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Abstract

Background—Genome-wide association studies have identified multiple genetic variants 

associated with prostate cancer (PrCa) risk which explain a substantial proportion of familial 

relative risk. These variants can be used to stratify individuals by their risk of PrCa.

Methods—We genotyped 25 PrCa susceptibility loci in 40,414 individuals and derived a 

polygenic risk score (PRS). We estimated empirical Odds Ratios for PrCa associated with 

different risk strata defined by PRS and derived age-specific absolute risks of developing PrCa by 

PRS stratum and family history.

Results—The PrCa risk for men in the top 1% of the PRS distribution was 30.6 (95% CI 16.4–

57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI 3.2–5.5) fold compared with the 

median risk. The absolute risk of PrCa by age 85 was 65.8% for a man with family history in the 

top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was 

only weakly correlated with serum PSA level (correlation=0.09).

Conclusions—Risk profiling can identify men at substantially increased or reduced risk of 

PrCa. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in 

men with family history of PrCa. Incorporating additional newly identified loci into a PRS should 

improve the predictive value of risk profiles.

Impact—We demonstrate that the risk profiling based on SNPs can identify men at substantially 

increased or reduced risk that could have useful implications for targeted prevention and screening 

programs.
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Introduction

Genome-wide association studies (GWAS) have identified multiple common genetic 

variants associated with prostate cancer (PrCa) risk. The risks associated with such variants 

are generally modest, but in combination their effects may be substantial, and may provide 

the basis of targeted prevention (1). However, since the risks associated with these variants 

are modest, large studies are required to estimate their risks precisely. To facilitate this 

estimation, we genotyped 25 PrCa susceptibility SNPs in studies from the PRACTICAL 

consortium. PRACTICAL is an international PrCa consortium that includes more than 78 

studies, including men of European, Asian or African ancestry, and has a combined dataset 

of over 130,000 samples (http://practical.ccge.medschl.cam.ac.uk/). In the current analysis, 

we utilised data from 31,833 cases and controls from 24 studies in PRACTICAL and 8,581 

samples from replication stage of a GWAS (“GWAS stage 3”). Sixteen out of the twenty 

five SNPs that we used in this study were identified through studies that included 

PRACTICAL (2–4) and nine SNPs were identified by other GWAS (5–10).

Materials and Methods

Samples

The current analysis was restricted to individuals of European ancestry, based on self-

reported ethnicity, and thus we excluded samples with non-European ancestry. Data were 

contributed from 25 studies in PRACTICAL and GWAS stage 3. Twenty five SNPs were 

genotyped specifically for this analysis in 31,833 cases and controls in PRACTICAL phase 

III, unless the genotype data were already available. We also included four studies from the 

GWAS stage 3 conducted in the United Kingdom and Australia, comprising a further 8,581 

cases and controls (11). In this replication stage 1,536 SNPs were genotyped, including the 

25 susceptibility SNPs analysed here. These two datasets were combined to give a total of 

40,414 samples (20,288 cases and 20,126 controls). Three studies (MCCS, PFCS and 

UKGPCS) that were included in the GWAS stage 3 also contributed genotyping of 

additional samples for PRACTICAL phase III (Table 1, Supplementary Table 1 and 

Supplementary Notes). Studies provided a minimum core dataset that included disease 

status, age at diagnosis/observation and ethnicity. Twenty two studies provided data on 

family history and eighteen studies provided data on Gleason score.

Where studied included more than one individual from the same family, only the index case 

was included, so that the analyses were based on unrelated men. For analyses of the 

polygenic risk score (PRS) we also excluded 5 studies (MAYO, PCFS, TASPRAC, ULM 

and UTAH) that oversampled cases with family history of PrCa. This reduced the total 
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number of samples to 34,986 (16,643 cases and 18,343 controls). All studies were approved 

by the relevant ethics committees.

Eighty Nine percent (31,150) of the samples had information on age at diagnosis (interview/

blood draw for controls). The mean age at diagnosis for the cases was 64 years, slightly 

higher than the mean age at interview/blood draw for the controls (58 years; Supplementary 

Table 2a). Family history information was available for 21,209 (60.6%) samples and among 

samples with family history information, 10.7% of controls and 18.2% of cases had a family 

history of PrCa. Before excluding studies with oversampled familial cases, these percentages 

were 12.9% and 22.6% respectively (Supplementary Table 2a and b).

