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A new computational method is presented for study suspensions of charged particles undergoing
fluctuating hydrodynamic and electrostatic interactions. The proposed model is appropriate for
polymers, proteins, and porous particles embedded in a continuum electrolyte. A self-consistent
Langevin description of the particles is adopted in which hydrodynamic and electrostatic interac-
tions are included through a Green’s function formalism. An Ewald-like split is adopted in order
to satisfy arbitrary boundary conditions for the Stokeslet and Poisson Green functions, thereby
providing a formalism that is applicable to any geometry and that can be extended to deform-
able objects. The convection-diffusion equation for the continuum ions is solved simultaneously
considering Nernst-Planck diffusion. The method can be applied to systems at equilibrium and
far from equilibrium. Its applicability is demonstrated in the context of electrokinetic motion,
where it is shown that the ionic clouds associated with individual particles can be severely altered
by the flow and concentration, leading to intriguing cooperative effects. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4923342]

I. INTRODUCTION

There is considerable interest in understanding the struc-
ture and dynamics of suspensions of charged particles over
multiple length scales, both at equilibrium and far from equilib-
rium. Examples include DNA or protein flow in microfluidic
devices, in cellular environments, or colloidal self-assembly
in external fields. Beyond any direct interaction (van der
Waals or electrostatic) between particles, the motion of a
particle in solution induces important hydrodynamic and elec-
trostatic interactions that some times compete against each
other, leading to electro-osmotic or electro-kinetic phenomena
that remain poorly understood.

Resolving the dynamics of solvents or charged species
over short and long length scales remains a significant chal-
lenge. The central question is how to evolve these systems,
while preserving molecular resolution of discrete macromole-
cules or colloids, adopting continuum descriptions for solvent
and ions (see Figure 1). Past attempts have primarily relied on
Lattice Boltzmann (LB),1–12 Stochastic Rotational Dynamics
(SRD),13–24 Stokesian Dynamics (SD),25–32 Ewald sums,33 and
the General geometry Ewald-like method (GgEm)34–40 for the
hydrodynamic evolution, i.e., the momentum equations. On the
other hand, solution of charges have been treated by Ewald-
based methods41 or Poisson-Boltzmann (PB) solutions.42–50 A
notable exception, where both interactions are solved simulta-
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neously, is the Smoothed Profile Method (SPM).51–57 In SPM,
discrete particles are included into the continuum formalism
through smoothing functions (see the review of particle-based
methods by Yamaguchi et al.58). LB and SRD methods rely
on collision operators to evolve fluid dynamics, thus impos-
ing theoretical limits at zero inertia or strict incompressibility
(Ma = Re = 0). In addition, they present limitations regarding
the size of the systems that can be studied. A salient limitation
of SPM and LB is the mesh dependency that naturally develops
at finite concentrations of the discrete entities. The method that
we propose in this work, provides a way of resolving these
problems.

II. MATHEMATICAL MODEL

We are presenting a novel theoretical method that re-
solves the dynamical coupling between discrete charged soft
particles and continuum electrolyte solvents. It is presented as
a generalization of the GgEm approach, which can be used
for bulk and confined systems, both at equilibrium and far
from equilibrium. The dynamics of the soft particles follows a
Fokker-Planck equation for the probability density, resulting in
a stochastic evolution equation. The solvent and the continuum
ions, on the other hand, are evolved according to momentum
and mass balances, including Nernst-Planck diffusion mecha-
nisms (see Fig. 1).

We consider a collection of NP soft particles, with charge
ezν and hydrodynamic radius a, suspended in a solvent that in-
cludes NI charged species (continuum ions). The same model
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FIG. 1. Discrete charged soft particles embedded in an electrolyte solvent.
(a) A level of description that requires to treat soft particles, ions and fluid
as discrete entities. (b) The proposed method provides resolution for the in-
teresting discrete entities whereas a continuum description for the electrolyte
solvent.

has been used successfully to describe polymeric materials,
including DNA,35,36,39,59–62 but past work did not consider
electrostatic interactions. Soft particles and continuum ions
contribute to a charge density, defined as

