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Abstract

Acute cellular rejection is a known risk factor for the development of
obliterative bronchiolitis, which limits the long-term survival of lung
transplant recipients. However, the T cell effector mechanisms in
both of these processes remain incompletely understood. Using the
mouse orthotopic lung transplant model, we investigated whether
C57BL/6 T-bet2/2 recipients of major histocompatibility complex
(MHC)-mismatched BALB/c lung grafts develop rejection pathology
and allospecific cytokine responses that differ from wild-type mice.
T-bet2/2 recipients demonstrated vigorous allograft rejection at 10
days, characterized byneutrophilic inflammation andpredominantly
CD81 T cells producing allospecific IL-17 and/or IFN-g, in contrast to
IFN-g–dominant responses in WT mice. CD41 T cells produced
IL-17 but not IFN-g responses in T-bet2/2 recipients, in contrast
to WT controls. Costimulation blockade using anti-CD154 Ab
significantly reduced allospecific CD81IFN-g1 responses in both
T-bet2/2 and WT mice but had no attenuating effect on lung
rejection pathology in T-bet2/2 recipients or on the development
of obliterative airway inflammation that occurred only in T-bet2/2

recipients. However, neutralization of IL-17A significantly
attenuated costimulation blockade–resistant rejection pathology and
airway inflammation in T-bet2/2 recipients. In addition, CXCL1
(neutrophil chemokine) was increased in T-bet2/2 allografts, and

IL-17 induced CXCL1 from mouse lung epithelial cells in vitro.
Taken together, our data show that T-bet–deficient recipients of
complete MHC-mismatched lung allografts develop costimulation
blockade–resistant rejection characterized by neutrophilia and
obliterative airway inflammation that is predominantly mediated
by CD81IL-171 T cells. Our data support T-bet–deficient mouse
recipients of lung allografts as a viable animal model to study
the immunopathogenesis of small airway injury in lung
transplantation.
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Clinical Relevance

Our results suggest a potential role for targeting the
development or activity of IL-17 as a therapy in lung
transplantation, although these approaches would have to be
carefully considered in balance with potential host defense
implications. Our results also support using T-bet–deficient
mice in mouse orthotopic lung transplantation to further
study the pathogenesis of murine airway inflammation and
injury after lung transplantation.

Lung transplantation is the final therapeutic
option for select patients with end-stage
lung disease. However, its long-term success
is limited by chronic allograft rejection or by

the bronchiolitis obliterans syndrome
(BOS), resulting in decreased survival
compared with other solid organ transplant
recipients (1, 2). Acute cellular rejection

(ACR) occurs in 50% of lung transplant
recipients (LTRs) and has been shown to
increase the risk of BOS. Although T cells
are widely believed to play a central role in
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the immunopathogenesis of ACR and
obliterative bronchiolitis (OB), the cellular
mechanisms driving these processes are
incompletely understood. Specifically,
the T cell subsets and effector cytokines
involved and the interactions with innate
immune cells that eventually result in
airway obliteration, the hallmark of OB,
remain to be elucidated.

The development of the mouse
orthotopic lung transplant animal model is
a significant advance to study T cell immune
responses in conjunction with lung rejection
pathology (3). An early study in this model
showed that wild-type (WT) recipients of
major histocompatibility complex (MHC)
class I/II-mismatched allografts maintained
intact airway epithelium despite fulminate
lung rejection (4). In this setting, type
1–mediated allograft rejection appears
predominant, with marked allograft
preservation in response to costimulation
blockade (5–7). In contrast, a recent study in
this model showed obliterative airway lesions
in minor histocompatibility mismatched
transplants that were significantly reduced
after neutralization of IL-17A (8). Also notable
was a recent report of similar airway lesions in
fully MHC-mismatched transplants treated
with conventional immunosuppression,
including cyclosporine A and
corticosteroids, although cytokine
responses were not evaluated in this study
(9). Although IFN-g–mediated type 1
responses have been demonstrated in
ACR in multiple experimental transplant
models, including the mouse orthotopic
lung transplant model, these responses
have also been shown to be dispensable
for rejection. In fact, IFN-g expression is
essential for establishing durable allograft
acceptance in several studies (10–12).

