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Abstract

Although significant progress has been made in experimental high throughput screening (HTS) of 

ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the 

ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it 

can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical 

trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is 

particularly important but extremely difficult to predict. In this paper, the advances in human oral 

bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more 

accurate and reliable HOBA QSAR and classification models will also discussed.
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1. Introduction

It is estimated that the entire chemical space exceeds 1060 molecules, and it is impossible to 

synthesize all of them given the fact that the total weight of earth is only about 6.0 ×1027 

grams. As a matter of fact, there are only 27 million compounds have been registered.1 Even 

though the synthesized compounds only occupy a tiny fraction of the entire chemical space, 

it is much larger than the biological chemical space due to the fact that there are a few 

thousands of small molecules within our own bodies. As the biological chemical space only 

represent an amazingly small fraction of the entire chemical space, it is understandable that 
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to discover small molecules that efficiently interact with protein targets is a very difficult 

task. Although numerous new technologies, such as combinatorial chemistry, high 

throughput screening and computer-aided drug design have been applied to facilitate the 

discovery of new drugs, the number of new molecular entities approved annually by FDA 

(U.S. Food and Drug Administration) has not changed significantly in the last two decades. 

What are the major reasons that cause the attrition of drug candidates during clinical trials? 

The lack of efficiency and poor ADME-Tox (absorption, distribution, metabolism, 

excretion, and toxicity) and pharmacokinetics are responsible for most of the drug attrition.2

Among the many ADME-Tox/PK properties, bioavailability is particularly important for the 

orally administered drugs. Today, high throughput screenings of human oral bioavailability 

(HOBA) are routinely conducted in pharmaceutical companies. However, the in vitro and in 

vivo assays are much time consuming and costly. Only a tiny fraction of synthesized and 

screened compounds are selected to do the analysis. In silico HOBA modeling, on the other 

hand, is much more efficient and can deal with large screening libraries. Moreover, in silico 

HOBA models can serve as drug likeness filters to prioritize screening libraries. Those 

filters typically have better discriminative power than the conventionally used drug likeness 

filters, like Lipinski’s ‘Rule of Five’.3 It is a trend that in silico ADME-tox models, 

particularly HOBA, are incorporated into the paradigm of drug lead identification and 

optimization procedures.4–16

1.1 ADME-Tox

As one of the hot fields in computer-aided drug design (CADD), numerous reviews have 

been published recently on the progress of ADME-Tox modeling,17–21 here in this paper we 

only focus on the latest advances of in silico modeling of human oral bioavailability. 

ADME-Tox properties which can be broadly classified into two categories, namely, the 

“physicochemical” and “physiological”. The physicochemical properties, including aqueous 

solubility, logarithm of octanol – water partition coefficient (logP), logarithm of octanol – 

water distribution coefficient (logD) and pKa, etc., are governed by simple physicochemical 

laws. The physiological ADME-Tox properties can be further grouped into in vitro ADME-

Tox properties (such as Caco-2 permeability and MDCK permeability, liver microsomes, 

etc.) and in vivo pharmacokinetic properties (such as oral bioavailability, human intestinal 

absorption – HIA, plasma protein binding – PPB, urinary excretion, area under the plasma 

concentration – time curve (AUC), total body clearance (Cl), volume of distribution, 

elimination half time (t1/2), etc.). As physiological ADME-Tox properties, particularly oral 

bioavailability, are governed by many factors, it is a very challenging task to adequately 

model and accurately predict the physiological ADME-Tox properties.

1.2 human oral bioavailability

Oral bioavailability (OBA) is one of the most important pharmacokinetic properties in drug 

discovery. As the oral form is the most convenient way to administrate a drug, it is not a 

surprise that about 80% of the dosage forms in the worldwide market are administrated 

orally.22 OBA represents the percentage of an oral dose that is available to produce 

pharmacological actions. In practice, OBA is defined as the fraction of the oral does that 

reaches the system circulation in an active form and measured by the ratio of the dose-
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corrected AUC (area under curve) of the oral route to that of the intravenous route. For an 

oral drug, the amount of the active form that reaches the system circulation is reduced due to 

incomplete absorption in gastrointestinal track and the first-pass metabolism. Therefore, oral 

bioavailability is ranged from 0 to 100%.