ρ(x) = F
NI
j=1

z jCj(x) +
NP
ν=1

zνeδ(x − xν), (1)

where F = eNA is Faraday’s constant (NA is Avogadro’s num-
ber), z j is the valence of the continuum ions ( j = 1, . . . ,NI),
Cj is the concentration of the continuum species, zν is the
soft particle’s valence (ν = 1, . . . ,NP), and e is the elementary
charge. The soft particles, at this point, are considered point-
charges. If electroneutrality is not satisfied at a local level, the
charge density will drive an electrostatic potential given by the
solution of Poisson’s equation,

∇2φ(x) = − ρ(x)
ϵ0ϵ

, (2)

where ϵ0 is the vacuum permittivity and ϵ is the solvent rela-
tive permittivity. The electric field (E(x) = −∇φ(x)) drives an
electric force on the ions. Electric forces on the continuum ions
and the total forces on the soft particles define a force density
given by

ρ(x) = F
NI
j=1

z jCj(x)E(x) +
Np
ν=1

fνδ(x − xν), (3)

where fν represents the total non-Brownian and non-hydrody-
namic force acting on particle ν. Neglecting inertia (Re
= 0), the solvent velocity can be written as v(x) = v0(x) + u(x),
(where v0(x) is the unperturbed velocity and u(x) is the velocity
perturbation), and it is given by the solution of a Stokes system
of equations. The velocity perturbation is driven by the force
density, i.e.,

−∇p(x) + η∇2u(x) = −ρ(x),
∇ · u(x) = 0,

(4)

where η is the solvent viscosity.

The evolution of the ions within the solvent follows a spe-
cies balance with the total flux defined as a sum of convection
and diffusion fluxes. The latter are given by the Nernst-Planck
diffusion, resulting in

∂Cj

∂t
= −v · ∇Cj + D j∇2Cj

+D jz j(e/kBT) �Cj∇2φ + ∇Cj · ∇φ
�
, (5)

where D j is the diffusion coefficient of ion j, kB is Boltzmann’s
constant, and T is the absolute temperature.

Each of the NP discrete ions behaves, for the moment,
as a point-force and a point-charge. The discrete ions have a
hydrodynamic radius, a, and interact via a repulsive excluded
volume potential. Neglecting inertia (Reynolds, Re = 0), for
each discrete ion, ν = 1, . . . ,NP, the force balance requires

fHν + fSν + fEν + fVν + fBν = 0, (6)

where, for bead ν, fHν is the hydrodynamic force, fVν is the
particle-particle excluded volume force, fEν is the electrostatic
force, fBν is the Brownian force, and fSν are any other potential
forces that may arise in the system.35,39 The dynamics of the
discrete ions in the solvent is described by the probability
density in configuration space. The diffusion equation for the
configurational distribution function has the form of a Fokker-
Planck equation, which corresponds to the following system of
stochastic differential equations of motion for the discrete ion
positions:

dR =

V0 +

1
kBT

D · F + ∂

∂R
· D


dt +
√

2B · dW. (7)

Here, R is a vector containing the 3NP coordinates of the soft
particles, and where Rν = xν denotes the Cartesian coordinates
of particle ν. The vector V0, of length 3NP, represents the
unperturbed velocity field, with V0,ν = v0(xν). The vector F has
length 3NP, with Fν = fν being the total non-Brownian, non-
hydrodynamic force acting on bead ν. Finally, the independent
components of dW are obtained from a real-valued Gaussian
distribution function with zero mean and variance dt. The
diffusion tensor D (or mobility tensor) is a 3NP × 3NP tensor.
It may be separated into the Stokes drag and the hydrodynamic
interaction tensor, Ωνµ,

Dνµ = kBT

δ

ζ
δνµ + (1 − δνµ)Ωνµ


, (8)

where δ is a 3 × 3 identity matrix and δνµ is the Kronecker
delta. The Brownian perturbation, dW, is coupled to the hydro-
dynamic interactions through the fluctuation-dissipation theo-
rem: D = B · BT .

The characteristic variables for the system are set by the
soft particle: hydrodynamic radius, a, for length, particle diffu-
sion time, ζa2/kBT , for time (where ζ = 6πηa is the drag
coefficient), e/4πϵ0ϵa for the electrostatic potential, and the
elementary charge e for the charge. There are two scales for
velocity: one for the unperturbed velocity field v0 and one for
the velocity fluctuations uc = kBT/ζa. The uniform concen-
tration for one of the species, C0, is used as the character-
istic concentration of ions within the solvent. Therefore, Pe, j

= v0a/D j defines a Peclet number for species j based on the
imposed flow field v0, and β j = ζD j/kBT is the ratio between
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particle and continuum-ion diffusion coefficients. The ratio
between electrostatic forces and thermal forces defines the
so-called Bjerrum length, λB = e2/4πϵ0ϵkBT , and the ionic
strength, I = 1

2
NI

j Cjz2
j , defines the so-called Debye length,

λ−2
D = 2NAe2I/ϵ0ϵkBT .

