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Abstract

Background—Identification of patient subgroups to enhance treatment effects is an important 

topic in personalized (or tailored) alcohol treatment. Recently, several recursive partitioning 

methods have been proposed to identify subgroups benefitting from treatment. These novel data 

mining methods help to address the limitations of traditional regression-based methods that focus 

on interactions.

Methods—We propose an exploratory approach, using recursive partitioning methods, e.g., 

interaction tree and virtual twins, to flexibly identify subgroups in which the treatment effect is 

likely to be large. We apply these tree-based methods to a pharmacogenetic trial of ondansetron.

Results—Our methods identified several subgroups based on patients’ genetic and other 

prognostic covariates. Among the 251 subjects with complete genotype information, the 

interaction tree method identified 118 with specific genetic and other prognostic factors, resulting 

in a 17.2% decrease in the percentage of heavy drinking days (PHDD). The virtual twins method 

identified 88 subjects with a 21.8% decrease in PHDD. Overall, the Virtual Twins subgroup 

achieved a good balance between the treatment effect and the group size.
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Conclusions—A data mining approach is proposed as a valid exploratory method to identify a 

sufficiently large subgroup of subjects that is likely to receive benefit from treatment in an alcohol 

dependence pharmacotherapy trial. Our results provide new insights into the heterogeneous nature 

of alcohol dependence, and could help clinicians to tailor treatment to the biological profile of 

individual patients, thereby achieving better treatment outcomes.
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Introduction

Alcohol use disorders (AUDs) constitute a major public health problem worldwide that 

accounts for significant morbidity and mortality. Three medications have been approved in 

the United States to treat AUD: disulfiram, acamprosate, and naltrexone. However, many 

patients have limited or no response to these medications (e.g., Anton et al. 2006), which 

leads to a reluctance on the part of physicians to prescribe medications, representing an 

important barrier to the dissemination of pharmacological treatments (Oliva et al. 2011; 

Weber 2010). Developing new and more effective medications to treat AUDs is a high 

priority for researchers (Willenbring 2007).

Medications to treat AUD have been identified and evaluated using the whole sample, a 

“one-size fits all” approach that leaves little room for individual treatment. However, 

considerable heterogeneity exists among people with AUDs, suggesting a need for 

personalized treatment approaches based on individual features, e.g., genetic variation 

(Heilig et al. 2011). The goal of personalized medicine is “to develop new therapies and 

optimize prescribing by steering patients to the right drug at the right dose at the right time” 

(Hamburg and Collins 2010). Ongoing research has informed studies that match alcohol 

medications to patients based on genotype (Kranzler and McKay 2012). In one of the first 

such studies, we discovered that alcoholics with two specific variations of a gene related to 

the neurotransmitter serotonin were capable of reducing their drinking significantly using 

the medication ondansetron (Johnson et al. 2011). These findings can help clinicians to 

prescribe ondansetron to patients who are likely to benefit from this drug, replacing the 

current trial-and-error process. It may also inform the development of new therapeutic 

agents that can improve the treatment and prevention of AUD.

In the above pharmacogenetic study, we were interested in the moderating effect of genetic 

variations on treatment, i.e., the interaction between treatment and genotypes (Gail and 

Simon 1985). A common approach to evaluate moderators is to use regression methods to 

test the significance of the interaction terms. However, such an analytical strategy suffers 

from the large number of potential interaction terms, arbitrary definition of covariate cutoffs 

to form actual subgroups, and other common problems associated with subjective post hoc 

analysis. For example, in an ondansetron study (Johnson et al. 2013), a total of 21 genetic 

variations (polymorphisms) were examined for their associations with drinking outcomes. 

Each common polymorphism (minor allele frequency >5%) has three genotype levels (e.g., 

LL/LS/SS in the promoter region polymorphism 5-HTTLPR of the SLC6A4 gene), resulting 
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in a total of 321 possible genotype combinations! Traditional regression models are limited 

to analyzing no higher than three-way interaction terms (e.g., polymorphism-1 by 

polymorphism-2 by treatment), which make these methods impractical to assess higher 

order interactions. Thus, new techniques are needed to tackle such high dimensional data.