The transcription factor Tbx 21 (T-bet)
has been shown to be critical for type 1
lineage commitment in CD41 T cells and
also is expressed in CD81 T cells (13, 14).
T-bet has also been shown to repress IL-17
immunity via regulation of the transcription
factor runx-1 (15). Two studies in the mouse
heterotopic heart transplant model evaluated
T-bet–deficient recipients and showed
predominant IL-17 responses driving ACR
that were costimulation blockade resistant
(16, 17). We hypothesized that acute lung
allograft rejection would differ in T-bet2/2

recipients and would be predominantly
mediated by IL-17–producing T cells.
Herein, we show that B6 T-bet2/2 recipients
of BALB/c lung allografts demonstrate

mixed cellular rejection comprised of type 1
and type 17 CD81 T cell–predominant
inflammation, with the development of
obliterative, neutrophilic airway
inflammation. Treatment with anti-CD154
therapy significantly reduced CD81 type 1
responses but did not affect ACR or airway
inflammation, whereas anti–IL-17A therapy
significantly attenuated both. These
findings demonstrate an important role
for IL-17–dependent lung rejection and
neutrophilic airway inflammation in the
setting of T-bet deficiency.

Materials and Methods

Mice
The Johns Hopkins University and
University of Pittsburgh Institutional
Animal Care and Use Committees approved
all animal protocols. C57BL/6 (I-ab, H-2b),
B6.129S6-Tbx21tm1Glm/J (B6 T-bet2/2), and
BALB/c (I-ad, H-2d) mice were obtained
from Jackson Laboratory (Bar Harbor,
ME). All mice were housed in the Johns
Hopkins University or the University of
Pittsburgh animal facilities under specific
pathogen-free conditions.

Orthotopic Lung Transplant
Allogeneic transplantations were performed
in the BALB/c → B6 WT or BALB/c →
B6 T-bet2/2 strain combinations. Donor
mice were sedated with etomidate
(1 mg, intraperitoneally), intubated, and
maintained on inhaled isoflurane until they
were killed. Recipients were both initially
sedated and maintained on inhaled
isoflurane. Transplantation was performed
using a cuffed technique as previously
described (18). Mice received subcutaneous
buprenorphine (0.03–0.05 mg/kg) before
extubation and every 6 hours thereafter
as needed. Animals were killed for analysis
at 10 days after transplant.

Medium and Reagents
Cell culture medium RPMI 1640 (Biofluids,
Rockville, MD) was supplemented with
10% FBS (Sigma-Aldrich, St. Louis, MO),
2 mM glutamine, 1 mM sodium pyruvate, 1%
NEAA, 100 U/ml penicillin, 100 mg/ml
streptomycin, 50 mM b-mercaptoethanol,
and 25 mM HEPES (Biofluids, Rockville,
MD). Mice received 500 mg anti-CD154
(clone MR-1; BioXcell, West Lebanon, NH)
intraperitoneally on Days 0 and 2 after
transplant. Mice received 200 mg anti–IL-17A

(clone 17F3; BioXcell) intravenously via tail
vein on Days 0, 2, 4, and 6 after transplant.

Cell Preparations, Stimulation, and
Cytokine Detection
Spleen, draining lymph nodes, and lungs
were harvested from mice on Day 10 after
transplant. Tissue was processed, and
mononuclear cells were isolated as
previously described (6). Isolated responder
cells from tissue were cultured for 5 hours
in medium alone or with BALB/c
splenocytes (1:1) with brefeldin A (10
mg/ml) (Sigma-Aldrich) present for
the final 2 hours of stimulation.

Flow Cytometry
The following antibodies were purchased
from BD PharMingen (San Diego, CA):
phycoerythrin (PE)-labeled anti–IL-17A;
allophycocyanin (APC)-labeled anti–IFN-g;
FITC-labeled anti–TNF-a; peridinin-
chlorophyll-protein complex (PerCP) Cy5.5-
labeled anti-CD8; Alexa-700–labeled anti-
CD4; and all respective isotype antibodies.
Biotinylated anti-H2Dd was purchased from
Biolegend (San Diego, CA), and Pacific
Blue–labeled streptavidin was purchased
from Invitrogen (Grand Island, NY). Surface
antibody staining and intracellular cytokine
staining was performed as previously
described (19, 20). Flow cytometry analysis
was performed using a FACSAria
instrument and Flowjo software for analysis
(Tree Star Inc., San Carlos, CA).