III. NERNST-PLANCK-GgEm

The key feature of GgEm-like methods is to decompose
the charge-density and force-density expressions into a local
(free-space) contribution and a global (bounded) contribution,
in analogy to Ewald-like methods. The “local” densities are
defined by

ρl(x) =
NP
ν=1

zν [δ(x − xν) − gE(x − xν)] ,

ρl(x) =
NP
ν=1

fν [δ(x − xν) − gH(x − xν)] ,
(9)

which produce a local contribution to the electrostatic potential
φl(x) and the velocity perturbation ul(x). The “global” densi-
ties are given by

ρg(x) =
NI
j=1

z j β jCj +

NP
ν=1

zν [gE(x − xν)] ,

ρg(x) = λb
NI
j=1

z j β jCjE +
NP
ν=1

fν [gH(x − xν)]
(10)

and are responsible for the global contribution of the potential
φg(x) and velocity perturbation ug(x). The linearity of the
Poisson and Stokes equations implies that

φ(x) = φl(x) + φg(x) (11)

and

u(x) = ul(x) + ug(x). (12)

The screening functions, gE,H(x), satisfy


all space gE,H(x)
dx = 1. The local contributions, φl(x) and ul(x), are calculated
analytically assuming an unbounded domain, only considering
neighbor particles. For Poisson’s equation, the screening func-
tion is a Gaussian,

gE(r) =
(
α3

π3/2

)
e(−α

2r2), (13)

while for the Stokes equations, it is a modified Gaussian,34

gH(r) =
(
α3

π3/2

)
e(−α

2r2)


5
2
− α2r2


. (14)

The global contributions are found numerically, requiring that
φl + φg and ul + ug satisfy appropriate boundary conditions.
For example, homogeneous Dirichlet boundary conditions
require φg(x) = −φl(x) and ug(x) = −ul(x). For problems with
periodic boundary conditions, Fourier techniques are used to
guarantee the periodicity of the global contributions. The peri-
odicity for local contributions is obtained through a minimum
image convention.

The point-source regularization (i.e., soft particle) is im-
plemented with the same screening functions from GgEm
introducing two additional length scales ξ−1

E and ξ−1
H . These

length scales are related to the hydrodynamic radius a. For the
point-force (hydrodynamics), this is achieved by limiting the
maximum velocity on the fluid driven by the regularized-force,
which at Re = 0 is given by Stokes’ law. The regularization for
the point-charge is achieved by distributing the total charge
throughout the particle, thereby “confining” the charge to the
particle volume. The regularization parameters are ξRE = 3/a
and ξRH =

√
π/3a.

IV. APPLICABILITY

In what follows, several general remarks are presented
regarding the applicability of the method. Three aspects must
be considered: the discrete elements, the continuum solvent,
and the time discretization. GgEm-based methods offer advan-
tages when treating point-sources, e.g., point-charges or point-
forces. At its core, this is a methodology that efficiently calcu-
lates Green’s functions in any geometry (resulting in the
correct regimes, including Re = Ma = 0 restrictions). There-
fore, any particle description that may be achieved by singular
solutions can be considered. In this work, for instance, we
illustrate NP-GgEm in the context of soft-beads, a model that is
important for coarse-grain descriptions of polymers. However,
rigid or deformable non-penetrating particle representations
can be included with singular distributions over a surface
(immersed-boundary,63,64 accelerated boundary65), or by the
multipole expansion (Stokesian-dynamic approaches66).

The charged ions within the solvent are represented by
continuum concentration distributions that obey the natural
restrictions involved in the continuum approximation. Quan-
tities such as the diffusion coefficient or the valence enter
the formalism through such distributions. Note, however, that
some caution must be exercized when the Debye length ap-
proaches zero. This requires that an extremely fine global mesh
be used, thereby increasing computational demands. In this
limit, the usefulness of the method is limited given that local
electroneutrality is hardly broken.