Genotyping

Genotyping was performed in two experiments; these were subject to separate QC 

procedures appropriate to the platforms used, before the data were combined for statistical 

analysis. In PRACTICAL phase III, genotyping of samples from 2 studies was performed by 

Sequenom, while 22 study sites performed the 5’exonuclease assay (Taqman™) using the 

ABI Prism 7900HT sequence detection system according to the manufacturer’s instructions. 

Primers and probes were supplied directly by Applied Biosystems as Assays-By-Design™. 

Assays at all sites included at least four negative controls and 2–5% duplicates on each 384-

well plate. Quality control guidelines were followed by all the participating groups as 

previously described (4). In addition, all sites also genotyped 16 CEPH samples. We 

excluded individuals that were not typed for at least 80% of the SNPs attempted. Data on a 

given SNP for a given site were also excluded if they failed any of the following QC criteria: 

SNP call rate >95%, no deviation from Hardy-Weinberg equilibrium in controls at P<.

00001; <2% discordance between genotypes in duplicate samples and in the CEPH control 

samples. Cluster plots for SNPs that were close to failing any of the QC criteria were re-

examined centrally.

GWAS Stage 3 genotypes were generated using an Illumina Golden Gate Assay. All SNPs 

for this analysis passed the QC filters used for this experiment: call rate>95%, a minor allele 

frequency in controls of >1%, or genotype frequency in controls consistent with Hardy-

Weinberg equilibrium at p<0.00001. Duplicate concordance was 99.99% (11).

Statistical methods

We used combined data across all studies for the analysis. We assessed the association 

between each SNP and PrCa using a 1-degree-of-freedom Cochran-Armitage trend test, 

stratified by studies. Odds ratios (OR) and 95% confidence intervals (95% CI) associated 

with each genotype and cancer risk, and genotypes for pairs of SNPs, were estimated using 

unconditional logistic regression, stratified by study as a covariate. Both per-allele ORs, and 

genotype-specific ORs, were estimated. Heterogeneity in the OR estimates among studies 

was evaluated using a likelihood ratio test, by comparing with a model in which separate 

ORs were estimated for each study.

Modification of the ORs by disease aggressiveness and family history was assessed by using 

both family history (Yes vs. No) and Gleason score (<8 vs. ≥8) as binary variables. A test for 
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association between SNP genotype at a locus and Gleason score as an ordinal variable was 

also performed, using polytomous regression. Modification of the ORs by age was assessed 

using a case-only analysis, assessing the association between age and SNP genotype in the 

cases using polytomous regression. The associations between SNP genotypes and PSA level 

were assessed using linear regression, after log-transformation of PSA level to correct for 

skewness.

Contribution to Familial Risk

The contribution of the known SNPs to the familial risk of PrCa, under a multiplicative 

model, was computed using the formula:

where λ0 is the observed familial risk to first degree relatives of PrCa cases, assumed to be 2 

(12), and λk is the familial relative risk due to locus k, given by:

where Pk is the frequency of the risk allele for locus k, qk = 1 − Pk and rk is the estimated 

per-allele odds ratio (13).

To evaluate evidence for interactions between pairs of SNPs, we used a likelihood ratio test 

and evaluated the evidence for departures from a multiplicative model, by comparing 

models with and a model without the interaction term for each pair of SNPs. The interaction 

term was the product of the allele doses for the two SNPs, hence leading to a 1 degree of 

freedom test for an interaction. Based on the assumption of a log-additive model, we 

constructed a PRS from the summed genotypes weighted by the estimated per-allele log-

odds ratios for each SNP, as estimated by logistic regression as above. Thus for each 

individual j we derived:

Where:

N : Number of SNPs (25)

gij : Allele dose at SNP i (0, 1, 2) for individual j

β i : Per-allele log-odds ratio of SNP i

The missing genotypes for an individual were replaced with the mean genotype of each SNP 

separately for cases and controls. A sensitivity analysis, in which analyses were based on 
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samples with complete genotype data, gave very similar results (data not shown). We then 

standardised the PRS by dividing by the overall standard deviation of PRS in the controls.