Histopathology and Acute Rejection
Pathology Scoring
Grafts were fixed in 10% formalin,
embedded in paraffin, sectioned, and
stained using hematoxylin and eosin.
Stained sections of grafts were scored by
three blinded observers using a point system
developed to grade the severity of rejection
pathology. Points (0–4) were given for the
presence and severity of each of the
following characteristics (1): peribronchial/
perivascular inflammatory cell infiltrate, (2)
interstitial inflammatory cell infiltrate, (3)
alveolar inflammatory cell infiltrate, and (4)
intraluminal airway inflammation. The score
is the mean of the points for the four
characteristics (range, 0–4). For quantification
of neutrophils, a previously published method
was used (21). Antimyeloperoxidase was
purchased from Abcam (Cambridge, MA).

Details regarding determination of
CXCL1 levels are provided in the online
supplement.
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Statistical Analysis
Variables were compared by Student’s t test
unless otherwise specified using Graphpad
software. P , 0.05 was considered
statistically significant.

Results

T-bet Deficiency in MHC-Mismatched
Mouse Orthotopic Lung Transplant
Is Associated with Severe Acute
Rejection Pathology Characterized by
Polymorphonuclear Cell Infiltration,
Obliterative Airway Inflammation, and
Low Graft CD4:CD8 Ratio
To characterize the acute rejection
pathology that develops in the absence of
T-bet, we compared allografts from T-bet2/2

recipients (C57BL/6 background) of left
orthotopic lung transplants from BALB/c
donors to allografts from C57BL/6
WT recipients. At Day 10, histologic
examination demonstrated that lung
allografts from T-bet2/2 recipients have
marked peribronchial and perivascular
inflammatory cellular infiltrate, as seen
in WT recipients (Figure 1A), as well as
inflammation and injury in the lung
allograft parenchyma. However, we also
observed a mixed cellular inflammatory
infiltrate plugging the airway lumens of
T-bet2/2 recipients resulting in luminal
obliteration not seen in allografts from WT
recipients (Figure 1B). In addition, the
mixed cellular infiltrate present in T-bet2/2

recipients is comprised largely of
polymorphonuclear cells, in contrast to the
lymphocyte-predominant inflammation
seen in allografts from WT recipients
(Figure 1C). Indeed, allografts from T-
bet2/2 recipients had significantly higher
numbers of neutrophils compared with
allografts from WT recipients (Figures 2A
and 2B). Analysis of the graft-infiltrating
lymphocytes in T-bet2/2 recipients
revealed a markedly decreased CD4:CD8
ratio compared with WT allograft and WT
isograft recipients (Figures 2C and 2D).
Together, these data show qualitative
differences in lung allograft acute rejection
pathology in mice with T-bet deficiency
compared with WT animals.

Allospecific T Cell Responses from
T-bet2/2 Recipients during Acute
Rejection Are Marked by Robust IL-17
and IFN-g Production fromCD81 TCells
To elucidate any differences in allospecific
T cell effector function occurring in the

setting of T-bet deficiency, we evaluated
T cell cytokine responses in mononuclear
cells recovered from the lung allografts of
T-bet2/2 and WT recipients at Day 10
after culture in medium alone and after
coculture with BALB/c splenocytes. As
shown in a representative plot in Figure 3A,
CD81 T cells from T-bet2/2 recipient
allografts have high frequencies of
constitutive IL-171 cells that increased in
response to in vitro restimulation with
BALB/c splenocytes, in striking contrast
to WT recipients (Figures 3A and 3C).
These CD81IL-171 cells are characterized
by high expression of CD44 and low
expression of CD62L, consistent with an
effector phenotype (Figure 3B). However,
T-bet2/2 mice demonstrated similar
lung allograft allospecific CD81IFN-g1

responses to those observed in WT mice
(Figures 3A and 3D). In addition, we
evaluated other effector responses,

including TNF-a, IL-4, and IL-22, and only
detected low frequencies of TNF-a1 CD81

cells in WT and T-bet2/2 recipients (, 2%;
data not shown). We also evaluated CD41

T cell responses in the lung allografts from
T-bet2/2 mice and found increased IL-17
compared with WT mice, although with
significantly impaired IFN-g production
(Figures 3E–3G). In summary, these data
indicate that there are marked differences
in alloeffector cytokine production between
WT and T-bet–deficient recipients of
MHC-mismatched mouse orthotopic lung
transplantation that occur during acute
lung rejection.