The most salient difference between NP-GgEm and other
approaches is the transient solution for the continuum ions,
in that one need not adopt a Poisson-Boltzmann solution
surrounding any discrete charge. This offers advantages far
from equilibrium, because the characteristic time scales asso-
ciated with externally applied forces (electrostatic or hydro-
dynamic fields) can be orders of magnitude longer than the
characteristic ionic diffusion time, and simply deform and
disrupt the corresponding ionic clouds.

The discrete and numerical evolution of the model has
the same restrictions of any numerical continuum solver. In
particular, charge and field ranges, ion and particle concentra-
tions, and external forces determine the level of spatial and
temporal discretization required for a stable and convergent
solution. The restrictions at this level therefore depend on the
computational efficiency of the method and not so much on
the physical model. For example, NP-GgEm provides accurate
solutions for large charges and fields and requires smaller time
stepping with finer meshes (see Appendix C for a numerical



014108-4 J. P. Hernández-Ortiz and J. J. de Pablo J. Chem. Phys. 143, 014108 (2015)

implementation in periodic domains using fast Fourier trans-
form (FFT)).

V. RESULTS

The method is validated by comparing its results to avail-
able approximate analytical solutions for soft particles. Most
of these solutions correspond to equilibrium conditions and
result from a linearized Poisson-Boltzmann approximation
(i.e., low potentials). More specifically, we calculate the elec-
trostatic potential surrounding a single charged soft-particle at
equilibrium and the interaction potential energy between two
particles.

For ion-penetrable particles, Ohshima and co-workers
have obtained a set of solutions for multiple problems,67–72

including the electrostatic potential for one and two parti-
cles, the interaction energy between two particles, and the
electrophoretic mobility of a single particle. Validating NP-
GgEm with these equilibrium conditions provides a basis
to determine whether ions diffuse properly and whether the
ion-clouds surrounding the soft particles are consistent with
available models.

A soft particle, of radius a, in a one-one electrolyte (at low
potential) will generate an electrostatic potential given by69–72

φ(r) = φ0
a
r

exp[−κ(r − a)], (15)

where κ−1 = λD and φ0 is the surface potential defined as
follows:

φ0 = (zνe)exp(−κa)
ϵ0ϵ κa

 a

0
rgRE(r) sinh(κr)dr. (16)

Figure 2 shows a comparison between Eq. (15) from Ohshima’s
work (solid lines) and the NP-GgEm solution (dotted lines) for
different ionic strengths.

By superimposing the solution for single particles, the
potential and the electrostatic energy, Φ(r), can be obtained
from the solution in Eq. (15). Ohshima72–75 obtained an
approximate expression for two soft particles with uniform
charge density at low potential (full analytical expressions
can also be obtained using infinite reflections67,76). The
electrostatic interaction energy at a distance r is obtained from
the free energy (F) induced by the electrostatic potential.

FIG. 2. Electrostatic potential induced by a soft particle with charge density
gR
E as a function of the distance from the particle for different ionic strengths

or Debye lengths. The characteristic electrostatic potential φc = e/4πϵ0ϵa.

FIG. 3. Electrostatic interaction energy between two soft particles as a
function of the distance for different solvent concentrations (Debye length).
Continuum lines are the approximate solution by Ohshima using a linearized
Poisson-Boltzmann approximation, while dotted lines are the predictions by
the NP-GgEm. The characteristic energy is kBT .

For soft particles with a non-uniform charge density, the
electrostatic energy is given by

Φ(r) = F(r) − F(∞)
= 4πϵ0ϵa1a2φ0,1φ0,2

exp[−κ(r − a1 − a2)]
R

, (17)

where a1 and a2 are the radii of the soft particles. In the case
of soft particles defined by the Gaussian charge density gRE ,
the surface potentials are given by Eq. (16). Figure 3 shows
the electrostatic energy between the particles as a function
of the distance between them for different ionic strengths.
Similar to the induced electrostatic potential, at low potentials
and equilibrium, the results given by the NP-GgEm follow
closely the behavior predicted by Ohshima.

Imposing an electric field on a charged particle deforms
the ion clouds that surround the particle, leading to a change
of the particle’s electrophoretic mobility, as described in the
Appendix D. Figure 4 illustrates how ionic clouds that sur-
round the soft particles are deformed when an external electric
field is applied, as a function of the salt concentration. As the
electric field increases, the ion cloud elongates along the field
direction, LE, whereas shrinks in the neutral directions LN .