Several statistical approaches developed within the machine learning and data mining 

communities have been proposed recently to identify subgroups of patients for which there 

are differential effects of specific treatments. Most of these methods rely on tree-based 

search methods, e.g., the classification and regression tree (CART) methodology (Breiman 

et al. 1984; Zhang and Singer 2010). Trees form subgroups by bisecting the covariate space 

so that the heterogeneity in the effects of the treatment on the response variable is 

maximized between the resultant “child” nodes (e.g., a highly significant treatment effect in 

one partition and a non-significant treatment effect in the other). Once a rule is selected, the 

same logic is applied to split either child node, stopping when there is no additional benefit 

from splitting any further.

Some notable developments include interaction trees (IT: Negassa et al. 2005 and Su et al. 

2009), virtual twins (VT: Foster et al. 2011), and relative effectiveness (Zhang et al. 2010). 

Unlike traditional methods of subgroup (or subset) analysis in clinical trials that rely on 

multiple comparison procedures applied to a small number of pre-specified subgroups, 

nonparametric methods based on recursive partitioning appear flexible and efficient in that 

they allow the generation of subgroups within a very broad “model space” and can handle 

higher-order complex treatment-by-covariates interactions in high-dimensional data.

However, most of these up-to-date methods have not yet been applied in alcohol 

pharmacogenetic studies. In this paper, we aim to fill a crucial gap in the development of 

new pharmacogenetic analytic tools and their applications in alcohol treatment trials. These 

methods were tested in a recently completed alcohol dependence pharmacogenetic trial of 

ondansetron (Johnson et al. 2011).

Methods

Data

Johnson et al. (2011) conducted a double-blind, placebo-controlled trial of ondansetron, a 

serotonin-3 (5-HT3) receptor antagonist, to reduce drinking severity in 283 alcohol-

dependent subjects (aged 20 to 78 years), who were enrolled in the 11-week randomized 

trial after a 1-week single-blind placebo lead-in. All subjects received weekly, standardized 

cognitive behavioral therapy as their psychosocial treatment in addition to either 

ondansetron (4 µg/kg twice daily) or placebo.

At enrollment, genotyping was performed on all samples for Long (L) and Short (S) alleles 

of the functional insertion-deletion polymorphism (5′-HTTLPR) in the promoter region of 

SLC6A4 gene. Subjects were randomly assigned to receive either ondansetron or placebo 

from weeks 2 through 12, stratified by 5-HTTLPR genotype (LL/ vs. LS/SS). Their daily 

drinking level during the treatment period was recalled and recorded using the timeline 

follow-back method (TLFB, Sobell and Sobell 1992). Samples were also retrospectively 
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genotyped for a functional single-nucleotide polymorphism (SNP), rs1042173 (T/G), in the 

3′-untranslated region of the same gene. Subsequently, Johnson et al. (2013) examined an 

additional 19 SNPs in HTR3A and HTR3B genes, which encode the 5-HT3A and 5-HT3B 

subunits of the 5-HT3 receptor, to determine whether these variants moderated ondansetron 

treatment outcome. This resulted in a total of 21 genetic polymorphisms to be considered as 

predictors of ondansetron response.

Statistical Analysis

We took the reduction from baseline PHDD to the average PHDD during treatment period 

as our primary outcome, rather than the original longitudinal daily heavy drinking index. It 

is of note that we did not perform any imputation on missing values for this outcome. The 

covariates included PHDD_base (PHDD at baseline), age, onage (age of onset of alcohol 

dependence), race (Hispanic vs. others), gender, and the 21 genetic polymorphisms. We 

removed subjects with any missing genotypes, leaving 251 subjects in the analysis. Using 

linear regression, ondansetron patients had 0.7% lower PHDD than placebo patients 

(p=0.422), showing no significant difference between treatment and placebo in the overall 

sample.

