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Abstract

Three billion people are exposed to household air pollution from
biomass fuel use. Exposure is associated with higher incidence of
pneumonia, and possibly tuberculosis. Understanding mechanisms
underlying these defects would improve preventive strategies. We
used human alveolar macrophages obtained from healthy Malawian
adults exposed naturally to household air pollution and compared
them with human monocyte-derived macrophages exposed in vitro
to respirable-sized particulates. Cellular inflammatory response was
assessed by IL-6 and IL-8 production in response to particulate
challenge; phagosomal function was tested by uptake and oxidation
of fluorescence-labeled beads; ingestion and killing of Streptococcus
pneumoniae andMycobacterium tuberculosis were measured by
microscopy and quantitative culture. Particulate ingestion was
quantified by digital image analysis. We were able to reproduce
the carbon loading of naturally exposed alveolar macrophages by

in vitro exposure of monocyte-derived macrophages. Fine carbon
black induced IL-8 release from monocyte-derived and alveolar
macrophages (P, 0.05) with similar magnitude responses (log10
increases of 0.93 [SEM = 0.2] versus 0.74 [SEM= 0.19], respectively).
Phagocytosis of pneumococci and mycobacteria was impaired with
higher particulate loading. High particulate loading corresponded
with a lower oxidative burst capacity (P = 0.0015). There was no
overall effect on killing ofM. tuberculosis. Alveolar macrophage
function is altered by particulate loading. Our macrophage model is
comparable morphologically to the in vivo uptake of particulates.
Wood smoke–exposed cells demonstrate reduced phagocytosis,
but unaffected mycobacterial killing, suggesting defects related to
chronic wood smoke inhalation limited to specific innate immune
functions.
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Household air pollution (HAP) related to
biomass fuel use is a major risk factor for
poor health (1–3), particularly respiratory

infection in adults and children (4, 5). In
low- and middle-income countries, where
bacterial pneumonia is the biggest cause of

infant mortality (6, 7), the odds ratio of
pneumonia in HAP-exposed children is
1.78 compared with unexposed individuals,
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equating to 1 million excess childhood
deaths per year (8). Rates of severe
pneumonia in children can be reduced by

interventions that reduce wood smoke
exposure through the use of “clean” cook
stoves with improved emissions
characteristics (9).

In countries where biomass is the
predominant form of household energy, the
most common reason for acute admission to
hospital is pneumonia (10, 11). The etiology
in over one-half of cases is Streptococcus
pneumoniae (12). Populations with high
biomass fuel use also have a high incidence
of tuberculosis (TB) (13). The prevalence of
TB is increased in individuals exposed to
household smoke (14–16), but these
case–control studies are limited by
confounding factors (17, 18). Despite
epidemiological insights, the mechanism by
which HAP might impair lung defense
against infection are unclear.

As the main pulmonary phagocyte,
human alveolar macrophages (HAMs),
ingest inhaled smoke particulates (19).
HAMs from people exposed to biomass
smoke are heavily loaded with
carbonaceous particulates; uptake varies
according to fuel usage (20, 21). The extent
of macrophage carbon loading can act as
a biomarker of exposure, and may be
determined from bronchoalveolar lavage
(BAL) or sputum specimens (20, 22).

Acute smoke exposure has been studied
in firefighters, where inhalation of wood

smoke is characterized by proinflammatory
cytokine production (23, 24). In wood
smoke acute exposure models, dampening
of macrophage activation in response to
bacterial challenge is noted (25). Chronic
exposure is likely to generate different
responses (26). It is likely that the
interactions between particulate matter
(PM) and the HAMs in part define the
observed increased susceptibility to
infection (27).

We exposed alveolar and monocyte-
derived macrophages (MDMs) to
respirable-sized smoke particulates to assess:
(1) the reliability of the MDM model when
compared with HAM responses; (2) the
functional effects of particulate on HAMs,
including the effect on cytokine production,
phagocytosis, oxidative burst, and pathogen
killing; and (3) the relative effects of
different wood and particle types.

Materials and Methods

Methods are described in detail in the online
supplement.