FIG. 4. Ionic cloud dimensions, in the neutral (LN ) and applied field di-
rection (LE), as a function of the applied field for different Debye lengths
(salt concentration). The soft particles are embedded in a charged solvent and
the applied field deforms the continuum ionic cloud. Blue iso-concentration
surfaces depict the counter-ions surrounding the negatively charged soft
particles.
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FIG. 5. (a) Average concentration and velocity fluctua-
tions as a function of the distance from the soft particle,
r/a. Red and blue lines are for co- and counter-ion con-
centration profiles, respectively; black lines depict RMS
velocity profiles. (b) Instantaneous counter-ion clouds
(blue) and (c) velocity streamlines (green). The soft par-
ticles have negative changed and they are embedded in
a solvent with λD = 2a at an effective volume fraction
φe= 5.24×10−3 (N = 10).

Non-equilibrium, finite concentrations, interacting ionic
clouds and fluctuating hydrodynamic interactions, are built
in the NP-GgEm. To illustrate the behavior of these types of
systems, Brownian soft particles are simulated in a solvent
at different λD s (salt concentrations). Diffusing soft particles
of charge zν = −1 and zν = −2 are simulated in a periodic
box of size L = 20a. Note that global electroneutrality is en-
forced through the continuum ions. Soft particle concentra-
tion is defined in terms of an effective volume fraction: φE
= 4Npπa3/3L3. Figure 5 provides representative results for
NP-GgEm. In the figure, average counter- and co-ion concen-
tration and RMS velocity profiles are shown as a function
of distance from the soft particle, for λD = 2a. At equilib-
rium, the 2D concentration profiles suggest that they follow
PB-like behavior. However, instantaneous concentration iso-
surfaces (ion clouds) demonstrate how, even at low concentra-
tions, the ion clouds merge and interact with each other, being
deformed by the Brownian motion of the particles. The figure
also includes the RMS velocity perturbation (normalized by
the number of particles) as a function of the distance from the
soft particle at different concentrations. The flow streamlines
(green) are also plotted. The RMS velocity exhibits a slow
decaying tail, accounting for the long-range behavior of HI,
and it increases non-linearly with concentration.

One key property of interest in charged colloidal sys-
tems is the diffusion coefficient, and its dependence on the
concentration, charge, and salt. To illustrate the behavior of this
property, and the usefulness of the approach proposed here, in
Fig. 6, we show the soft particle diffusion coefficient as a func-
tion of the Debye length for two different concentrations and
charges. The simulations were evolved from 200 to 1000 char-
acteristic particle-diffusion times, thereby providing sufficient
statistics. In general, the diffusion coefficient decreases by
increasing soft particle concentration and charge. For high salt
(low λD), the diffusion coefficient approaches the infinite dilute
and non-charge system. As the salt concentration increases,
electrolyte drag and collective motion drive a non-monotonic
behavior, decreasing mobility at first and then increasing it.
This behavior of diffusing charge particles in a charge solvent
was also been observed in other systems.77–79 In the figure,
the electrophoretic mobility, µ = u/E0, for soft particles of
charge ν = −1 is also shown. The figure includes two applied

electric fields: a weak E0 = 0.1EC and a strong E0 = 100EC

(where the characteristic field is EC = e/4πϵ0ϵa2). We recall
that fluid can penetrate the soft particles, causing the elec-
trophoretic mobility to change with the applied electric field.
The electrophoretic mobility at zero concentration, µ0, and an
approximate solution for non-fluid-penetrated soft particles67

as a function of the Debye length for the two applied fields are
both included in the figure. For weak fields, there is a stronger
dependence on Debye length, and the electrophoretic mobility
approaches to zero, meaning that the fluctuating hydrodynamic
interactions (driven by Brownian motion) affect particle trajec-
tories, averaging down the electrophoretic induced motion.
On the other hand, for strong fields, the normalized mobility
collapses into a single curve, maintaining the dominance of the
electrokinetic forces. Ohshima’s solution is obtained from the
linearized PB; other authors had suggested different solutions
that result in similar approximations for these electrokinetic
properties, which are restricted to zero concentrations and
weak potentials. The approach we proposed here avoids the
approximation of electrokinetic properties and relationships. It
provides a platform for other colloidal and polymeric systems,