It is a very challenging task to adequately model and accurately predict the oral 

bioavailability of a drug because this physiological property is a complex function of many 

biological and physicochemical properties, which include the aqueous solubility of the drug 

in the gastrointestinal tract, the intestinal membrane permeability, and the extend of the first-

pass metabolism occurred in liver, gut and intestine, and even the dosage form of the drug. 

Moreover, the measurement of oral bioavailability of a drug is affected by other factors like 

whether the drug is taken with or without food, whether other drugs are taken concurrently, 

as well as the disease states, etc. Those factors may alter the drug absorption, the liver 

metabolism. For example, the oral bioavailability of patients with liver disease may be 

increased due to the reduced liver metabolism. The above factors may vary from patient to 

patient and from time to time for the same patient. This complicate picture explains why the 

measurement errors of oral bioavailability are very large. According to the survey of 367 

drugs conducted by Wang et al.,23, the average unsigned error and root-mean square error of 

the experimental measurements are 12.1 and 14.5%, respectively.

In order to develop an oral drug with high bioavailability, medicinal chemists apply a simple 

rule to select drug candidates: those having high aqueous solubility and high membrane 

permeability tend to have high OBA; those having low aqueous solubility and low 

permeability tend to have poor OBA; and the others might need careful formulation to 

improve their dissolution or absorption rate. This simple rule is based on the fact that drug 

dissolution and permeability control the rate and extent of drug absorption in GI track. 

Certainly, a drug with high oral bioavailability should also be largely free from fast-pass 

metabolism.

1.3 In silico models of HOBA prediction

Attempts have been made to predict HOBA back to Year 2000 by Andrews, Bennett and 

Xu,24 and Yoshida and Topliss.25,26 Later on, numerous models were published25,27,28 and 

reviewed by ourselves,29 and others.30 The following is a brief summary of HOBA models 

developed prior to 2008: most models were developed using relatively small data sets (n < 

600) and they merely make reliable prediction for the compounds in the screening libraries. 

For the classification models developed before 2008, the rates of the correct assignment are 

usually lower than 70%; for the QSAR models, the RMSE are ranged from 24 to 30%. In the 

following, we will present reviews on the latest HOBA models.

2. Recent Advances in HOBA Modeling

In 2008, a classifier was developed by Ma et al. with GA (genetic algorithm)–CG 

(conjugated gradient)–SVM (support vector machine) method for 866 compounds that have 

human oral bioavailability data.31 GA was applied to select descriptors that were calculated 

using Cerius 2 software package (http://www.accelyrs.com), while SVM was used to 

construct classification model and CG was applied to optimize the parameters of kernel 
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functions of SVM. The predict accuracy, 80% for the training set (690 compounds) and 86% 

for the test set (76 compounds) is encouraging. However, the classifier has poor 

performance for the “negative” class: the prediction accuracy is only 44% and the false 

positive (FP) is even larger than true negative (TN). This phenomenon can be explained by 

that fact that a very small cutoff of 20% was applied to assign ‘positive’ and ‘negative’ 

classes. Even the prediction accuracy is good, it cannot be used to further discriminate the 

compounds belong to the “positive” class.

In 2009, a set of predictive models for human bioavailability were developed by Imawaka et 

al. using the human oral administration data and animal pharmacokinetic data as 

descriptors.32

(1)

Where AUCpo and AUCiv are the areas under the plasma concentration-time curves for the 

oral administration and intravenous administration, respectively; Dosepo and Doseiv are the 

doses of the two types of administrations accordingly; Vdβ and β are the distribution volume 

of the terminal phase and the elimination rate constant, respectively. Vdβ is estimated with 

the animal data using Eq. (2).

(2)

Where fP and fT are the free fraction of drug in plasma and tissue; VB and VE, the volumes of 

blood and the extracellular fluid, are assumed to be 80 ml/kg and 260 ml/kg, respectively; 

Rb, the blood to plasma concentration ratio is assumed to be 0.945 if not available; VT 

represents the volume the tissue into which the drug is distributed; RE/I, which is set to 1.4, 

is the ratio of the amounts of binding protein in the extracellular fluid to that in plasma; Hc, 

the hematocrit value, is set to 0.42; After taking the above assumed constants into Eq. 2, Eq. 