We tried two data mining methods, i.e., interaction tree and virtual twins, to identify genetic 

and other prognostic moderators of ondansetron. We compared the results of these analyses 

to identify new pharmacogenetic findings.

Interaction Tree (IT)—Interaction tree is a tree-based exploratory procedure for subgroup 

analysis (Su et al. 2009, 2011). It divides the data into subgroups of contrasted treatment 

effects by partitioning the data recursively, i.e., covariates are recursively evaluated at each 

data partitioning step in growing a tree. Thus, subjects in the terminal nodes with top 

treatment effects are those who are the most responsive to treatment. Following a CART 

convention (Breiman et al., 1984), interaction tree analysis consists of three major steps: 

growing, pruning, and validation.

In the growing step, the split is restricted to a binary question on a predictor Xj. If Xj is 

continuous, the question takes the form of Xj ≤ c for some real value c. Otherwise, if Xj is 

nominal with categories C = {c1, …, cr}, then the question takes the form of Xj ∈ A, A ⊂ C. 

The aim is to find a split among all valid candidates that bisects the data into two subsets 

with the greatest heterogeneity in treatment. In other words, the best split would show the 

greatest interaction with treatment.

A linear regression model for the continuous response Y is used to assess the interaction 

effect:

(1)

where s is the indicator associated with a split. The split is evaluated via the Wald test 

statistic for hypothesis H0: β3 = 0 vs. Ha: β3 ≠ 0, i.e., G(s) = {β̂3/se(β̂3)}2.
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The best split s* is the one that yields the maximum G(s) among all candidates. The same 

procedure is applied to split either child node recursively until some lenient stopping rules 

are satisfied, resulting in a large initial tree, denoted by 0.

The final tree model is one of the subtrees of 0. To select the best subtree, a pruning 

procedure is first applied to narrow down the subtree choices. This leads to a sequence of 

nested subtrees of decreasing size. Then a cross-validation method is applied to assess the 

performance of each subtree in the sequence. IT adopts the pruning method and a bootstrap 

based validation procedure proposed by LeBlanc and Crowley (1993), where a detailed 

description can be found.

Virtual Twins—The Virtual Twins method (Foster et al. 2011) involves predicting the 

response to treatment and control ‘twins’ for each subject. Based on the prediction, an 

optimal subset can be found with an enhanced treatment effect.

The Virtual Twins method has two steps: estimation of the paired outcome and a subsequent 

search for the optimal subset. In step 1, a random forest is used to learn the outcome ‘twins’ 

of the ith subject, E(Yi|trti = 0, Xi) and E(Yi|trti = 1, Xi), where E(Y|trt = 0, X) is the expected 

outcome for a subject in the placebo group with covariate value X. The response of input is 

Y while the covariate includes Xi, trti, and their interaction Xi × I(trti = 0), Xi × I(trti = 1). 

The inclusion of both Xi × I(trti = 0) and Xi × I(trti = 1) is not essential, but their inclusion 

improves the property of the method. The estimates for E(Yi|trti = 0, Xi) and E(Yi|trti = 1, Xi) 

are denoted as Ê0i and Ê1i respectively. The treatment effect of subject i is thus evaluated as 

Zi = Ê1i − Ê0i.

In step 2, a regression tree is built to find a parsimonious number of Xs that are strongly 

associated with Z and hence can define the desired subset, using the rpart package in R with 

minimal terminal node size at 5. Following the standard procedure in CART, a complexity 

parameter for pruning is chosen by cross-validation.

Traditional Regression Methods—For comparison, we also included the results 

obtained using traditional regression methods, where the interaction terms of genotype and 

treatment were examined. Due to the extremely large number (321) of genotype 

combinations, only the two-way interaction of each SNP and treatment was considered. 

