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Abstract

Scope—Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk,
and genetic variants are associated with circulating fatty acids concentrations. Whether dietary
fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear.

Objective—We evaluated interactions between genetic variants and fatty acid intakes for
circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)
and docosapentaenoic acid (DPA).

Methods and Results—We conducted meta-analyses (N to 11,668) evaluating interactions
between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADSL (fatty acid
desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1
(pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase
regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by
measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions
between FADSI rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA.

Conclusion—Our findings reinforce earlier reports that genetically-based differences in
circulating fatty acids may be partially due to differences in the conversion of fatty acid
precursors. Further, fatty acids measurement compartment may modify gene-diet relationships,
and considering compartment may improve the detection of gene-fatty acids interactions for
circulating fatty acid outcomes.

Keywords
FADSIL,; gene-diet interactions; meta-analysis; omega-3 fatty acids
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Introduction

Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease (CVD) risk
[1-5]. Therefore, furthering our understanding of the determinants of circulating omega-3
fatty acids concentrations is essential. Variants in genes encoding fatty acid biosynthetic
enzymes and additional proteins external to the pathway influence circulating omega-3 fatty
acid concentrations (6-7). In a previous genome wide association study (GWAS) meta-
analysis (N=8866), we reported that FADSL (fatty acid desaturase 1) and FADS2 (fatty acid
desaturase 2) variants were associated with higher alpha-linolenic acid (ALA) and lower
eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) concentrations. In addition,
ELOVL2 (fatty acid elongase 2) variants were associated with higher EPA and DPA and
lower docosahexaenoic acid (DHA) concentrations. These findings support prior evidence
that enzymatic genetic variation influences flow through the biosynthetic pathway from
ALA to DHA (7). The same study reported that a FADSL variant altered the association
between circulating ALA and EPA, implying that FADSL variation may influence
conversion of ALA to EPA. In addition to the genes encoding pathway enzymes, we
reported associations between GCKR (glucokinase regulatory protein) and AGPAT3 (1-acyl-
sn-glycerol-3-phosphate) variants with circulating DPA and PDXDC1 (pyridoxal-dependent
decarboxylase domain containing 1) variants with circulating ALA. Although all of the
named loci encode proteins that participate in lipid metabolism, understanding of how
AGPAT3, GCKR, and PDXDC1 variants might determine circulating omega-3 fatty acids is
limited. Whether habitual diet influences relationships between variants at these six loci for
circulating omega-3 fatty acid outcomes is also unexplored, and investigation of gene-diet
interactions could increase understanding of the molecular determinants of circulating ALA,
EPA, DPA and DHA.

Biologically, several dietary fatty acids (alpha-linolenic acid (ALA), linoleic acid (LA),
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could plausibly modify
genetic associations for circulating omega-3 fatty acid (ALA, EPA, DPA, DHA)
concentrations. First, ALA is a substrate for longer chain omega-3 fatty acids (EPA, DPA,
DHA), and genetic factors that influence its conversion could affect long-chain omega-3
concentrations. ALA conversion to EPA/DPA/DHA is limited in humans and demonstrates
inter-individual variability that may be related to genetics [8, 9, 10]. A second plausible
candidate is the omega-6 fatty acid LA, which may limit ALA conversion to EPA through
competitive inhibition of the desaturase enzymes that are shared by the omega-3 and
omega-6 fatty acids biosynthetic pathways [11]. Finally, dietary EPA and DHA may also
influence omega-3 fatty acid biosynthesis, as shown by differential conversion of ALA to
long chain omega-3 fatty acids in fish consumers and non-consumers [12]. Collectively,
these studies suggest that habitual intakes of ALA, LA, EPA and DHA may conceivably
modulate the genetic contributions to circulating omega-3 fatty acids concentrations.