The risk of PrCa was estimated for the percentiles of the distribution of the PRS; <1%, 1–

10%, 10–25%, 25–75% (defined here as “median risk”), 75–90%, 90–99%, >99%; and per 

standard deviation when fitted as a continuous covariate. We evaluated the fit of the 

combined risk score to a log-linear model by comparing the model with the PRS fit as a 

continuous covariate with a model in which separate parameters were estimated for 

percentiles of risk adjusted for age at diagnosis and family history, using a likelihood ratio 

test.

We used a likelihood ratio test to evaluate the evidence for interaction between PRS and age 

at diagnosis/observation, PRS and family history and also family history and age at 

diagnosis/observation by comparing models with and a model without an interaction term. 

Effect sizes by family history were compared using a case-only analysis. Analyses were 

performed using Stata 13.

The relative risk estimates were used to obtain estimates of the absolute risk of PrCa by PRS 

category and family history. Since we observed evidence for an interaction between PRS 

and age, we used both models with and without PRS × age interaction term. Absolute risks 

were constrained such that the age-specific incidences, averaged over all categories of PRS 

and family history, were consistent with the age-specific incidences of PrCa for the UK 

population for 2012 (http://ci5.iarc.fr/CI5plus) (14). The model was adjusted for age at 

diagnosis (age <55, 55–59, 60–64, 65–70 and 70+). The procedure for deriving the age-

specific incidences for each SNP profile category has been performed following the 

procedure explained by Antoniou et al. (15, 16), but adjusted to allow for competing causes 

of death.

For this purpose, we categorised PRS into seven risk groups (k=risk group 1 to 7), based on 

the percentile in the controls: <1%, 1–10%, 10–25%, 25–75%, 75–90%, 90–99% and >99%. 

We could not find any evidence for an interaction between PRS and family history of PrCa 

(P-value=0.49) and assumed that family history and PRS are independently predictive of 

PrCa risk. Under this model, the PrCa incidence  at age t for an individual in risk group 

k and family history group h (h=1 with family history, h=0 no family history) was assumed 

to follow a model of the form:  where λ0 (t) is the baseline PrCa 

incidence and  is the risk ratio in the risk group k and family history group h, 

relative to the baseline category (h=0, k=1), approximated by the odds ratio estimates from 

the logistic regression analysis. To obtain the baseline incidence, λ0 (t), we constrained the 

PrCa incidence averaged all risk groups to agree with the population age-specific PrCa 

incidences μ(t) (the incidence of PrCa at age t per 100,000 individuals in the UK (14)). The 

baseline incidence can be obtained for each age by:
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Here P0 is the probability of having no family history in the population (89.26% in the 

controls in this dataset) and p1 = 1 − p0 is the probability of having family history in the 

population (10.74% in the controls in this dataset). fk is frequency of the SNP profile risk 

group k (f1=0.01, (f2=0.09, (f3=0.15, (f4=0.5, (f5=0.15, (f6=0.09, (f7=0.01) and  is the 

probability of surviving PrCa by age (t) in the risk group k for samples in the family history 

group h, which can be derived from incidence rates  for ages <t using the formula 

. Since definition  for all k and h, it was possible to 

solve the above equation recursively, starting at age t=0, to obtain the baseline incidences 

and hence the age-specific PrCa incidences at age (t), , for each group. We then 

computed the absolute risk by age t, adjusting for mortality from other causes, for each risk 

group, using the formula: 

Where  is the probability of not dying from another cause of 

death by age t, based on the age-specific mortality rates μc(t). The age-specific mortality 

rates, μc(t), was estimated by using all causes incidences of death per 100,000 individuals 

for England and Wales (http://www.ons.gov.uk/ons/index.html) and the PrCa death 

incidence per 100,000 individuals in UK in year 2012 (14).

Results

All 25 SNPs showed evidence of association with PrCa (P=0.02 to P=1.4×10−46), with 

effect sizes that were consistent with previous reports. The largest per-allele OR estimate 

was 1.56 (95% CI 1.44–1.68) for rs16901979 on 8q24 (Table 2). For each of the 24 

autosomal SNPs, the effect size was larger for rare homozygotes than for heterozygotes, and 

the estimates were consistent with a multiplicative (log-additive) model. There was no 

evidence for heterogeneity among studies (Table 2).