Along the lines of Johnson et al. (2013), subjects were identified if there existed >10% 

PHDD difference between the two arms, at a significance level of p<0.05. Analogous to the 

minimal split restriction in tree methods, we excluded rare genotypes with an occurrence ≤ 

5.

Results

All the results shown below were based on 251 subjects with complete genotype information 

in our analyses.
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Interaction Tree

We built our interaction tree using the default setup. In the pruning process, we adopted BIC 

as the selection criterion. Figure 1 shows the structure of the selected interaction tree. The 

tree depth is 4, implying treatment-by-covariates interactions of possibly up to the fifth-

order. Terminal nodes with a significant marginal treatment effect at p≤0.05 were selected to 

be the optimal subgroup, i.e.: (1) rs1150226 is {AG}; (2) otherwise, rs1176719 is in {AA or 

GG} and Onset age>=23. A total of 118 subjects (47%) of the 251 subjects with non-

missing values were selected. The sample mean difference of PHDD in the selected 

subgroup was 17.2%. Compared to the overall sample mean difference of 0.7% in PHDD, 

the subjects in the target groups showed a much greater reduction in PHDD in the 

ondansetron arm than the placebo arm.

Virtual Twins

We ran Step 1 in the R randomForest package with all options in default, but the number of 

trees was set at 1000. We obtained an estimate for the global average treatment effect Z of 

0.03. In the recursive partition process, we set the complexity parameter to be 0.05 

according to the cross-validation provided in the rpart package. As shown in Figure 2, the 

final VT tree is also of depth 4. The two terminal nodes with greater group average 

(suggested threshold in Foster et al. (2011): global average of Z + 0.05) were selected as the 

proposed subgroup. We gave ondansetron to subjects with: (1) rs1150226 is not {GG}; (2) 

otherwise, PHDD_base>0.883 and rs1176719 is not {AG}.

The selected subgroup has 88 subjects (35%) with a treatment effect of 21.8% in the 251 

subjects with non-missing genotypes.

Traditional Regression Method (TRM)

Using the TRM to examine the interaction terms of genotype and treatment, we identified a 

combination of 4 genotypes: rs1150226:AG, rs17614942:AC, rs1062613:CC, 

rs2276302:GG (TRM, N=57 among 251 subjects). Having at least one of these genotypes 

was predictive of an ondansetron treatment response. The estimated mean difference of 

PHDD between treatment and placebo was 26.3% in the TRM subgroup (p=0.001).

Comparison of Results

The Interaction Tree method identified two genotypes: rs1150226:AG and rs1176719:AA or 

GG in addition to the background attribute age of onset. The Virtual Twins method 

identified two genotypes: rs1176719:AA or GG and rs1150226:AA or AG. Four genotypes 

were identified in TRM: rs1150226:AG, rs17614942:AC, rs1062613:CC, and 

rs2276302:GG. We noted that all subgroups include rs1150226, though the Virtual Twins 

method included either AA or AG, while the TRM and Interaction Tree only identified AG. 

Furthermore, we found that rs1176719:AA or GG was shared by the IT and VT methods.

Comparison of the efficacy was also done using a dichotomous responder vs. non-responder 

endpoint efficacy variable, percentage of subjects with no heavy drinking days (PSNHDD), 

which has been endorsed by the U.S. Food and Drug Administration as an important 

outcome measure for phase III trials (Falk et al. 2010). To increase power, subjects having at 
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most 1 heavy drinking day (PS1HDD) during the final 4 weeks of the treatment period were 

considered to be “responders”. By doing so, the number of “responders” increased from 48 

(PSNHDD) to 64 (PS1HDD). Because many subjects dropped out early, we imputed their 

missing drinking outcomes as heavy drinking days as defined in Falk et al. (2010), making 

the sample size consistent with our analysis of PHDD. The odds ratios (ORs) for TRM, and 

the subgroup identified by other tree-based methods were shown in Table 1. The p values 

given in the table were computed using Fisher’s exact test.