Cell Culture
BAL fluid was obtained from healthy
volunteers (28), and HAMs used at Days
1–3. Monocytes were obtained from Buffy
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Figure 1. In vivo and ex vivo exposure of human alveolar macrophages (HAMs) to particulate household air pollutants results in similar cytoplasmic
particulate loading. HAMs from three Malawian volunteers domestically exposed to low, moderate, or high concentrations of indoor air pollution are shown in
(A) (left, middle, and right panels, respectively). The panel shows sample images taken from bronchoalveolar lavage cytospins stained with eosin, with
PM appearing as black deposits that are heterogeneously distributed among the cells. The percentage of cytoplasmic load of PM calculated by Image
SXM software is indicated above each image. (B) HAMs from healthy volunteers from the United Kingdom who had no prior exposure to wood smoke
or severe outdoor air pollution. In the images shown, macrophages have been exposed ex vivo to fine carbon black (FCB) to match the particulate loading
seen in naturally exposed Malawian subjects. The dose of particulate material added in suspension to adherent macrophages in culture to match
the appearance in (A) is shown for each image. The heterogeneity of natural exposure is reproduced in this experimental design. PM, particulate matter.

Clinical Relevance

Half of the world’s population is
exposed daily to biomass fuel smoke,
and this exposure is associated with
increased risk of pneumonia,
particularly in children. Smoke
exposure is also associated with chronic
lung disease and cardiovascular death.
The mechanisms underlying smoke-
related susceptibility to pulmonary
infection and chronic disease are not
known, but such knowledge would be
invaluable in improving preventive
measures. The uptake of particulate
smoke by lung cells is strongly dose and
time dependent, making intracellular
particulate load a useful biomarker of
exposure. Particulates from several
sources cause a common dose-
dependent inflammatory response in
lung cells and macrophages. Particulates
cause inhibition of phagocytosis and
impairment of oxidative burst that is
consistent with impaired defense
against infection.
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coats by density gradient centrifugation
(Lymphoprep, Axis-Shield; Manchester,
UK) before enrichment using with CD14
magnetic beads (Miltenyi Biotec, Bergisch
Gladbach, Germany) according to
manufacturers’ protocols. Cells were used
at 7–10 days of culture on borosilicate glass.
Nonadherent cells were removed by gentle
washing. All cells were cultured at 378C in
5% CO2.

PM Challenge
Fine carbon black (FCB; Haeffner,
Chepstow, UK) was prepared by repeated
sonication and vortexing in saline. Wood
smoke particles were obtained by controlled
combustion (see MATERIALS AND METHODS

in the online supplement). Cells were
cultured for 5 hours in sonicated particulate
suspensions. Culture medium was stored at
2808C for cytokine ELISA (BD OptEIA;
Becton-Dickinson, East Rutherford, NJ).

Exposure time and doses were
optimized such that in vitro experiments
approximated the microscopic appearance
of samples obtained from HAP-exposed
Malawian participants (20) (Figure 1). At
least 100 Fields B–stained microscope fields
were analyzed using digital image analysis
(Image SXM; Dr. S. Barrett, Liverpool, UK,
http://www.liv.ac.uk/zsdb/ImageSXM/),
as previously described (20). Briefly,
cytoplasm was identified by automated
threshold analysis of Fields B stain (red
coloration). Particulate was similarly
quantified by its lack of staining and low
light transmission. After analysis, images
were excluded if visual inspection revealed
debris or artifact.

FITC-Labeled Bead Challenge
Macrophages were incubated with
particulate suspension, washed, and
incubated for 2 hours with FITC-labeled
2-mm silica beads (ratio of 5:1 macrophage;
FLUKA, Neu-Ulm, Germany), washed, and
counted by fluorescence microscopy.

Bacterial Challenge
Heat killed S. pneumoniae serotype 1 was
incubated with carboxyfluorescein-
succinimidyl ester for 30 minutes in the
dark, washed, opsonized with 20% human
serum, and diluted to 4 3 107 CFU/ml, as
assessed by dilution plating (29).

Particulate-loaded macrophages were
exposed to labeled bacteria at a ratio of 1:10
for 16 hours. After washing and Fields
staining, a minimum of 200 cells per group

was assessed for bacterial association at 403
magnification.