2 becomes Eq. 3.

(3)

The authors proposed three methods to estimate [VT/fT] using the animal values of Vdβ, RB 

and fP. In Method 1a, the [VT/fT] of human is assumed equal to that of animal; in Method 1b, 

Eq. 4 is used to calculate the [VT/fT] of human:

(4)

Method 2 is similar to Method 1a except that the [VT/fT]animal values come from not only rat 

but also other animals. Once [VT/fT]human is obtained, then human Vdβ can be calculated 

with Eq. 3 using human [VT/fT], fP and RB.
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The performance of the three calculation protocols was summarized in Table 1. The AUE 

and RMSE of Protocol 3 (using Method 2 to calculate [VT/fT]human) is 10.7 and 15.4%, 

respectively. Unfortunately, the statistic parameters (AUE and RMSE) were calculated using 

a small set of data and the reliability may be questionable. The RMSE of the Protocol 1 

(using Method 1a to calculate [VT/fT]human) and Protocol 2 (using Method 1b to calculate 

[VT/fT]human) are 20.9 and 23.2, respectively.

In 2011, we have performed a systematic study on understanding how various molecular 

descriptors correlate to HOBA and developed a set of classification and QSAR models to 

predict HOBA using a large database of 1014 compounds.33 We could not find any 

property-based rule which has sufficient discriminative power to serve as a predictor for 

HOBA. We then constructed a set of multiple linear regression models using genetic 

function approximation. The best model has achieved a very encouraging performance in 

modeling HOBA: R = 0.79, QLOO = 0.72, RMSE = 22.3 % for the training set; Rtest = 0.71 

and RMSEtest = 23.6% for the test set.

In 2012, a set of HOBA models were developed by Paixão, et al.34 using a set of in vitro and 

in silico physiological properties as descriptors, including absorption and solubility at the 

gastrointestinal pH range 1.5–7.5, apparent permeability - Papp, and intrinsic clearance - 

Clint.34 The authors divided the whole data set into four sets according to the availability of 

in vitro data of Papp and Clint. For the 49 drugs for which both in vitro Papp and Clint are 

available, a computer model with an excellent predictive ability was constructed: 

RMSE=16.0%, 84% of data within ±20% and 96% within ±35% error margins. 

Unfortunately, when only in silico data of Papp and Clint were applied, the performance of 

the computer model is much worse: RMSE=34.6.0%, 53% of data within ±20% and 74% 

within ±35% error margins. As suggested in Table 1, apparent permeability is a more 

important descriptor than intrinsic clearance for modeling HOBA.

Recently, Xu et al.35 constructed a set of QSAR models using our HOBA database.36 The 

descriptors of those models, which include constitutional and topological descriptors, walk 

and path counts, connectivity indices, etc., were calculated using Dragon.37 The best-

performed model, which was constructed by SVM-regression has R2
test and RMSEtest of 

0.80 and 31%, respectively. Apparently, the predictability of this model is not strong. Other 

linear models constructed by multiple linear regression and partial-least-square fitting 

perform even worse.

In 2012, a set of classifiers were developed by Ahmed and Ramakrishnan for a large dataset 

of HOBA.38 To get the optimal descriptors, the authors first constructed classifiers for both 

HIA and Caco-2 permeability using both the physiochemical and structural properties as 

descriptors. The underlying descriptors that are effective in discriminating between distinct 

classes were then identified by partial least squares discriminant analysis. 47 descriptors 

which are common for both HIA and Caco-2 were used to construct classifiers for HOBA. 

The best performed classifier, the logistic classifier, achieves a classification accuracy of 

71%. However, the authors didn’t further evaluate the classifier using external test set.
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In 2014, Olivares-Morales et al. developed a set of classification models for HOBA using 

animal oral bioavailability data.39 The HOBA data were classified into two groups (high and 

low) using a cutoff of 50%. Optimal OBAanimal thresholds were identified for mouse (67%), 

rat (22%), dog (58%) and non-human primates (35%) through ROC (receiver operating 

characteristics) analysis. The performance of the classification models are summarized in 

Table 2. It is not a surprise that the model based on the oral bioavailability of non-human 

primate has a very high predictability.