Generally, smaller subgroups had larger ORs and more significant p values. Notably, the OR 

for ondansetron vs. placebo in both the TRM and the Virtual Twins subgroups were 

comparable (5.0 vs. 3.8), though the latter subgroup had 54% more subjects than the former. 

Such subjects can be defined as “super-responders.” The subgroup identified by the 

Interaction Tree had an OR of 2.1, with more than double the number of subjects in the 

TRM subgroup. Overall, the Virtual Twins subgroup achieved a good balance of the 

treatment effect (OR=3.8) and the group size (88 of 251, or 35%). A Phase III trial 

specifically targeting this subgroup could be conducted to confirm this personalized 

medicine hypothesis.

Similarity in selected subjects

Note that while the subgroup identification criteria generated by different methods may 

appear different as defined by different covariates, the actual subsets of subjects targeted by 

these signatures may be quite similar. Therefore, we compared the identified subsets of 

subjects to see how different they actually were. Table 2 showed the overlap between 

subgroups S1 and S2 using Jaccard similarity coefficients, defined as |S1∩S2|/|S1∪S2|, 

where |S| denotes the size (e.g., number of subjects) of set S, and ∩ and ∪ denote the union 

and intersection set operation, respectively. We also used a Venn diagram in Figure 3 to 

illustrate the relation of these sets graphically.

A total of 136 (54%) subjects, were selected by at least one of the identification methods, 

with a treatment effect of 0.15 on PHDD. As shown in Table 2 and Figure 3, subjects 

identified by these methods tended to overlap. IT was the most comprehensive method, 

containing more than 80% of the subjects selected by the VT and TRM (Figure 3).

Discussion

In this paper, we applied two up-to-date data mining tree-based methods to identify the 

subgroups that were most responsive to ondansetron in an alcohol pharmacogenetic trial. 

Conventionally, subgroups are preplanned; otherwise post-hoc subgroup analysis arouses 

controversy due to a lack of validation. Multiplicity involved in the examination of many 

subgroups greatly inflates the type I error rate. Moreover, traditional statistical methods to 

identify subgroups are restricted to univariate exploration: namely, covariates are assessed 

one-by-one. The models for assessing treatment-by-covariate interaction are also limited to 

cross-product terms up to second-order. In addition, it is difficult to determine the final 

number of subgroups. The tree-based methods essentially overcome these limitations. Tree 

methods are known to deal effectively with higher-order complex interactions through their 

hierarchical structure. For the purpose of conducting subgroup analysis, tree methods 
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optimally bisect data into groups that show maximum heterogeneity in treatment effects. 

The built-in validation process helps to avoid false positive subgroups and automatically 

determines the number of subgroups. The splitting rules leading to each subgroup are 

amenable to interpretation.

On the other hand, tree methods for subgroup analysis also have limitations. These and 

many other data mining methods are not intended to conform with a statistical significance 

testing framework. Owing to their adaptive nature, the p-values reported for resultant 

subgroups can be overly optimistic and should not be interpreted without being recomputed 

using an independent data set obtained in a subsequent study. Also, if a continuous covariate 

interacts with the treatment in a truly linear form (i.e., with a cross-product term), a 

cumbersome tree structure may be required to fully represent the heterogeneity structure of 

treatment effects, compared to TRM. Nevertheless, most covariates (including all the 

genetic variables in this ondansetron trial) are categorical, for which trees are more efficient.

We compared the results to those using traditional regression methods. All methods 

successfully identified a subgroup within which the treatment effect on PHDD was highly 

significant (p-value = ~ 0.001). We also note that these methods yielded similar subgroups 

via slightly different paths (e.g., rs1150226, rs1176719, PHDD_base).

Our study attempted to identify a subgroup with a large enough effect size to be clinically 

meaningful. Specifically, we expect that the selected subgroup will contain at least 1/3 of the 

population. It should be noted that there is a trade-off between the effect size and the sample 

size. Although a smaller sample size, as identified by the traditional regression method, 

tended to have a large effect size, it may not be practical to develop medication for a very 

small patient population. In contrast, the tree-based methods, e.g., the Virtual Twins method, 

yielded a larger subgroup (i.e., about 35% of the total population), with an adequate effect 

size of 0.22 on PHDD.