Mycobacterium tuberculosis (H37Rv)
was diluted to 2.5 3 106 CFU/ml (30).
Macrophages were incubated with
particulate for 8 hours, washed, then
challenged with mycobacterial suspension
at an estimated ratio of 10 bacteria per
macrophage. After 16 hours, phagocytosis
was assessed by auramine staining. At least
200 macrophages were counted for
bacterial internalization. Unstained cells
were lysed at 16 hours or 7 days.
Semiquantitative cultures of supernatants
and cell lysates were performed

(Mycobacteria Growth Indicator Tube
[MGIT]; Becton-Dickinson), and
positivity checked by fluorescence
microscopy (31).

Macrophage Function Reporter
Bead Assays
Intraphagosomal oxidative burst was
measured as detailed previously (32).
Briefly, silica beads coupled to IgG to
facilitate Fc receptor–mediated uptake
were labeled with oxidation-sensitive
dichlorodihydrofluorescein-diacetate-
succidimyl ester and Alexa 633-SE
(Invitrogen, Carlsbad, CA). Beads were
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Figure 2. Similar dose-dependent response after exposure of HAMs and monocyte-derived
macrophages (MDMs) to FCB. Macrophage appearance varies by type of wood smoke particulate
applied. (A) The percentage of cytoplasmic area occupied by PM by dose of FCB added in
suspension to human macrophages. HAMs and MDMs show a similar dose dependency (n = 5 in
each experiment). (B) The study design repeated to compare wood smoke from Norwegian birch
trees with that obtained from Malawi mopane woodland. The dose-dependent response is
maintained, but mopane wood produces a less opaque cytoplasmic appearance compared with
birch. Error bars represent mean with 95% confidence interval (CI).
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incubated with alveolar macrophages
for 60 minutes and fixed in 4%
paraformaldehyde. Flow cytometry
quantified the oxidation-dependent
increase in fluorescein emission compared
with calibrator (“activity index”;
FACSCalibur [Becton-Dickinson]; FlowJo
[Tree Star, Ashland, OR]).

Statistical Analysis
Cytokine release, oxidative burst, and
internalization by particulate exposure
category were compared by one-way
ANOVA with Tukey test (P , 0.05). HAM
and MDM particulates were compared
using Student’s t test. Bacillary numbers
and mean time to MGIT positivity
(nonparametric) were compared using
Kruskal-Wallis tests. GraphPad Prism 6
(GraphPad Software, Inc., La Jolla, CA) was
used for analysis.

Results

Macrophage Uptake of PM
A total of 82 healthy adults from Malawi
(median age, 33 yr; range, 21–67 yr) and 12
from Liverpool (median age, 26 yr; range,
18–65 yr) underwent bronchoscopy with
no serious adverse events. All Malawi
volunteers reported HAP exposure. Ex
vivo, HAMs demonstrated considerable
heterogeneity with respect to the density
of particulate loading (Figure 1A). We
reproduced this feature in both HAMs
and MDMs from healthy adult volunteers
(Liverpool, UK) by in vitro exposure
to sonicated particulate suspensions
(Figure 1B). Cytoplasmic area occupied
by particulates in ex vivo HAMs from
Malawi ranged from 0.1 to 28.1%
(median, 1.3%).

Dose- and time-dependent responses to
particulates in human alveolar and MAMs.
HAMs were isolated from five volunteers.
Dose-dependent uptake of particulate was
demonstrated in both cell types. The median
particulate load in Liverpool HAMs
challenged in vitro for 5 hours with 2.5 mg/ml
to 20 mg/ml of FCB was 7.25% (range,
7–10%) and 37.8% (range, 35–45%),
respectively; for MDMs, 19% (range,
11–28%) and 43% (range, 35–49%). There
was no significant difference between
particulate uptake by HAMs and MDMs
(P = 0.794; Figure 2).

The time-dependent uptake of FCB by
MDMs is shown in Figure E1 in the online

supplement. The PM load scores obtained
after the addition of 20 mg/ml FCB showed
an initial exponential increase from
1.95% at 40 minutes to 43.4% at 5 hours.
The time–carbon burden relationship
appeared to plateau between 5 and
24 hours.

The dose-dependent responses to
smoke particulates derived from Malawian
cooking wood, particulates from Norwegian
birch wood, and FCB were different in
HAMs and MDMs. Equivalent exposures
generated greater cytoplasmic particulate
load with Norwegian wood compared with
Malawi wood or FCB. HAM data are shown
in Figure 2B.

