changes are detected on average 36 min before seizure onset.

• Preictal changes are ipsilateral and bilateral but rarely contralateral to seizure 

onset zone.

• Seizure predictability may be linked to history of status epilepticus.
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Fig. 1. 
Block diagram of the method training (A), testing (B) and validation (C).
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Fig. 2. 
Mean values (with standard errors of the mean) of sensitivity, proportion of time under 

warning and warning rate for a range of persistence-τ across all patients (a) and across the 7 

patients in whom seizures are predicted above chance for a sub-range of persistence-τ 
(greyed area) (b).
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Fig. 3. 
Median warning time across patients in whom seizures are predicted above chance level for 

persistence-τ values above 30 min (greyed area). N is the number of predicted seizures. 

Crosses represent outliers.
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Fig. 4. 
Average false prediction rates (a) and positive predictive value (b) in patients of group A, as 

a function of persistence-τ. Seizures are predicted above chance for persistence-τ values 

above 30 min (greyed area). SEM: standard error of the mean.
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Fig. 5. 
Average performance score of selected channels in training and in testing (scores across 

persistence-τ values were averaged) for patients of groups A and B. Difference between 

scores (in dotted lines) is significantly smaller in group A than in group B (p < 0.05). SEM: 

standard error of the mean.
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Fig. 6. 
Average channel scores across 10 partitions of training datasets of group A and B. With 

reference to SOZ, the left side of the figure shows scores of ipsilateral channels and the right 

side shows scores of contralateral channels. On each side, the 3 deepest channels (sorted by 

depth, with deepest channel indicated first) of the hippocampus, the amygdala and the 

parahippocampus are indicated by numbers on the x-axis of the figure in the respective 

order. White boxes indicate channels not available. The 3 best average channel scores 

(corresponding to selected channels) are indicated by white crosses. Patients in whom SOZ 

cannot be lateralized (either bilateral foci, channels not available or unclear focus) are 

indicated with *.
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Fig. A1. 
Illustration of the distance, inclusion and persistence features in the energy and entropy 

space. (a) Energy and entropy profiles of a 22 min window of an interictal epoch (black 

symbols) and a preictal epoch (red symbols) are at different distances from the center (mean 

point of 90 s immediate preictal energy and entropy profile shown in yellow symbols) of the 

disk D, calculated from a separate set of preictal epochs. Any point inside the disk D counts 

for the inclusion rate of the distribution. (b) Temporal distribution of the amount of time 

spent inside the disk D in the same preictal (red dots) and interictal (black dots) energy and 

entropy profiles shown in (a). The dots indicate points inside the disk (each point represents 

2 s duration). The persistence is the period of time corresponding to the maximum number 

of temporally contiguous points in the disk D. In this example preictal persistence is 22 pts. 

× 2 s = 44 s and interictal persistence is 4 pts. × 2 s = 8 s. Reproduced with Permission from: 

Gadhoumi K, Lina JM, Gotman J. Discriminating preictal and interictal states in patients 

with temporal lobe epilepsy using wavelet analysis of intracerebral EEG. Clin Neurophysiol 

2012;123:1906–1916.
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Table 3

Selected frequency band and scores of selected channels. Patients in whom seizures are predictable above 

chance level (group A) are indicated with *.

Patient Selected frequency band (Hz) Selected channels scores

1* 50–150 1 0.99 0.93

2* 250–350 0.62 0.58 0.53

3 150–250 0.73 0.68 0.67

4* 250–350 0.99 0.99 0.99

5 150–250 0.57 0.56 0.56

6 150–250 0.67 0.63 0.62

7 250–350 0.54 0.51 0.49

8 350–450 0.63 0.63 0.63

9 150–250 0.55 0.5 0.5

10 50–150 0.65 0.57 0.49

11* 50–150 0.76 0.68 0.61

12 350–450 0.86 0.86 0.86

13* 50–150 0.66 0.66 0.66

14 50–150 0.68 0.66 0.61

15 50–150 0.93 0.86 0.85

16* 250–350 0.85 0.84 0.78

17* 250–350 0.66 0.62 0.58

Clin Neurophysiol. Author manuscript; available in PMC 2015 July 03.



C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

Gadhoumi et al. Page 26

Table 4

Relative laterality to SOZ of preictal changes.

Patient Number of predicted seizures Relative side of observed preictal change

1 5 5 × Bil.

2 6 6 × Ips.

4 5 5 × Ips.

11 18 18 × Bil.

13* 4 N/A

16* 6 N/A

17 3 2 × Ips., 1 × Con.

Patients with *had no clear SOZ.

Bil.: bilateral, Ips.: ispilateral, Con.: contralateral.
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