In summary, there is some progress on the in silico modeling of human oral bioavailability 

in recent years: (1) the database has been expanded from ~600 to about ~1000, more high 

quality data make it possible to develop more reliable models; (2) more experimental 

pharmacokinetic data, either from human or animals were used to construct models for 

HOBA; (3) for QSAR models using descriptors purely based on molecular structures, the 

best QSAR model could predict HOBA for the external dataset with an RMSE of 23–24%, 

marginally better than models developed before 2008; (4) as to the classification models 

using common molecular structure-based descriptors, the best successful rate is about 70%, 

not much difference from the models constructed before 2008. The representative HOBA 

QSAR models and classifiers were summarized in Table 1.

3. Discussion

In the last section, several representative HOBA models developed in last six years were 

reviewed. It is obvious that more effort is needed to develop more accurate and predicative 

models for this important ADME/PK property. What are the strategies to achieve the goal of 

developing high quality HOBA models?

3.1 Database construction

First of all, more high quality human oral bioavailability data is needed. It is not an easy task 

to collect a large number of HOBA database since one needs AUC for both the oral and 

intravenous administrations to measure HOBA (Eq. 1). However, the intravenous does is not 

always available due to safety and solubility reason. This situation becomes even severer by 

the fact that the HOBA data which are owned by the pharmaceutical companies industry, 

usually do not exist in public domain.

A big advantage of in-house database owned by pharmaceutical companies is that the data 

are consistent and have less variation. The following are some publications on HOBA using 

in-house data sets: an analysis of bioavailability performed by Veber et al. in with a dataset 

containing over 1100 compounds owned by GSK;40 a study of oral bioavailability for 591 

structures from the GlaxoWellcome’s internal database by Andrew et al.24 Unfortunately, 

these in-house data are usually not available for the public scientific community. On the 

other hand, the HOBA data in the public domain may lack of self-consistency as the HOBA 

data usually come from more than one source and significant variability might exist between 

different sources.

To successfully model HOBA, it is critical to collect a large amount of reliable and 

consistent experimental data. We have put a lot of effort to construct the HOBA database. In 
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2006, we collected HOBA data for 577 drugs from Goodman and Gilman’s the 

Pharmacological Basis of Therapeutics, both the 9th and 10th editions. In 2007, the database 

was expanded to 805 and some experimental data were updated using the latest literatures.36 

Now the third version of the HOBA database has collected human oral bioavailability for 

more than 1000 drugs. The latest database is accessible from http://cadd.suda.edu.cn/admet/. 

To achieve high reliability and consistency of the database, a great effort was put to verify 

the newly collected data. Suspicious data were recognized when there are large root-mean-

square deviations of the HOBA data for the same drugs. We also pay extra attention to 

entries that have large prediction errors by our HOBA models. This strategy was 

successfully used by ourselves to verify the aqueous solubility data in the Beilstein 

dataset.15

3.2. Descriptors

To successfully model human oral bioavailability, another key factor is to select suitable 

molecular descriptors. There are thousands of descriptors available, not only for 1D, but also 

for 2D and 3D. Lots of descriptors are redundant and should be eliminated using covariance 

analysis. The widely used molecular descriptors include Abraham,41 Volsurf,42 Molsurf,43 

Adriana.Code,44 FAF-Drugs2,45,46 Dragon,37 Mold,47 Cerius 2 (www.accelrys.com), 

Molconn-Z (www.tripos.com), and so on. To wisely select proper molecular descriptors to 

model a property, one needs know some basic knowlege on that property. As to HOBA, it is 

a function of fa, the fraction of drug does that is absorbed in the gastrointestinal tract and FG, 

the fraction of drug dose that escape first pass metabolism in the gastrointestinal tract and 

FH, the fraction of drug does that escape first pass metabolism in the liver.