In addition to being influenced by dietary fatty acids and genetic factors, levels of
circulating omega-3 fatty acids vary with the site of fatty acid measurement. Circulating
omega-3 fatty acids in human populations are typically measured in total plasma, plasma
fractions, or erythrocyte membranes. Differences in fatty acids incorporation, distribution
and metabolism may vary based on the measurement compartment [13-16], but
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understanding of how genetically-based variability in response to diet may be further
modified by measurement compartment is limited [17,18].

The primary objective of the current study was to evaluate interactions between habitual
dietary fatty acids (ALA, LA, EPA+DHA) intake and selected single nucleotide
polymorphisms (SNPs) for the outcome of circulating omega-3 fatty acids (ALA, EPA,
DPA and DHA). We hypothesized that the relationship between SNPs and circulating
omega-3 fatty acids would be modified by dietary fatty acids. In a secondary analysis we
explored whether these gene-diet interactions differed by the fatty acids measurement
compartment (plasma and plasma phospholipids vs. erythrocyte membrane). We performed
interaction analyses in 9 independent U.S. and European cohorts, with a total number of
samples up to 11,668. The fatty acids were measured in plasma phospholipids in 4 cohorts,
in total plasma in one cohort, and in erythrocyte membranes in 4 cohorts.

Materials and Methods

Study Populations

The 9 cohorts included for meta-analysis were the Atherosclerosis Risk in Communities
(ARIC) Study, Coronary Artery Risk Development in Young Adults (CARDIA),
Cardiovascular Health Study (CHS), Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN), Health Professionals Follow-up Study (HPFS), Invecchiare in Chianti
(INCHIANTI), Multi-Ethnic Study of Atherosclerosis (MESA), Nurses’ Health Study (NHS)
and Women’s Genome Health Study (WGHS) are described in Supplemental Table 1. All
studies were approved by local Institutional Review Boards and all participants provided
informed consent. These cohorts participate in the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium, which was created in 2008 for the purpose
of evaluating genome-wide associations and gene-nutrient interactions for cardiovascular
disease and risk factors. Jointly developed plans guide the analysis conducted at each cohort
and summary statistics are meta-analyzed centrally.

SNP Selection and Genotyping

Six SNPs from five loci were selected from those highly significantly associated at genome-
wide level with plasma phospholipid omega-3 fatty acids in a meta-analysis of GWAS of
European origin individuals [7]. The SNPs evaluated were rs174538 and rs174548 in
FADSL, rs7435 in AGPATS, rs4985167 in PDXDC1, rs780094 in GCKR and rs3734398 in
ELOVL2. AGPAT3 and PDXDCI1 variants were previously identified as determinants of
circulating glycerophospholipids and sphingolipids (19), and the AGPAT3 protein
participates in the incorporation of DHA into phospholipids. (20). GCKR (protein name
glucokinase regulatory protein) is a regulator of glucose phosphorylation that acts through
competitive inhibition of glucokinase (21). The GCKR rs780094 variant has been repeatedly
associated with metabolic traits including triglycerides and glucose (22) and was suggested
to interact with dietary factors (23). Methods for genotyping are described in Supplemental
Table 2.
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Circulating fatty acids measurement and dietary fatty acids estimates in each study

In ARIC, MESA, CARDIA, and CHS, plasma phospholipids were first isolated by thin layer
chromatography and then separated by gas chromatography. In INCHIANTI, total plasma
fatty acids were measured using a similar gas chromatography technique. The cohorts
ARIC, MESA, CARDIA, CHS and INCHIANTI previously contributed to a meta-analysis of
genome-wide associations for circulating omega-3 fatty acids (7). In GOLDN, HPFS, NHS
and WGHS fatty acids were measured in erythrocyte membranes. Details of circulating fatty
acid measurements for all cohorts are provided in Supplemental Table 3. Dietary fatty acids
were estimated from food frequency questionnaires that are described in Supplemental Table
4,

Statistical analyses by each cohort

Each cohort performed linear regression analysis to generate regression coefficients () and
standard errors for the associations between intake of ALA, LA, EPA+DHA, PUFA and
circulating omega-3 fatty acids (ALA, EPA, DPA, DHA) and interactions between
genotypes of 6 SNPs and dietary fatty acids for the outcome of circulating fatty acids

Associations between dietary fatty acids and circulating fatty acids were evaluated
continuously using a model adjusting for age, gender, total energy intake and population
substructure variables as needed. The regression coefficient represents the difference in the
circulating fatty acids outcomes (ALA, EPA, DPA, DHA) in association with each 1 gram
greater intake of dietary fatty acid.