FIG. 6. (a) Diffusion coefficient as a function of the salt concentration (Debye
length, λD), soft particles charge, ν, and effective volume fraction, φE.
The diffusion coefficient is normalized with the particle diffusion coefficient
Da = kBT /6πηa. (b) Electrophoretic mobility, µ, as a function of the
effective volume fraction and salt concentration for a weak (blue lines) and a
strong (black lines) imposed fields, E0. (c) Electrophoretic mobility at zeroth
concentration, µ0, as a function of the Debye length for the two applied
fields in (b). The blue line represent Ohshima’s approximate solution for
non-fluid-penetrated soft particles.67
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including deformable objects, rigid suspensions, and cells,
where lubrication forces and slip conditions are important.

VI. CONCLUSIONS

With the method described here, it is possible to perform
efficient simulations of discrete charged elements embedded
in charged solvents at non-equilibrium conditions. It should
find applications in a wide variety of situations involving the
physics of polymeric and colloidal systems including micro-
and nano-scale systems.
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APPENDIX A: GgEm CONTRIBUTIONS

Local contributions to the electrostatic potential, φl(x),
and the velocity perturbation, ul(x), are calculated assuming
an unbounded domain, considering the NP discrete ions only,
i.e.,

φl(x) =
NP
ν=1

Gl(x − xν)zν,

ul(x) =
NP
ν=1

Gl(x − xν) · fν,
(A1)

where Gl(x) and Gl(x) are the “smoothed” free-space Green’s
functions for the Laplace and Stokes equations, respectively.
These functions are obtained taking the corresponding free-
space Green’s function and subtracting the smoothed function
from the solution with a forcing term given by gE or gH .

For the Poisson’s equation, a Gaussian defined by

gE(r) =
(
α3

π3/2

)
e(−α

2r2) (A2)

yields a simple expression for Gl(x),

Gl(x) = erfc(αr)
r

, (A3)

where r = |x|. For the Stokes equations, we found that a modi-
fied Gaussian34 defined by

gH(r) =
(
α3

π3/2

)
e(−α

2r2)


5
2
− α2r2


(A4)

yields the following expression for Gl(x):

Gl(x) = 3
4


δ +

xx
r2

 erfc(αr)
r

− 3
4


δ − xx

r2

 2α
π1/2 e(−α

2r2).

(A5)

The global contributions are found numerically, requiring
that φl(x) + φg(x) and ul(x) + ug(x) satisfy appropriate bound-
ary conditions. For instance, homogeneous Dirichlet boundary
condition for the electrostatic potential (a conducting surface)
would require φg(x) = −φl(x). For no-slip velocity, we require
that ug(x) = −ul(x). For problems with periodic boundary
conditions, Fourier techniques can be used to guarantee the
periodicity of the global contributions. The periodicity on
the local contributions is obtained using the minimum image
convention for the discrete ions.

The global contribution is obtained on a set of Mg discrete
points on a mesh; any technique (finite differences, finite ele-
ments, spectral methods) may be used to find it. After global
contributions are resolved, interpolation is used to get the value
of the global contributions at the location xν of each discrete
ion.80,81

Note that the parameterα−1 in Eqs. (A2) and (A4) provides
a length scale for the exponentially decaying local contribu-
tion. It also indicates the resolution required in the global
calculation. In regular GgEm, α is selected to minimize the
computational cost between local and global contributions; α
is independent of the number of discrete particles: α / Np in
GgEm.34 However, the nature of the local contribution results
in an infinite resolution for the short scale particle-particle
interactions, while dictating the required mesh resolution for
the global one. On the other hand in NP-GgEm, the mesh
resolution is given by the fluid characteristic length scales.
As a consequence, α provides the resolution for the local
contribution while stating the independence on the discrete
ions, i.e., for fix fluid conditions, like constant Debye length
or ionic strength, NP-GgEm is O(Np).