(5)

We recently studied the relationship between HOBA and HIA (human intestinal absorption) 

for 510 compounds that have both values measured. The correlation coefficient between 

HOBA and HIA is 0.63. In these 510 compounds, 182 show a significant difference between 

HOBA and HIA (HIA – HOBA ≥20). Those compounds are considered to have a significant 

first-pass metabolism rate while the others do not. The relationship between HOBA and HIA 

is shown in Fig. 1. It is obvious that most compounds have HIA larger than or equal to 

HOBA (on or above the red line). Similar result was found in our previous publication.33 

Given the fact that HIA is highly correlated to HOBA and it defines the upper limit of 

HOBA, HIA data from in vitro/in vivo analysis can be a good descriptor for HOBA. 

Molecular descriptors that well describe HIA, such as logP and logD which are measures of 

lipophilicity, aqueous solubility, should also be good descriptors for HOBA.

As HOBA is also a function of FG and FH, the molecular descriptors that describe the 

substructures directly participating the metabolism reactions should be good descriptors for 

modeling HOBA. Indeed, many of the best-performed models were constructed using counts 

of molecular fragments, molecular fingerprints as descriptors.23,33 Moda et al. found that the 

use of all atoms, bonds, connections and chirality to define molecular fragments led to a set 

of encouraging models in their study.28 Although not been used, we expect that 
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pharmacophore fingerprints, such as those produced by the Tuplets model of Sybyl,48 could 

be good descriptors for HOBA.

Other experimental data of pharmacokinetic properties, such as bioavailability of animals, 

volume of distribution, AUC concentration – time curve, Cmax, t1/2, clearance, plasma 

protein binding, etc. can be valuable descriptors for HOBA. The only problem of this type of 

descriptors is that they are available only for a very limited set of molecules.

3.3. Model construction

In the next step, QSAR or classification models are constructed using the calculated 

descriptors. In order to develop statistically significant and robust models, the whole dataset 

is divided into a training set, a cross-validating set and a test set. The predictability of a 

model is objectively evaluated by the test set. In our work of modeling aqueous solubility,
15 

we performed 85/15 cross-validation test (85% of data randomly selected into training set 

and 15% into test set) 10,000 times and we found out that Q2, AUE and RMSE had Gaussian 

distributions. For example, the mean, maximum and minimum of Q2 were 0.832, 0.884 and 

0.762, respectively for the ASM-ATC-LOGP model. As to RMSE, the mean, maximum and 

minimum were 0.841, 0.959 and 0.732, respectively for the ASM-ATC-LOGP model. It is 

obvious that the Q2 and RMSEtest depends on how a test set is formed. Obrezanova et al. 

suggested to split a dataset into training, test and cross-validation sets through classification 

analysis of the 2D path-based fingerprints of molecular structures.49 First of all, the cluster 

centroids and singletons automatically enter the training set; the others were sorted by the Y-

values and assigned to the raining set, cross-validation set and test set randomly with the 

userdefined probabilities.

As listed in Table 1, a variety of statistical tools have been applied to construct QSAR 

models for HOBA. The following are the most commonly-used tools: multiple linear 

regressions (MLR), partial least square fitting (PLS), genetic algorithms (GA), artificial 

neural network (ANN), support vector machines-regression (SVMR), Gaussian processes 

(GP), etc. When a great number of descriptors are applied to model HOBA, hybrid methods, 

such as GA/MLR or GA/PLS or GA/SVMR are recommended since the hybrid methods can 

effectively avoid the over-fitting problem by selecting a subset of descriptors to construct 

QSAR models. In the fitness functions of GA, not only the performance of the model (R2, 

Q2, RMSEtrain, RMSEtest) matter, but also the number of descriptors selected. The more 

descriptors selected, the larger the penalty. Gaussian processes,49,50 which is able to model 

non-linear relationships and select important descriptors from a large pool, could have a 

great application on HOBA modeling. More importantly, GP is inherently to avoid 

overtraining and provide a way to objectively estimating the uncertainty of prediction.

As to classification models of HOBA, support vector machine, recursive partitioning, k-

nearest neighbors, etc. are the commonly used methods. The performance of a classifier 

strongly depends on how to define ‘+’ and ‘−’ or multiple classes. There is still no 

consensus on which cutoffs should be used to form the classes. The following cutoffs have 

ever been used to construct two-class classifiers: 20% by Ma et al. (if HOBA>=20%, then 

the molecule belongs to the ‘+’ class, otherwise, it is in ‘−‘ class),31 30% by ourselves,36 

and 50% by Olivares-Morales et al.39 Few classifiers were published for more than two 
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classes.26 To construct a successful classifier, the number of data in each classes should be 

balanced, otherwise, one may have good sensitivity but poor specificity or vice versa. 