CD154/CD40 Costimulation Blockade
Skews T Cell Responses from
T-bet–Deficient Mice to an IL-17
Predominance
We and others have shown that anti-CD154
Ab therapy markedly reduces allospecific

Figure 1. Lung allografts from T-bet2/2 recipients develop severe rejection pathology marked by
polymorphonuclear inflammation and intraluminal airway inflammation. (A) Hematoxylin and eosin
(H&E)–stained sections (original magnification:34) of lung allografts from wild-type (WT) and T-bet2/2

recipients at Day 10. (B) H&E-stained sections (original magnification: 320) of lung allografts
demonstrating the appearance of small airways. (C) H&E-stained sections (original magnification:
340) of lung allografts from WT and T-bet2/2 recipients at Day 10, showing the presence of
polymorphonuclear cells in allografts from T-bet2/2 recipients.
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IFN-g1 responses from T cells and
attenuates acute rejection pathology after
mouse orthotopic lung transplant (5, 6).
We therefore evaluated T cell effector
responses present in the lung allografts
of T-bet2/2 recipients treated with anti-
CD154 Ab to determine the effects of
CD154/CD40 costimulation blockade on
these responses. Allospecific CD81IL-171

responses remained robust despite anti-
CD154 treatment and were not significantly
different when compared with untreated
T-bet2/2 recipients (Figures 4A and 4C). In
addition, CD41IL-171 responses were not

altered in the presence of anti-CD154
treatment (data not shown). In contrast,
allospecific CD81IFN-g1 responses to
BALB/c antigen restimulation were
markedly attenuated after CD154/CD40
blockade, as in WT recipients (Figures 4A
and 4B). The highest frequencies of residual
IFN-g1 cells were CD81 T cells that
coexpressed IL-17a (Figure 4A). These
CD81 cells coexpressing IFN-g and IL-17
were also found in the native lung, spleen,
and draining lymph nodes of T-bet2/2

recipients (Figure 4D; spleen data not
shown). In the lymph node and native lung

(in contrast to the allograft), it is unlikely
that significant alloantigen is present in
culture in medium alone, and there are also
much less constitutive IL-17 responses
present after culture in medium alone.
Therefore, the increase in CD81IL-171

responses in the native lung and lymph
node with addition of BALB/c splenocytes
to cultures more clearly demonstrates the
allospecificity of these immune responses
(Figure 4D). There is a significant increase
in IL-17 responses in the CD81 cells
from the native lung of T-bet2/2 recipients
after coculture with BALB/c splenocytes
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Figure 2. Severe rejection pathology in T-bet2/2 recipients is characterized by significantly higher allograft neutrophil count and lower allograft CD4:CD8 ratio
compared with WT. (A) Histologic sections of lung allografts from WT and T-bet2/2 recipients at Day 10 showing neutrophil staining with antimyeloperoxidase. (B)
Total number of neutrophils per high-power field on histological sections of lung allografts stained with antimyeloperoxidase (10 different high-power fields per
allograft counted; n = 3mice per group; P = 0.034; * denotes statistical significance). (C) Lung allograft CD4:CD8 ratios at Day 10 (n = 3–8 mice per group; * denotes
statistical significance). (D) Representative flow plots of lung allograft mononuclear cells at Day 10 showing frequencies of CD41 and CD81 cells.
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compared with culture in medium alone
(Figure 4E). Together, these data show
that CD154/CD40 costimulation blockade
differentially affects CD81 allospecific
responses in the setting of T-bet
deficiency, effectively skewing T cell
responses toward an IL-17–predominant
response.

CD154/CD40 Costimulation Blockade
in T-bet2/2 Recipients Is Marked by
Severe Acute Lung Rejection and
Obliterative Airway Inflammation That
Is IL-17 Dependent
We evaluated the effect of anti-CD154
therapy on acute lung rejection pathology in
T-bet2/2 recipients. Unlike lung allografts
from WT recipients, allografts from
anti-CD154–treated T-bet2/2 recipients
demonstrate severe acute rejection
pathology at Day 10 (Figures 5A and 5B).
We observed high-grade inflammatory cell
infiltrate around blood vessels and airways
along with massive infiltration throughout
the lung parenchyma, marked by increased
interstitial and alveolar inflammation
(Figures 5A and 5B). In addition, we again
observed an organizing mixed cellular
inflammatory infiltrate plugging the airway
lumens of anti-CD154–treated T-bet2/2