APPENDIX B: NUMERICAL SCHEME
AND APPROXIMATIONS

For a system of interest, the valences z j and zν, the
imposed electric and velocity fields E0 and v0, the physical
properties ϵ , η, D j, a, and T , and the continuum concentrations
Cj,0, are all given. All characteristic variables can then be
calculated, including ionic strength I and Debye length λD
= κ−1. These are particularly important because the system
must be globally neutral, i.e.,

*.
,
F

NI
j=1

Cj,0z j
+/
-

V =
NP
ν=1

zνeVν, (B1)

where V and Vν = 4/3πa3 are the system and particle ν volume,
respectively. In a confined system, Eq. (B1) must include all
charges on walls, if any.

At time t = tk, the continuum ions’ concentrations
[Cj(x)]k and soft particles positions Rk (Rk

ν = xk
ν) are defined.

Concentration fields and particle positions define the charge
density at time tk: [ρ(x)]k. NP-GgEm is then used to calculate
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the electrostatic potential from Poisson’s equation,

[∇2φ]k = −4π[ρ]k . (B2)

The same scheme used to approximate gradients and interpo-
late the solution in the global solution ([φg]k) may be used to
compute the electrostatic field and force, [E]k = −[∇φ]k and
[fEν ]k = λ̂Bzν[E]k.

The electrostatic force at the soft particles plus any other
non-hydrodynamic-non-Brownian forces is used to find the
force density: [ρ]k. NP-GgEm is used for the second time to
calculate the velocity perturbation from Stokes equations,

− ∇pk +
1

6π
∇2uk = −ρk, ∇ · uk = 0. (B3)

At this moment, both systems, continuum ions and soft
particles, are ready to be evolved in time. For the species
balance, any desirable integration scheme can be used. How-
ever, a second order semi-implicit Euler scheme provides a
perfect balance between numerical stability and computational
efficiency.81 The concentrations at time t = tk + ∆t = tk+1 are
given by


Cj −

∆t
2
ψ j∇2Cj

k+1

=


Cj +

∆t
2
ψ j∇2Cj −

�
ψ jPe, jv0 + u

�
· ∇Cj

+ λBψ jz j
�
Cj∇2φ + ∇Cj · ∇φ

��k
. (B4)

The soft particle new positions are obtained from an Îto first
order integration82–84 and a mid-point algorithm, proposed by
Fixman,85–87 to keep the O(Np) character of the NP-GgEm
scheme,

R∗ = R(tk) + 1
2
[V0(R) + D(R) · F(R)]∆t

+
1
2

√
2D(R)B−1(R) · ∆W(tk),

R(tk + ∆t) = R(tk) + [V0(R∗) + D(R∗) · F(R∗)]∆t

+
√

2D(R∗)B−1(R) · ∆W(tk).

(B5)

NP-GgEm yields [D · F] without explicit construction of
D, and it is desirable to time-integrate the stochastic differen-
tial equation without requiring this product in a “matrix-free”
formulation. The integration in Eq. (B5) includes a scheme
that performs the time-integration without needing to evaluate
∂/∂R · D.87,88 The final remaining step is to evaluate B−1 ·
dW in a matrix-free way. As noted by Fixman,86 this can be
done by a Chebyshev polynomial approximation method that
requires only matrix-vector products, not the matrix itself. This
approach has already been implemented in unbounded and
periodic domains.32,34,35,37,39,40,59,89,90

It is important to remember that proper selection of the
time step∆t is required. There are three different characteristic
time scales that must be followed in order to obtain an accurate
and stable solution: soft particle diffusion time (a2ζ/kBT),
continuum ions’ diffusion time (λ2

D/min(D j)), and convection
time (a/max(u)). We found that a dynamical selection of the
time step, keeping a desired resolution of the smallest time, is
the best way to ensure a stable solution.

APPENDIX C: NUMERICAL IMPLEMENTATION
FOR A PERIODIC DOMAIN: FFT

For a three dimensional periodic domain, NP-GgEm uses
spectral element solutions based on FFT. In this numerical im-
plementation, all functions, global fields, and concentrations
are expressed in Fourier space as

φg(x) =


k

φ̃g(k) exp(ik · x), (C1)

ug(x) =


k

ũg(k) exp(ik · x), (C2)

pg(x) =


k

p̃g(k) exp(ik · x), (C3)

Cj(x) =


k

C̃j(k) exp(ik · x), (C4)

where k = {k1, k2, k3} are the Fourier modes in the x1-, x2-,
and x3-direction, respectively. Forcing terms, i.e., global
charge- and force-densities, are also transformed into Fourier
space,

ρg(x) =


k

ρ̃g(k) exp(ik · x), (C5)

ρg(x) =


k

ρ̃g(k) exp(ik · x). (C6)

The inner product of the orthonormal basis provides the
Fourier modes for the velocity global contribution from Stokes
equations,

p̃g(k) = − i
k2 k · ρ̃g(k),

ũg(k) = 6π
ρ̃g(k)

k2 − 6π
kp̃g(k)

k2 ,

(C7)

where p̃g(k) is the global contribution to the pressure field and
to

φ̃g(k) = 4π
ρ̃g(k)

k2 , (C8)

as the global contribution to the electrostatic potential from
Poisson’s equation.