The statistical associations of PHDD with ondansetron treatment and the rs1150226 and 

rs1176719 genotypes may have a biological basis. The polymorphism rs1150226 is located 

in the promoter region of the HTR3A gene, and rs1176719 is located in the intron 4 region 

(NM 000869.5) of the HTR3B gene, close to an intron-exon boundary. HTR3A encodes the 

primary target molecule of ondansetron (the 5-HT3A subunit), and the product of the 

HTR3B gene (the 5-HT3B subunit) is necessary to stabilize the 5-HT3A receptor subunit at 

the cell surface. The exact molecular mechanisms by which these two polymorphisms 

moderate ondansetron response remain to be determined. Yet, given the location of these 

two variants within the genes, it is possible that ondansetron may modulate HTR3A and 

HTR3B gene expression levels in an allele-based manner leading to differences in receptor 

subunit expression at the cell surface.

These methods can be extended in several directions. First, in many alcohol treatment trials, 

daily drinking records are repeatedly measured using the TLFB method over a period of 

time. It would be of interest to explore the aforementioned subgroup identification methods 

in such intensive longitudinal data, through the method of Su et al. (2011), to improve the 

power for repeated measures data. Second, in most of the current work, efficacy, e.g., 
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reduction in PHDD, has been used as the primary focus in subgroup identification. 

However, safety measures, such as adverse events, should be taken into account 

simultaneously in pharmacogenetic studies. It would be of interest to develop new data 

mining/machine learning methods that take efficacy and safety into account concurrently as 

outcomes. Finally, what we have considered so far is within the framework of tree-based 

approaches. Other data mining tools, e.g., support vector machine (SVM) (Cortes and 

Vapnik 1995) or least absolute shrinkage and selection operator (“lasso”) (Tibshirani 1996), 

can also be adopted in the estimation procedure.

Missing data are a major problem in longitudinal alcohol clinical studies. Different methods 

should be used to accommodate different missing mechanisms (Little and Rubin 2002), e.g.: 

missing completely at random (MCAR; dropout independent of response), missing at 

random (MAR; dropout dependent only on observed response), and missing not at random 

(MNAR; informative dropout - dropout dependent on unobserved response). For example, 

imputation has been used in several studies, e.g., Johnson et al. (2007) and Falk et al. (2010) 

to provide a complete dataset. In our current study, we did not perform any imputation for 

the PHDD outcome, but did a worst case imputation (e.g., imputed all missing values to 

heavy drinking) in the PS1HDD study instead (This way the two analyses had the same 

sample size for comparison). Subgroup identification methods introduced heretofore can 

then be applied to the imputed heavy drinking outcome. However, the performance of these 

methods on imputed data has not been not extensively investigated, either empirically or 

theoretically. An alternative approach to tackling missing data is to use a sensitivity analysis 

of the informative dropout , e.g., with a joint model of longitudinal drinking level and time 

to dropout (e.g., Johnson et al. 2011). The application of tree-based methods to this joint 

model is an interesting topic for future research.
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Figure 1. 
Subgroup identified by interaction tree.
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Figure 2. 
Subgroup identified by Virtual Twins.
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Figure 3. 
Venn Diagram of the Results from Different Methods

The numbers in the Venn diagram are numbers of subjects who were responsive to 

ondansetron. A total of 115 subjects were not identified by any of the three methods.
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Table 1

Subgroup Comparison: Odds Ratio for PS1HDD (percentage of subjects with at most heavy drinking days) in 

month 3 of follow up.

Method Number OR P-Value

TRM* 57 5.0 0.015

Virtual Twins 88 3.8 0.017

Interaction Tree 118 2.1 0.059

*
TRM: traditional regression method.
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