recipients resulting in luminal obliteration,
as seen in allografts from untreated T-
bet2/2 recipients but not WT recipients
(Figures 5A–5C). These airway lesions
varied from luminal plugs in which
mononuclear cells and neutrophils could be
distinguished versus lesions that showed
more organized fibrosis (Figures 5C and
5D). Given the lack of improvement in
acute rejection pathology in T-bet2/2

recipients treated with anti-CD154, we did
verify that CD41 cells from T-bet2/2 mice
express CD154 when activated in vitro
(data not shown). Next, we examined the
role of IL-17 in acute rejection pathology
and obliterative airway inflammation. The
coadministration of anti–IL-17 Ab in anti-
CD154–treated T-bet2/2 mice significantly
reduced acute rejection pathology and
strikingly reduced intraluminal airway
inflammation in these mice compared with
an anti–IL-17 isotype control Ab (Figures
6A–6C). The rejection pathology in lung

allografts from mice treated with anti–IL-17
Ab in addition to anti-CD154 was also
characterized by a significant reduction in
neutrophil counts (Figure 6D). Our studies
demonstrate an IL-17–dependent
mechanism for acute lung rejection
pathology and obliterative airway
inflammation in anti-CD154–treated
T-bet2/2 recipients.

IL-17 Induces CXCL1 in Mouse Lung
Epithelial Cells and Is Associated with
Increased Lung Allograft CXCL1
Levels in T-bet2/2 LTRs
It has previously been shown that
intratracheal LPS and IL-17 induce
CXCL1, a neutrophil chemokine, in the
bronchoalveolar space in mice (22, 23).
In addition, Sharma and colleagues have
recently demonstrated that IL-17 induces
CXCL1 expression in mouse epithelial cells
(24). We also treated mouse epithelial cells
with murine IL-17 and found increased
CXCL1 in the media at 2 hours. CXCL1
levels were increased 5-fold by 24 hours
(Figure 7A). This direct effect of IL-17 on
mouse epithelial cells provides a potential
mechanism for neutrophil influx mediated
by epithelial cells in our transplant model.
Having shown robust IL-17 responses in
T-bet2/2 recipients, we next sought to
determine whether CXCL1 levels were
increased in lung allografts from these
mice compared with allografts from WT
recipients. We found a 3-fold increase in
CXCL1 levels in lung allograft homogenates
from T-bet2/2 recipients compared with
WT recipients (Figures 7B and 7C).
These data demonstrate one plausible
mechanism for IL-17–induced neutrophilic
inflammation in mouse recipients of lung
transplantation.

Discussion

The role of allospecific T cell effector
responses in lung allograft rejection remains
incompletely understood. Herein, our
studies in a fully MHC-mismatched mouse
orthotopic lung transplant model show that
T-bet deficiency results in lung allograft
inflammation mediated predominantly by
CD81 T cells and marked by high IL-17

and IFN-g production, in contrast to only
type 1 inflammation in WT recipients.
In addition, we demonstrate that T-
bet–deficient recipients develop airway
inflammation that obliterates airway
lumens. Unexpectedly, treating T-bet2/2

recipients with anti-CD154 resulted in
persistent obliterative airway inflammation
characterized by increased organization/
fibrosis and skewing of CD81 T cells to an
IL-17–predominant alloeffector response.
The coadministration of anti–IL-17Ab and
anti-CD154 Ab significantly attenuated
lung allograft rejection pathology and
markedly reduced acute rejection
pathology, allograft neutrophilia, and
airway inflammation. Collectively, our
findings demonstrate an IL-17–dependent
T cell mechanism for lung allograft
rejection and obliterative airway
inflammation in the absence of
T-bet–mediated repression.

Our findings are consistent with
a previous report of CD81IL-17–mediated
costimulation-blockade resistant allograft
rejection in a MHC class I and II
mismatched BALB/c → B6 murine
heterotopic cardiac transplantation model
(17). That study demonstrated the
detection of CD81IFN-g1IL-171 responses
in the allograft but not in the spleen and
that neutralization of IL-17 or depletion
of CD81 T cells reversed costimulation
blockade–resistant rejection. Although our
studies show a distribution of these double-
positive cells in the lung allograft and
in secondary lymphoid tissue, we too
demonstrate attenuation of rejection with
neutralization of IL-17. There are two
studies investigating the effects of T-bet
deficiency on T cell responses in other
experimental transplant models (a
murine pulmonary graft-versus-host
disease model and a murine heterotopic
cardiac transplant model) using partially
MHC mismatched donor/recipient
strain combinations (16, 25). In both of
these studies, IL-17 responses were
demonstrated in CD41 T cells but not in
CD81 T cells, suggesting that the degree
of MHC mismatching may play a role
in resultant allospecific T cell effector
responses.