Fatty acids-SNP interactions were evaluated by cross-product terms using the likelihood
ratio test with an additive genetic model. Thus, the interaction regression coefficient
represents the difference in the magnitude of association between dietary fatty acids and
circulating fatty acids (ALA, EPA, DPA, DHA) per copy of the effect allele. The interaction
model was adjusted for age, gender, total energy intake and population substructure
variables (as needed).

Meta-analysis and meta-regression

Meta-analysis was performed using an inverse variance-weighted, fixed effects approach.
For meta-analysis of dietary fatty acids associations with circulating fatty acids, R software
was used. For SNP x dietary fatty acids interaction meta-analysis, METAL software was
used (http://umich.edu/csg/abecasis/Metal/). Although the two FADSL SNPs rs174538 and
rs174548 are in moderately strong linkage disequilibrium (r2=0.69 in Europeans) Bonferroni
correction was conservatively based on all six SNPs and the four dietary fatty acids
evaluated for interaction to establish a significance level with correction for multiple testing
(=0.05/24 tests=0.002). To formally examine a potential source of heterogeneity, we
conducted meta-regression analysis with “fatty acids measurement compartment” (plasma
phospholipids/plasma vs. erythrocyte membranes) as an independent variable. Meta-
regression was performed using Stata software.
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Results

Population characteristics, dietary fatty acids and circulating fatty acids in plasma or
erythrocytes (expressed as % of total fatty acids) are shown for each cohort (Table 1;
Supplemental Table 1). Circulating fatty acids (% total fatty acids) are comparable across
the nine cohort studies. Meta-analysis of associations between the selected SNPs and plasma
omega-3 fatty acids in five of the nine cohorts were previously described in a meta-analysis
of GWAS using plasma phospholipids or total plasma [7]. Similar associations were
observed in the current study, in which 4 cohorts that measured erythrocyte fatty acids were
included (data not shown).

Associations between dietary fatty acids and circulating omega-3 fatty acids

Meta-analysis of associations between dietary intake of omega-3 fatty acids (in grams/day)
and circulating (plasma or erythrocyte membrane) omega-3 fatty acids are shown in Table 2.
Each one gram greater intake of ALA was associated with a higher circulating ALA of
0.006 (95% CI [0.004,0.008]; P<0.001). Each one gram greater intake of LA was associated
with a lower circulating EPA of 0.007(95% CI [-0.009,-0.006]), DPA of 0.004(95% ClI
[-0.005,-0.003]), and DHA of 0.007 (95% CI [-0.011,-0.003]; all P<0.001). Each one
gram greater intake of combined EPA+DHA was associated with higher circulating EPA of
0.333 (95% CI [0.298, 0.369] and DHA of 1.49 (95% CI [1.395,1.586]; both P<0.001). The
direction of associations between dietary fatty acids and circulating omega-3 fatty acids
were generally consistent across individual cohorts.

Interactions between SNPs and dietary fatty acid intake for circulating fatty acids

Of the 6 SNPs tested for interaction with dietary fatty acids for the outcomes of circulating
omega-3 fatty acids, none reached Bonferroni adjusted statistical significance (data not
shown). However, we observed evidence of heterogeneity by the fatty acid measurement
compartment for the interactions of FADSL with dietary ALA and LA for the outcomes of
circulating DPA (Figure 1A) and DHA (Figure 1B), respectively. Specifically, for plasma
measurements in panel A (ARIC, CARDIA, INCHIANTI, MESA) interaction coefficients
are negative and for erythrocyte measurements (GOLDN, HPFS, NHS and WGHS)
interaction coefficients are positive.