Gleason score was available for 15,107 (74.5%) of the cases used in the analyses; of these, 

2,139 had a score of 8+ and 12,968 had a score less than 8. One SNP, rs1447295, on 

chromosome 8, showed a larger effect size with increasing grade (P=0.001), while four 

SNPs (rs17021918, rs1512268, rs7127900 and rs2735839) showed a larger effect sizes with 

decreasing grade (P<0.02; Supplementary Table 3).

Thirteen of the SNPs (rs1465618, rs7679673, rs10486567, rs1447295, rs6983267, 

rs16901979, rs10993994, rs7931342, rs7127900, rs4430796, rs11649743, rs1859962 and 

rs5759167) showed a higher per-allele OR for cases with a PrCa family history than those 
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without (P<0.05), while no SNPs showed an effect in the opposite direction consistent with 

the predictions under a polygenic model (17) (Supplementary Table 3).

Data on serum PSA level were available for 3,922 controls from 6 studies. Six SNPs 

(rs1447295, rs6983267, rs1512268, rs10993994, rs7127900 and rs2735839) showed 

association with PSA concentration levels significant at P-value < 0.03. rs1447295 showed 

an association with PSA in the opposite direction of the PrCa risk association but the rest of 

five SNPs showed an association with PSA in the same direction of the PrCa risk association 

(Supplementary Table 4).

Seven SNPs (rs1465618, rs12621278, rs10993994, rs7127900, rs1859962, rs2735839 and 

rs5945619) showed an evidence for a trend in the per-allele ORs with age; in each case the 

effect size was larger for cases diagnosed at younger ages (Supplementary Table 5).

The combined effect of all pairs of SNPs was evaluated through a logistic regression model 

that included each pair of SNPs and an interaction term. The interaction term was significant 

at P-value <0.05 level for 29 pairs (out of 300 possible pairs) compared with 15 expected by 

chance, and significant at the P-value <0.01 level for 12 pairs compared with 3 expected by 

chance. However, no pair was significant at the P-value <0.05 level after a bonferroni 

correction for the number of tests (nominal significance P-value=1.6×10−4, Supplementary 

Table 6).

Under the assumption that these 25 SNPs combined approximately multiplicatively to alter 

the risk of PrCa, we constructed a PRS for 16,643 cases and 18,343 controls based on the 

estimated per-allele ORs of 25 SNPs, standardised by the standard deviation in controls. The 

standardised PRS had a mean=0.651 (range −3.81–5.36; SD=0.98) in cases and mean=0.104 

(range −4.05–4.15; SD=1) in controls. The standardised PRS was strongly associated with 

disease risk (OR per unit PRS =1.74, 95%CI 1.70–1.78). The OR per unit increase of the 

standardised PRS declined with age from 1.76 (95% CI 1.62–1.92) in cases diagnosed at age 

less than 55 to 1.48 (95% CI 1.37–1.60) in cases diagnosed at age 70+ (P-value= 2.6×10−4, 

Supplementary Table 5).

The OR per unit increase of PRS was larger for men with PrCa family history (1.79 Vs 1.70; 

P-value= 1.8×10−4, Supplementary Table 3). We found no evidence of an interaction 

between PRS and family history (P-value=0.49) or between age at diagnosis and family 

history (P-value=0.11) but there was some evidence for an interaction between PRS and age 

at diagnosis (P-value=0.003).

There was no evidence of a difference in the OR per unit PRS according to Gleason Score 

(OR=1.75, GS<8 Vs OR=1.65, GS 8+) after adjusting for age at diagnosis and family 

history (P=0.37; Supplementary Table 3). The correlation between PSA and the PRS was 

weak, both in controls (correlation=0.09) and in cases (correlation =0.02).

When PRS was categorised by percentile, the top 1% of the population had an estimated OR 

of 30.6 (16.4–57.3) compared with the bottom 1% of the population, and an OR of 4.2 

(95%CI 3.2–5.5) compared with the median population risk (defined as the 25–75% risk 

group). The bottom 1% of the population had an estimated OR of 0.14 (95% CI 0.08–0.24) 
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compared with the median risk (Table 3). After allowing for an interaction between PRS and 

age, the OR for the top 1% of the population, relative to the median risk group, decreased 

from 5.6, for men below age <55 years, to 3.8 for men aged 70+ years (Supplementary 

Table 7 & 8).There was no difference between fit of the model with a continuous covariate 

for PRS and the model with separate parameters for percentiles of the PRS (P=0.24). In 

particular, the predicted ORs for the top 1% and the bottom 1% of the population, based on a 

log-linear model, did not differ from that observed.