Classification sensitivity and specificity are described by numbers of true positives (TP), 

true negatives (TN), false positives (FP) and false negatives (FN) using the following 

equations: sensitivity = TP/(TP+FN), specificity = TN/(TN+FP).

How can we improve the prediction accuracy of HOBA for a new compound outside of the 

training set? The first approach is based on the concept of ‘the domain of applicability’ 

proposed by Konovalov et al.51 and Weaver et al.52 In this approach, the entries that have 

the similar descriptor profile to that of the compound to be predicted are selected and put 

into the training set. The models constructed using this specific training set are then used to 

predict the HOBA of the compound. Certainly, this approach may not be suitable in 

database screening if the model construction procedure takes a long time.

The second possible approach to improve prediction accuracy of HOBA is to develop 

consensus models by combining two or more models together. We constructed a set of 

consensus models to model bioavailability (30 models), plasma protein bonding (20 models) 

and urinary excretion (30 models).53 All those models were constructed by MLR using GA 

to select descriptors, the count of molecular fragments. More reliable prediction was 

achieved with the consensus models for all the three ADME-Tox properties. The concept of 

“consensus modeling” was also applied by other researchers in ADME prediction. For 

example, Abshear et al. evaluated the performance of four QSAR models in KnowItAll 

(http://www.bio-rad.com) on predicting the intrinsic solubility of 113 diverse organic 

compounds.54 The absolute average errors (AAE) of the four models are 0.314, 0.422, 0.327 

and 0.324 log units, respectively. However, the prediction error is reduced to 0.257 log unit 

by using a consensus model combined with the four individual models. With more and more 

HOBA models published, it is possible to achieve more reliable prediction utilizing the 

strategy of consensus modeling.

3.4. Other Development

Besides human oral bioavailability, a set of models were constructed for predicting 

bioavailability administrated through other routes. For example, a spreadsheet-based model 

to estimate bioavailability of chemicals from dermal exposure was constructed by Dancik et 

al. recently.55

Some models were developed to predict animal bioavailability: Nomoto et al. constructed a 

computational model for rate bioavailability using in vitro intestinal parameters as 

descriptors.56 De Buck et al. developed computer models for predicting a set of 

physiological properties including bioavailability for 50 structurally diverse compounds in 

rat.57 Grabowski and Jaroszewski developed models to predict bioavailability of veterinary 

drugs.58

Computer models for modeling HOBA of specific types of drugs were also reported 

recently. Artemenko et al. constructed PLS models for a set of 362 antiviral drugs. The 

performance of the model with R2
test > 0.6 is satisfactory.59 QSPR models were developed 
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for modeling and predicting both MEK inhibitory activity and oral bioavailability of novel 

isothiazole-4-carboxamidines.60

4. Conclusions

In this paper, the latest progress on the in silico modeling of human oral bioavailability is 

reviewed. Due to the complexity of this physiological property and the lack of the high 

quality and self-consistent experimental data, there is still a long way to go to reliably 

predict human oral bioavailability for arbitrary compounds in the screening libraries.
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Abbreviations

ADME-Tox Absorption, Distribution, Metabolism, Excretion, and Toxicity

HOBA Human oral bioavailability

HIA Human intestinal absorption

QSAR Quantitative structure – activity relationship

MLR Multiple linear regressions

GA Genetic algorithm

LOO Leave-one-out

R2 Regression coefficient

Q2 Cross-validation regression coefficient

AUE Average unsigned error

RMSE Root-mean-square error

AUEtest Average unsigned error of the test set

RMSEtest Root-mean-square error of the test set

N Number of data points

Ntest Number of data points in a test set

LogP Logarithm of octanol – water partition coefficient

LogD Logarithm of water distribution coefficient
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Figure 1. 
Relationship between human oral bioavailability and human intestinal absorption for 510 

drugs. The red line is the diagonal line where the X-axis and Y-axis values are equal, the 

correlation coefficient R is 0.63.
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