Figure 3. (Continued). plots of lung allograft mononuclear cells after culture in medium alone and after coculture with BALB/c splenocytes, gating on CD41 cells.
(F) Percentage of lung graft CD41 cells positive for IL-17 in WT and T-bet2/2 recipients after culture in medium alone and after coculture with BALB/c splenocytes (n = 3
mice per group; P = 0.04 and 0.02; * denotes statistical significance). (G) Percentage of lung allograft CD41 cells positive for IFN-g in WT and T-bet2/2 recipients
after culture in medium alone and after coculture with BALB/c splenocytes (n = 3–6 mice per group; P = 0.004 and 0.002; * denotes statistical significance).
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In our mouse model of lung
transplantation, we demonstrate the intact
ability of T-bet2/2CD81 T cells to produce
IFN-g. However, detection of CD81IFN-
g1 T cells in T-bet2/2 allograft recipients

differs from the findings in experimental
autoimmune myocarditis, in which
myocardial-infiltrating CD81 T cells were
incapable of producing IFN-g after
restimulation with anti-CD3/anti-CD28,

in contrast to cells isolated in the periphery
(26). In another study, T-bet was shown
to be essential for the development of
CD81IFN-g1 lymphocyte–dependent
autoimmune diabetes using the rat insulin
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Figure 4. CD81 IL-17 responses in T-bet2/2 recipients remain robust despite anti-CD154 therapy, which effectively abrogates CD81 IFN-g responses. (A)
Representative flow plots of lung allograft mononuclear cells, gating on CD81 cells, from an untreated T-bet2/2 recipient and a T-bet2/2 recipient treated with anti-
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promoter–lymphocytic choriomeningitis
virus transgenic model (27). Thus, the
ability of CD81 T cells from T-bet2/2 mice
to produce IFN-g appears to vary in
different experimental systems.

It is well established that T-bet plays
a crucial role in Th1 lineage development
(13, 14, 28). Therefore, it was not surprising
that we were unable to detect significant
IFN-g from CD41 T cells from T-bet2/2

recipients, unlike in WT mice. However,
our studies also demonstrated CD41 T cells
from T-bet2/2 recipients as a source of

IL-17, albeit less than CD81 T cells, in
contrast to WT controls. The induction of
antigen-specific CD41IL-171 T cells (TH17
cells) has previously been shown to be
negatively regulated by IFN-g and IL-4
and to be important for the induction of
experimental autoimmune encephalitis
(29). Our results suggest that impaired
CD41 T cell production of IFN-g in the
absence of T-bet is sufficient to enable the
induction of TH17 cells in the setting of
solid organ transplantation. However, it is
also plausible that other CD41 T cell

subsets, such as regulatory T cells, are
insufficient in numbers and/or impaired in
the absence of T-bet. Regulatory T cells
have been previously shown to be low
in a T-bet–deficient mouse model of
pulmonary graft-versus-host disease (25).
However, in models of autoimmune colitis,
regulatory T cells from T-bet2/2 mice
have been shown to have equal or superior
suppressive function in vivo (30, 31). Thus,
questions remain regarding the role of
low CD41 T cell numbers and function
in lung allograft rejection under conditions
of T-bet deficiency.

Several lines of evidence suggest IL-17
plays an important role in BOS in human
LTRs. Using a trans vivo delayed type
hypersensitivity assay to measure foot pad
swelling after injection of collagen V and
peripheral blood mononuclear cells from
LTRs, Burlingham and colleagues showed
that blockade of IL-17 and TNF-a, along
with depletion of CD41 or CD141