To estimate the absolute risk of PrCa for different risk groups defined by the combined 

genotypes at the 25 PrCa susceptibility loci, we fitted a logistic regression model that It 

included parameters for PRS (in 7 categories) together with family history of PrCa once 

with (Supplementary Table 7) and once without a PRS × age at diagnosis interaction term 

(Table 3). We used both models (adjusted for age at diagnosis and family history) in order to 

estimate effect sizes for PRS. Then we used the UK age-specific incidences of PrCa (0 to 

85+ years) (14) to estimate age-specific absolute risks of PrCa in the general population 

after considering competing causes of death for fourteen risk groups defined by PRS and 

family history (seven PRS risk groups and two family history, see methods). Based on this 

analysis, the absolute risk of PrCa by age 85 for a man in the top 1% of the risk distribution 

with family history of PrCa was 65.8% (67.1% in a model not allowing for interaction) and 

for a man in the lowest 1% was 3.65% (3.67% in a model not allowing for interaction). The 

absolute risk for a man in the top 1% of the risk distribution with no family history of PrCa 

was 35.0% (36.1% in a model not allowing for interaction) and 1.46% (1.47% in a model 

not allowing for interaction) for someone in the lowest 1%. By comparison, the estimated 

absolute risk for a man in the 25–75% category was 10.2% in the absence of a family history 

of PrCa, and 23.7% for a man with family history (Figure 1 & 2, Supplementary Figure 1 & 

2).

Discussion

These results demonstrate that risk profiling based on SNPs can identify men at substantially 

increased or reduced risk of PrCa. We derived a PRS based on a sum of SNP genotypes, 

weighted by their per-allele log ORs. The estimated ORs for the highest and lowest 1% of 

the population (4.2 and 0.14, respectively) were consistent with those predicted under a 

simple polygenic model in which the log OR increases linearly with the PRS. We also 

showed that the effect size, measured by OR per unit PRS, was higher at younger ages. As 

expected, the majority of loci, and the PRS, showed a stronger effect for familial cases. In a 

logistic regression model, both PRS and family history were independently associated with 

PrCa risk. The OR due to family history was attenuated after adjustment for the PRS (from 

2.63 to 2.50), as expected given that family history is, at least in part, a reflection of genetic 

susceptibility. However, the degree of attenuation (5% on a log-scale) was markedly less 

than 18%, the estimated contribution of these 25 loci to the familial risk of PrCa estimated 

based on their ORs and allele frequencies in this study (see methods). The reason for this 

difference is unclear but might reflect interactions between the known susceptibility loci 

summarised in the PRS and other factors influencing family history.
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In order to investigate the added value of PRS, once we estimated the absolute risk for 

individuals with family history without fitting their PRS information and then repeated the 

same procedure after adding their PRS information. The absolute risk of PrCa for a man at 

age 85 with family history was estimated to be 26.5% when PRS information was ignored. 

When we incorporated PRS information, a man at age 85,depend on his PRS risk group, 

could have an absolute risk ranging from 3.67% (if a man is in the bottom 1% of the risk 

distribution) to 67.1% (if a man is in the top 1% of the risk distribution, Supplementary 

Figure 1 and 3). These observations indicate that family history and the PRS independently 

influence risk and can be combined to provide stronger discrimination.

Chatterjee et al. derived theoretical estimates for the predictive performance of polygenic 

models for ten complex traits or common diseases, including PrCa, using published 

estimates for individual SNPs (18). They estimated that ~7% of the population will be at 

two-fold risk or greater for PrCa. We estimated, empirically, that the (average) risk to men 

in the 90–99% category of the PRS was 2.41 fold, relative to the population median, or 

approximately 2 fold relative to the population mean. However, this is an average risk over 

the 90–99% category, so that the percentile of the PRS at which the risk exceeds 2 fold will 

be >90%. Based on the estimated log(OR) per standardised PRS, approximately 6% of men 

will have a risk of greater than twofold, very close to the estimate of Chatterjee et al (18).