Once a function and its Fourier coefficients are known, the
gradients and laplacian are calculated directly from the FFT
scheme,

f (x) =


k
f̃ (k) exp(ik · x), (C9)

∂ f
∂xi

(x) =


k
(iki) f̃ (k) exp(ik · x), (C10)

∇2 f (x) = −


k
(k2) f̃ (k) exp(ik · x). (C11)

Therefore, the evolution equation for the concentrations may
be written as follows:


Cj −

∆t
2
ψ j∇2Cj

k+1

= [bj]k, (C12)

where

[bj]k =

Cj +

∆t
2
ψ j∇2Cj −

�
ψ jPe, jv0 + u

�
· ∇Cj

+ λBψ jz j
�
Cj∇2φ + ∇Cj · ∇φ

� k
, (C13)
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which consists of known functions, gradients, and laplacians.
With the Fourier transform for the concentration, the

Fourier coefficients for each concentration can be obtained
from Eq. (C12) and the corresponding dot product with the
orthonormal Fourier basis,

C̃j(k) = b̃j(k)
1 + (∆t/2)ψ jk2 , (C14)

where b̃j(k) is the Fourier transform of [bj(x)]k.

APPENDIX D: ANALYTICAL APPROXIMATE
SOLUTIONS FOR THE ELECTROPHORETIC MOBILITY

Ohshima provided an expression for the electrophoretic
mobility of soft particle when the fluid is not able to pass
through them.70–72,91–93 This type of soft particle is useful
when representing cells, but not when representing “beads”
in polymer, proteins, or other molecules. NP-GgEm can also
be generalized for colloids and non-penetrating fluid particles.
For a non-fluid penetrated particle with uniform charge density
ρU, the electrophoretic mobility, µ = U/E, is given by

µ =
ρU

ηλ2


1 +

1
3

(
λ

κ

)2 (
1 + e−2κa − 1 − e−2κa

κa

)
+

1
3

(
λ

κ

)2 1 + 1/κa

(λ/κ)2 − 1

×



(
λ

κ

)
1 + e−2κa −

�
1 − e−2κa� /κa

�
1 + e−2λa

�
/
�
1 − e−2λa

�
− 1/λa

−
�
1 − e−2κa� 




, (D1)

where λ = ζ/Vp is a drag coefficient density and ρU = zνe/VP.
As mentioned above, the soft particle model adopted here

provides a good representation of macromolecules, such as
DNA, in complex flows. As an external field is applied, ion
clouds are deformed, and when the particle moves, perturbs the
fluid, affecting the total velocity v0 + u, which in turn affects
the diffusion of the ion clouds. Due to the fact that fluid flow
can pass through the particles, it is expected that the electro-
phoretic mobility will be lower than when the fluid cannot
penetrate (i.e., non-slip boundary conditions at the particles).

FIG. 7. Electrophoretic mobility of non-penetrating fluid soft particles given
by Ohshima’s solution and the fluid-penetrating soft particles by NP-GgEm.
The characteristic electric field Ec = e/4πϵ0ϵa

2 and the characteristic veloc-
ity uc = kBT /ζa.

In addition, there is also a dependence of the electrophoretic
mobility on the applied field, contrary to the non-penetrating
case. Figure 7 shows the electrophoretic mobility as a function
of the Debye length for different applied fields E0. There are
several features to highlight. First, the shape of the curve
approaches Ohshima’s solution at high electric fields. Second,
at low Debye lengths (high ion concentrations) and low fields,
the electrophoretic mobility is very small. This is due to the
fact that for small Debye lengths, ions fully penetrate the soft
particle, creating a pseudo-neutral particle, where the effects
of low fields are almost negligible.
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