monocytes, significantly reduced collagen
V–specific trans vivo delayed type
hypersensitivity assay responses and that
increased responses significantly correlated
with BOS (32). A subsequent cross-
sectional study of bronchoalveolar lavage
(BAL) cell pellets and supernatants showed
increased levels of IL-17/IL-23 mRNA
along with increased IL-8 mRNA and
protein in samples from LTRs with BOS
(33). A recent study in the mouse
orthotopic lung transplant model
demonstrated that neutralization of IL-17
prevented the development of OB lesions
that occurred in z 50% of mice undergoing
a partially MHC-mismatched transplant
(C57BL/10 → C57BL/6), although this
study did not address the cellular source(s)
of IL-17 (8). In the current study, our
findings show that CD81 . CD41 T cells
are sources of IL-17 and play an important
role in inflammatory intraluminal airway
lesions that develop in the setting of acute
rejection in a complete MHC mismatch.
Although we show IL-17 responses in
T cells, it is also possible that other
cell populations play a role in IL-
17–mediated injury in this model, as
previously demonstrated in ischemic-
reperfusion injury (34). A recent study
in LTRs showed IL-17 involvement
in lymphocytic bronchiolitis lesions in
LTRs, with CD81 T cells identified
as a major source of IL-17 on
immunohistochemical staining (35).
Together, these studies provide broad

Figure 5. Severe rejection pathology and airway obliteration in lung allografts from T-bet2/2

recipients is resistant to anti-CD154. (A, B) H&E-stained sections (original magnification: 34, 310) of
lung allografts from WT and T-bet2/2 recipients treated with anti-CD154. (C) H&E-stained sections
(original magnification: 320) of lung allografts from T-bet2/2 recipients treated with anti-CD154
demonstrating a range of airway pathology. (D) Trichrome-stained section (original magnification:
310, 320) of lung allograft from T-bet2/2 recipient treated with anti-CD154.
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lines of evidence suggesting an important
role for IL-17 in lung allograft rejection and
potentially obliterative airway disease.

We have demonstrated these robust,
allospecific IL-17 responses in genetically
manipulated T-bet2/2 mice. However, the
effect of pharmacologic immunosuppression
on T-bet expression in WT mouse
recipients and in human recipients of lung
transplantation is unknown. Therefore, this
molecular state could be relevant to the
clinical field of lung transplant. In fact,
a recent study showed the development
of OB lesions in mouse recipients of
orthotopic lung transplant that were treated
with calcineurin inhibitors and steroids,
whereas these lesions have not been

previously described in the untreated,
fully MHC-mismatched mouse model
(9), suggesting a possible role of
immunosuppression effects in the
development of these lesions. Moreover, we
believe that understanding the downstream,
pathologic effects of the CD81 IL-171

responses we show is essential given the
above evidence linking IL-17 to lung
allograft rejection and potentially OB.

Our studies also reveal an unexpected
persistence of significant intraluminal
airway inflammation under conditions of
anti-CD154 Ab therapy despite significantly
limited allospecific IFN-g production from
allografts infiltrating CD81 T cells in
T-bet2/2 recipients. This therapy effectively

established a state of “unopposed IL-17”
in response to alloantigen. Although we
cannot rule out concomitant responses
to autoantigens, we show that this
skewing of the alloimmune response
toward an IL-17–predominant response
was associated with persistent airway
neutrophilia and airway luminal fibrosis
in some lesions. IL-17 has been
implicated in other models of fibrosis,
and bleomycin-induced pulmonary
fibrosis has recently been demonstrated
to be dependent on IL-17A (36). The
mechanisms by which IL-17 leads to
fibrosis will require more investigation,
but they are most likely multifold and
involve many cell types.

The potential role of neutrophils in the
pathogenesis of murine obliterative airways
disease also requires further study because
several earlier studies in lung transplant
recipients have shown BAL neutrophilia
to be correlated with BOS (37–39). Here,
we show increased allograft neutrophilia
in T-bet–deficient recipients of lung
transplant that is abolished with anti-
CD154 and anti–IL-17 therapy, suggesting
that this effect is mediated by CD81

IL-17 responses. Although we do see
a nonsignificant decrease in allograft
neutrophil counts in T-bet–deficient
recipients treated with anti-CD154 therapy
alone, there are studies showing an additive
effect of IFN-g on neutrophil recruitment
mediated by IL-17 and other pathways
(40, 41). We also demonstrate in vitro
CXCL1 induction from mouse lung
epithelial cells in response to IL-17, as
recently shown by another group (24),
which provides a plausible in vivo
mechanism for neutrophil recruitment
during rejection and diminution in the
setting of IL-17 neutralization. Moreover,
we have detected increased levels of CXCL1
in T-bet2/2 recipients of lung transplant,
which are characterized by significant IL-17
effector responses, thereby linking the
presence of IL-17 to CXCL1, a potent
neutrophil chemokine, in this particular
model. Although there are likely other
mechanisms by which IL-17 effects
neutrophilic inflammation, we have
identified the induction of CXCL1 as
a pathway active in this model. The effects
of IL-17 on lung epithelial cells during
allograft rejection have not been fully
described but may provide insight into the
pathogenesis of OB. Further studies are
needed to identify the cellular source of
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CXCL1 in this model of lung allograft
rejection and to elucidate the cellular
pathways involved linking IL-17 to CXCL1
and neutrophilia.