Inflammatory Cytokine Response
to Particulate Challenge in HAMs
and MDMs
A dose-dependent increase in both IL-6
and IL-8 was seen using 5-hour FCB
challenge with both HAMs and MDMs
from healthy UK volunteers (Figure 3).
Baseline cytokine production was not
significantly different in HAMs and
MDMs for IL-6 and IL-8 (P = 0.23
and P = 0.45, respectively). There were
significant increases in IL-8 production
between baseline and 20 mg/ml FCB
challenge for MDMs (P , 0.05) and
HAMs (P , 0.05). The magnitudes of
response were similar, with log10
increases of 0.93 (SEM = 0.21) and
0.74 (SEM = 0.19), respectively, being
observed.

Reduced Association of both IgG-
Coated Beads and S. pneumoniae in
Particulate-Loaded MDMs
Fluorescent bead ingestion by particulate-
loaded MDMs was reduced in a dose-
dependent manner (Figures 4A and 4B);
57% (SD = 6.2) of control cells were
associated with beads. At 5 mg/ml, the
percentage of cells associated with beads
was reduced to 43% (SD = 3.50; P =
0.002) with FCB, 40% (SD = 3.02; P ,
0.001) with Malawian wood, and 37%
(SD = 4.38; P , 0.001) with Norwegian
wood.

Within each condition, the
macrophage particulate load varied by
individual. We therefore examined the
relationship between macrophage
particulate content and bead uptake (see
Figure 4C). With linear regression models,
there was a negative correlation between
particulate content and inferred

phagocytosis rate, and the magnitude of the
effect varied by particulate type. Malawi
and Norwegian wood smoke treatments
had a larger effect on bead association than
FCB according to this measure (analysis of
covariance P , 0.001).

Similar results were seen with S.
pneumoniae (Figure 5A): the percentage of
MDMs associated with carboxyfluorescein-
succinimidyl ester–labeled S. pneumoniae
was dependent on the dose of FCB and
Malawian and Norwegian wood smoke;
48% (SD = 7.43%) of control cells were
associated with S. pneumoniae. After
treatment with 5 mg/ml PM, this
proportion was reduced by FCB to 34%
(SD = 5.86%; P = 0.047), by Malawian
wood smoke to 27% (SD = 5.20%; P =
0.009), and by Norwegian wood smoke to
27% (SD = 4.08%; P = 0.006). At 50 mg/ml,
bead association in macrophages was
further reduced. Malawian wood had the
strongest inhibitory effect, which was
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Figure 3. Particulate exposures result in dose-
dependent cytokine release from both HAMs
and MDMs. FCB added to either HAMs or
MDMs (n = 5 in each experiment) resulted in
dose-dependent increases in the concentration
of IL-6 (A) and IL-8 (B) at 5 hours of incubation.
There was a higher concentration of both
cytokines produced by HAMs compared
with MDMs at all doses. Error bars represent
95% CI. *P , 0.05 compared with no
particulate challenge by one-way ANOVA with
Tukey’s test.
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significant compared with FCB (P, 0.001;
Figure 5B).

MDM Phagocytosis and Killing of
M. tuberculosis
Pre-exposure of MDMs to 50 mg/ml
Norwegian wood smoke was associated

with a significant decrease in the
proportion of M. tuberculosis–infected
MDMs compared with particulate-
unexposed control subjects (53 and 72%,
respectively; P = 0.0001; Figure 6A).

Pre-exposure to Malawian wood smoke
at two different concentrations resulted in

no difference in the proportion of M.
tuberculosis–infected MDMs, but was
associated with a significantly reduced
median number of mycobacteria seen per
cell compared with control MDMs (five
bacilli/cell and seven bacilli/cell,
respectively; P , 0.0001). This was not
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Figure 4. Particulate exposure results in a dose-dependent reduction in fluorescent bead association by MDMs. MDMs were exposed to FCB, Malawi
wood smoke particulates (MW), or Norwegian wood smoke particulates (NW). Phagocytosis was assessed by association or uptake of fluorescent
beads. (A) Representative images obtained by fluorescence microscopy. Phagocytosis rates are shown in (B). Error bars indicate 95% CI. *P , 0.01
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observed in MDMs exposed to Norwegian
wood smoke (Figure 6B).