Meta-regression

Using meta-regression methods, we tested whether fatty acid measurement compartment
explained between-study heterogeneity and determined that compartment was associated
(P<0.05) with the magnitude of the regression coefficient for the interaction terms of two
FADSIL SNPs (rs174548 and rs174538) and both dietary ALA and LA.

Interaction analyses between two FADS1 SNPs and dietary fatty acids for circulating fatty
acids, stratified by fatty acids measurement compartment

Because measurement compartment was associated with differences in meta-analysis of
interactions, we stratified the meta-analysis by compartment (Table 3). Several patterns
emerged. For diet x SNP interactions involving FADSL SNPs rs174538 and rs174548, beta
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coefficient of meta-analysis of interaction consistently differed in direction by compartment
(negative in plasma and positive in erythrocytes).

Specifically, FADSL rs174548 (minor allele G) interacted with dietary ALA for the outcome
of plasma DPA with negative betas in all cohorts using plasma (beta= —0.010; P=0.006) and
positive betas in all cohorts using erythrocytes (beta= 0.034; P=0.048). Similar cohort-level
consistency of beta coefficient direction was also observed for rs174548 interaction with
dietary ALA for DHA (beta=0.13; P=0.005) and rs174548 interaction with dietary LA for
DHA (beta=0.011; P=0.009) in erythrocytes. For the second FADSL variant, rs174538
(minor allele A), in interactions with dietary ALA and LA, similar but weaker patterns were
observed (Table 3). In particular, dietary ALA interacted with rs174538 for DPA (beta=
-0.010; P=0.007) in plasma phospholipids. Interactions between FADSL1 variants and
dietary ALA for circulating EPA did not reach significance; however, the difference by
rs174548 genotype for circulating EPA in erythrocytes was significant at an uncorrected
threshold (P=0.048, Table 3), and the regression coefficient was in the same direction as for
DPA and DHA. The association of both SNPs with circulating DPA and DHA (main effects)
did not differ by compartment (data not shown).

Discussion

In this large study of up to 11,668 individuals, we observed interactions between dietary
fatty acids and selected genetic variants for the outcomes of circulating long chain omega-3
fatty acids only when the data were stratified by measurement compartment. Specifically,
dietary intake of the precursor fatty acids LA and ALA modulated associations of FADSL
variants for the outcomes of the long chain fatty acids DPA and DHA, in a compartment-
specific manner. Our study further showed that these relationships may differ by the site of
fatty acid measurement.

FADSL/2 is a well-established genetic determinant of circulating omega -3 fatty acids (ALA,
EPA, DPA), but studies that evaluate dietary modulation of these genetic associations are
relatively few (6,7). In one previous study, investigation of FADSL variant rs174561 (r2=
0.86 with FADSI rs174538 and r2= 0.84 with FADSL rs174548 in the current study)
demonstrated interaction with dietary fatty acids to modulate DPA and EPA in the plasma
compartment [10]. In that study (n=36), homozygous minor allele carriers consuming a
flaxseed diet (rich in ALA) had lower DPA and EPA compared to major allele carriers,
implying that minor allele carriers may exhibit reduced conversion of ALA to longer chain
omega-3 fatty acids. Results from the current meta-analysis, suggest that habitual dietary
ALA and LA interacted with FADSL SNPs to modulate circulating DPA and DHA.