In addition to the presence of IL-17
in lung allografts, limited amounts of
intragraft IFN-g may significantly
contribute to the severe rejection
pathology and obliterative airway
inflammation observed in T-bet2/2

recipients. Indeed, earlier studies in
several experimental systems have
demonstrated a critical role for IFN-g in
the establishment of allograft tolerance
under conditions of costimulation
blockade (10, 11). More recently, Coley
and colleagues showed that not only
were IFN-gR12/2 mice protected from
breakthrough CD81 alloeffector cells
associated with graft rejection but
that neutralization of IFN-g in these
protected mice resulted in allograft loss,
indicating that IFN-g signaling in the
graft itself was required for acceptance
(12). Specifically, the lack of CD41

T cell–derived IFN-g in rejecting T-
bet2/2 recipients may be integral to their
resistance to anti-CD154 therapy, as an
earlier study found CD41 T cells and
IFN-g to be independent factors required
for costimulation blockade–induced
tolerance (42).

There are several caveats to
our studies. Although our studies
demonstrate the development of airway
inflammatory lesions in T-bet2/2

allograft recipients that bear some
similarities to human OB pathology, one
should exercise caution in extrapolating
these findings to human OB. For
example, the preservation of the airway
epithelia in some of the lesions we show
appears to differ from human OB
histology. Another notable difference is
the rapid kinetics of the development
of the airway pathology we show in
mouse orthotopic lung transplant, in
contrast to the usual tempo observed
in LTRs, although accelerated BOS is
known to occur (2). It remains to be seen
how the airway lesions we show would
progress with more time. Nonetheless,
our findings provide plausible cellular
and molecular mechanisms that
corroborate previous human studies
of BOS in LTRs.

We observed incomplete resolution
of lung allograft rejection despite IL-17
blockade, suggesting that other cytokines
and/or cells contribute to pathology in
T-bet2/2 mice. Another possibility
contributing to some persistent
pathology is incomplete neutralization
of IL-17, despite our frequent dosing

schedule. In addition, although we did
not examine the function of innate cells
in this study, it has become clear that
T-bet plays a critical role in innate
immunity and the interaction of innate
cells with cells of the adaptive immune
system (43). It is therefore possible that
the absence of T-bet in innate cells in
our model contributes in a meaningful
way to the allograft rejection pathology
and T cell effector responses we see
in these T-bet2/2 recipients. Finally,
in our studies we did not treat
allograft recipients with conventional
immunosuppression to evaluate the
effects of more targeted immunomodulation
on allograft rejection and allo-specific
responses; however, a recent study using this
approach raises interesting and unanswered
questions regarding the role of these
therapies in obliterative airways disease
development (9).

In summary, our studies provide new
insights into the role of differential
cytokine production and lung allograft
rejection, identifying CD81 T cells as
a predominant source of allo-specific
IL-17 production, but also CD41 T cells,
in the absence of T-bet. Moreover,
neutrophilic inflammation was
significantly increased in T-bet2/2

recipient lung allografts and observed in
inflammatory airway lesions. We report
that after mouse orthotopic lung
transplantation in T-bet2/2 mice, the
addition of IL-17 neutralization therapy
to anti-CD154 therapy is effective in
attenuating neutrophil-predominant
allograft rejection pathology and
obliterative airway inflammation and
that IL-17 directly enhances CXCL1
production from lung epithelia in vitro
and is associated with markedly
increased CXCL1 levels in our model.
These results suggest a potential role
for targeting the development or
activity of IL-17 as a therapy in lung
transplantation, although these
approaches would have to be carefully
considered in balance with potential host
defense implications. Finally, our results
support using T-bet–deficient mice in
mouse orthotopic lung transplantation
to further study the pathogenesis of
murine airway inflammation and injury
after lung transplantation. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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