There were no significant differences
between groups in 16-hour supernatant
mycobacterial load (MGIT days to culture
positivity; Figure 6C), and no significant
differences in 16-hour cell lysate
quantitative culture (data not shown).
There were also no differences between
quantitative MGIT culture of Day 7 lysates
from TB-infected MDMs exposed to
Malawian wood smoke, or the lower
concentration of Norwegian wood smoke
(Figure 6D). Exposure to the higher
concentration of Norwegian wood smoke

(50 mg/ml) was associated with significantly
increased median days to MGIT positivity
for Day-7 lysates (7 d compared with 3
d for controls; P , 0.05), implying
a reduced mycobacterial load (Figure 6D).
This may be due to reduced number of
viable MDMs in cell culture.

Reporter Bead Oxidative
Burst Results
BAL samples from 38Malawian participants
naturally exposed to wood smoke were
tested for the macrophage capacity for
oxidative burst. Oxidative burst activity was
significantly reduced in HAMs that had

a higher PM load (ANOVA P , 0.01;
Figure 7).

Discussion

HAP causes almost 4 million deaths per year
due to respiratory infections, chronic lung
disease, cancer, and cardiovascular effects
(3, 33). Pulmonary TB has also been
associated with HAP, but epidemiological
evidence is of low quality (34). In low- and
middle-income countries, HAP exposure
results mostly from the combustion of
biomass fuels for cooking, heating, and
lighting (2). In this study, we present data
linking relevant carbon and wood smoke
particulates to human pulmonary infection
in the context of this global problem. First,
in vitro modeling can reproduce in vivo
exposures for alveolar macrophages. The
appearance of HAMs exposed in vivo to
inhaled indoor air pollution can be
reproduced by in vitro exposure to
respirable-sized combustion products of
HAP-relevant fuel sources. Using HAMs
and MDMs derived from healthy
volunteers, cytokine production in response
to in vitro FCB challenge was consistent
with an acute inflammatory response.
Second, wood smoke exposure has the
potential to reduce internalization of
relevant respiratory pathogens.
Phagocytosis of beads, S. pneumoniae, and
M. tuberculosis appeared impaired, but
there was no effect on killing of M.
tuberculosis. Finally, in vivo alveolar
macrophage particulate loading is inversely
related to capacity to produce an effective
antibacterial response.

Cytokine data presented here are
consistent with in vitro and in vivo studies.
In murine models, BAL concentrations of
proinflammatory mediators, including IL-6,
rise in acute carbon particle exposures (35)
and chronic wood smoke exposures (36),
which is associated with monocyte influx
to the lung. Coculture models of airway
epithelium have demonstrated the
additional inflammatory potential of wood
smoke over washed particles (37). Human
data from fire fighters occupationally
exposed to forest fires also show systemic
up-regulation of IL-6 and IL-8 (23). Our
fine carbon data suggest that MDMs and
HAMs share similar dose–response profiles
with respect to IL-6 and IL-8 production.

The phagocytosis results are consistent
with murine models in which PM from
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outdoor air pollution increases the binding
of S. pneumoniae in vitro and reduces
internalization (38). In the same study, the
rate of killing of internalized bacteria was
similar, but overall killing was reduced due
to decreased internalization. Our study
offers human evidence that phagocytic
association and internalization of
pathogenic bacteria are disrupted. We
observed a greater effect on phagocytosis

per particulate mass of wood smoke than
with FCB. Wood smoke exposure is
a complex insult, inducing a number of
effects, including increased cytosolic reactive
oxygen species (39). Compounds, such as
transition metals, endotoxin (40), and other
volatile compounds, may be adsorbed onto
the core of carbon particles. This substantially
alters the toxicity profile of wood smoke
compared with carbon alone (22).