Whether fatty acid measurement compartment represents an additional modulator of
potential FADSL gene-diet interactions is unclear. Most large-scale population studies rely
on measurements from either the plasma compartment or the erythrocyte compartment, and
the current study benefited from the availability of data from both compartments. In general,
plasma fatty acids reflect short term fatty acids intakes whereas erythrocyte membranes
reflect longer term intakes, so that compartment may be of particular relevance to genetic
studies that incorporate dietary data. Further, the consequences of compartment on gene-diet
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analyses may vary depending on the fatty acid of interest. For example, EPA and DPA are
incorporated into the outer erythrocyte leaflet, which readily equilibrates with plasma,
whereas DHA is incorporated into the inner erythrocyte leaflet at the time of erythrocyte
formation in the bone marrow (16,24). Of potential relevance, data from two feeding trials,
both using EPA+DHA, reported differential finding in the two compartments. In one of
these trials (n=12 for 12 weeks duration), erythrocyte (but not serum) EPA differed by
FADSL/2 genotype [18]. In the second trial (n=310 for 6 months duration), FADSL genotype
appeared to modify delta5 desaturase activity, with some differences between the two
compartments [17]. Neither of these studies statistically evaluated the role of compartment.
However, a series of previous, non-genetic studies suggest that compartment-based
differences in the distribution, metabolism and incorporation of omega-3 fatty acids may be
particularly relevant to dietary studies [13-16, 24-25]. In the current study, we statistically
evaluated the role of measurement compartment as a source of heterogeneity in FADSL x
diet interaction analyses, and the different patterns in stratified analyses suggest that
compartment could be relevant to interaction analyses.

Several limitations must be considered. First, measurement errors in the assessment of
dietary intake might have reduced our ability to detect interactions in the overall sample.
Food frequency questionnaires that are used to estimate dietary intakes may have limited
ability to capture specific fatty acids such as ALA and LA that are used in food preparation.
In the current study, since ALA is a substrate for conversion to EPA whereas LA is not
converted to EPA, our finding that ALA and LA appear to interact similarly with FADSL
genotypes is unexpected and might represent a statistical artifact. In other words, the high
correlations between the dietary estimates of ALA and LA, rather than biology, may account
for statistically similar findings for these two fatty acids in the stratified analyses. In
addition, we detected significant ALA x SNP interactions for DPA and DHA outcomes
(Table 3), but interactions did not reach significance for EPA, the first long-chain PUFA
product of the biosynthetic pathway of ALA to EPA/DPA/DHA. The directions of
regression coefficients were less consistent across cohorts for EPA compared to DPA and
DHA, which could be related to dietary or other unmeasured confounders across the nine
cohorts. Finally, we cannot establish functionality for the FADSL SNPs rs174548 and
rs174538, but examination in HapReg v2 software (Broad Institute) showed altered
regulatory motifs, promoter or enhancer histone marks, DNAase 1 hypersensitivity, and/or
protein binding that support evidence of functionality [26].

Results from the current study improve understanding of the multiple determinants of
circulating fatty acids, and may have potential clinical implications. First, they support
existing evidence that genetically-based differences in circulating longer chain fatty acids
may be due, in part, to differences in the conversion of dietary fatty acids precursors [10].
Accumulating evidence suggests that carriers of FADSL variants have reduced capacity to
synthesize longer chain omega-3 fatty acids, which may be relevant to dietary
recommendations. Replication of genetic findings is essential to establishing scientific
credibility, and the level of evidence is improved through verification in our large, multi-
cohort sample, and under conditions of habitual intake. Second, our findings suggest that
fatty acids measurement compartment may modify gene-diet interaction and therefore add
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heterogeneity to meta-analyses that focus on the simultaneous investigations of gene and
diet. Awareness of the extent and circumstances under which this heterogeneity is relevant
to analyses may improve the detection of gene-diet interactions for circulating fatty acid
outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Interactions between FADSL rs174548 and rs174538 and dietary fatty acids for circulating

omega-3 fatty acids, in each cohort. In ARIC, CARDIA, CHS, INCHIANTI and MESA,
fatty acids were measured in plasma/plasma phospholipids; in GOLDN, HPFS, NHS and
WGHS, fatty acids were measured in erythrocyte membranes. Panel A illustrates the
association of each one gram/day greater intake of dietary alpha linoleic acid (ALA) with
circulating docosapentaenoic acid (DPA) per copy of the rs174548 G allele. Panel B
illustrates the association of each one gram/day greater intake dietary linoleic acid (LA) with
circulating docosahexaenoic (DHA) per copy of the rs174538 A allele. Circulating DPA was
not measured in the INCHIANTI study.
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