These results show that genetic risk profiling using SNPs could be useful in defining men at 

high risk for the disease for targeted prevention and screening programs. The benefits of 

screening, relative to the costs, will be most favourable among men at higher risk. If, for 

example, the benefit-cost ratio is favourable for screening men at a greater than two-fold 

risk, the PRS provides an effective method for identifying such men.

While these analyses demonstrate the value of SNPs for risk prediction, a risk model could 

be improved in various ways. The analyses presented here are based on the 25 loci first 

identified to be associated with PrCa. Recently, however, additional loci have been 

identified (13, 19) and more than 100 common susceptibility loci are now known. In total, 

these loci increase the estimated proportion of the familial risk to 33% (19). Incorporating 

all known loci into a PRS should improve the predictive value of risk profiles.

Additionally, the analyses presented here consider family history as a binary (yes/no) 

covariate. It is known that the risk of PrCa is dependent on both the number of affected 

relatives and their ages. MacInnis et al. (12, 20) have shown using segregation analysis that 

the familial aggregation of PrCa can be modelled as the combined effect of a recessive allele 

and a polygenic component, and that the polygenic component can be further partitioned 

into a component due to measured SNPs and an unmeasured component. This approach 

should provide more powerful prediction, particularly in families with multiple cases of the 

disease. Finally, it is known that serum or urine PSA level is associated with PrCa risk, with 

the association persisting for several decades. Although some of the risks SNPs are also 

related to PSA level in the expected direction, the PSA level is only weakly correlated with 

PRS, indicating that incorporating PSA level and potentially other markers such as MSMB 

(21) into a risk algorithm should further improve the discrimination (22).
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The absence of clear differences in the relative risk associated with SNPs by disease 

aggressiveness, even in this very large study, is striking. We did not find any convincing 

evidence for differences in the predictive values of the PRS by disease aggressiveness. The 

effect size was higher for less aggressive disease, but the difference was still small (1.75 vs. 

1.65). This result is in contrast to the clear differences in SNP associations by disease 

pathology seen in other diseases, for example in breast and ovarian cancer, and indicates that 

aggressive and non-aggressive disease, at least as measured by Gleason score, share these 

genetic risk factors as a common aetiology.

Analysis of pairwise combinations of SNPs did not identify any clear examples of departure 

from a multiplicative model, after adjusting for multiple testing. We did, however, find an 

excess of interactions at the P<0.01 level over the number that would be expected by 

chance. This suggests that interactions on this scale likely to exist, but their effect sizes are 

small and that very large sample sizes, exemplified by this collaborative study, will be 

required to identify and characterise them. If such interactions could be identified reliably, 

they may improve the predictive value of the risk profiling, and also provide insights into 

the biological interactions between the underlying risk variants.
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Figure 1. 
Absolute risk of PrCa by age in men with family history.
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Figure 2. 
Absolute risk of PrCa by age in men with no family history.

Amin Al Olama et al. Page 16

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Amin Al Olama et al. Page 17

Table 1

Total numbers of cases and controls used in the analyses

Study Controlsa Casesa Totala

GWAS Stage 3 4,076 4,505 8,581

PRACTICAL 16,050 15,783 31,833

Total 20,126 20,288 40,414

Totalb 18,343 16,643 34,986

a
Analyses were restricted to men of European ancestry (see text).

b
Total after excluding 5 studies that oversampled cases with family history.
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Table 3

Odds ratios for PrCa by percentile of the PRS and family history.

Percentiles ORa,b ORa,c

PRS Group

< 1% 1 (baseline) 0.14 (0.08–0.24)

1–10% 2.98 (1.66–5.35) 0.41 (0.36–0.47)

10–25% 4.59 (2.58–8.17) 0.63 (0.57–0.70)

25–75% 7.23 (4.08–12.80) 1 (baseline)

75–90% 12.13 (6.83–21.54) 1.68 (1.54–1.83)

90–99% 16.70 (9.38–29.72) 2.31 (2.09–2.56)

>= 99% 30.63 (16.36–57.34) 4.24 (3.24–5.53)

Family History 2.52 (2.29–2.78) 2.52 (2.29–2.78)

a
ORsobtained by fitting PRS group, family history and age at diagnosis jointly.

b
ORs compared to men in the 1st percentile as baseline.

c
ORs compared to men in the 25th–75th percentile as baseline.
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