After bacterial ingestion by the alveolar
macrophage, an intact oxidative burst
response is key to antibacterial function
in the lung. Oxidative mechanisms are
important in the killing of extracellular
organisms, such as S. pneumoniae, and the
production of reactive oxygen
intermediates is part of the host response to
M. tuberculosis (41). There is evidence of
the detrimental impact of particulates on
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Figure 6. Particulate wood smoke exposure alters phagocytosis, but not killing, of Mycobacterium tuberculosis by MDMs. A single batch of MDMs was
exposed to Malawi wood smoke (Malawi) or Norwegian wood smoke (Norway), and then challenged with M. tuberculosis. Phagocytosis was assessed at
16 hours by auramine staining. Both culture supernatant (at Day 1) and cell lysate (at Day 7) underwent liquid culture. Phagocytosis: the proportion of
macrophages (Macs) with associated M. tuberculosis ([A] minimum 200 macrophages counted per condition) and the number of mycobacteria in each
macrophage ([B] minimum 100 macrophages counted per condition) are shown. Killing: median time to culture positivity is shown for supernatants at Day 1 (C)
(n = 7 replicate wells) and cell lysates at Day 7 (D) (n = 9 and n = 4 replicate wells for Malawi and Norwegian wood, respectively). Error bars represent
interquartile ranges. Statistical tests are nonparametric: Kruskal-Wallis (A and D) and Wilcoxon tests (B). MGIT, Mycobacteria Growth Indicator Tube.
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alveolar macrophage phagocytosis both
in vitro and in animal studies (26).
Experimental human studies have not
addressed phagocytic function, and could
not reflect the chronicity and intensity of
real-world HAP exposures (42, 43). We
demonstrated a functional deficit in
alveolar macrophage function in the
context of everyday human biomass smoke
exposure: macrophages containing higher
levels of particulates showed a reduction in
superoxide generation. Proinflammatory
effects do not explain this finding, as this
would be expected to increase respiratory
burst (44). Anergy resulting from
protracted innate immune activation might
explain the finding, and is the focus of
further work.

Taken together, our observations of
reduced phagocytosis and oxidative burst
capacity are consistent with the clinical and
epidemiological trials that associate
respiratory tract infections and HAP. In the
Randomized Exposure Study of Pollution
Indoors and Respiratory Effects (RESPIRE)
trial, cases of severe hypoxic respiratory
syncytial virus–negative pneumonia
occurred more commonly in children with
greater wood smoke exposure (9). Our
findings suggest an explanation, that
specific defects in the pulmonary innate
immune system are responsible, and that
these reduce the effectiveness of alveolar

macrophage–mediated defense against
common lower respiratory tract
pathogens.

Our data for M. tuberculosis are not
conclusive. Although Malawian wood
smoke exposure was associated with
a reduced number of mycobacteria per
macrophage, high-dose Norwegian smoke
exposure resulted in a reduced proportion
of infected macrophages and appeared
toxic to cells. There was no overall
effect on killing of M. tuberculosis by
macrophages. A previous study did not
show alterations in phagocytosis or
phagosomal maturation with in vivo
particulate exposure (45). However, mice
deficient in the reduced nicotinamide
adenine dinucleotide phosphate oxidase
show only a transient increase in sensitivity
to M. tuberculosis infection, indicating that
the superoxide burst is not key to the control
of TB infection (46), which likely involves
other microbiocidal mechanisms not
addressed in this current study.

We examined two wood types to assess
if dose equivalents from different sources
might have disparate effects. Differential
effects of burning (47) were minimized
by using products of consistent and
controlled combustion. Despite the
predominance of black carbon in all
particulate types, particulate loading, as
quantified by digital image analysis,

varied, and did not necessarily correlate
with effect. For example, although Malawi
wood smoke showed less particulate
loading per mass exposure, it had a greater
effect on phagocytosis of beads,
pneumococci, and M. tuberculosis than
the comparators. HAP fuel use is likely to
change considerably in the context of
intervention studies, exposure reduction
campaigns (48), poverty reduction, and
improvements in technology (49).
We recommend, in this context, when
studying HAP in different regions,
or making comparisons between
populations with varying fuel use, that
particulate load should not be used in
isolation to quantify exposure or to
estimate effect.

There is considerable heterogeneity in
lung macrophages particle uptake between
cells in the same microplate well. These
appearances are similar to those of HAMs
naturally exposed to biomass smoke.
As laboratory cells were exposed in
a consistent manner, these data imply that
particle uptake by lung macrophages is
determined by the individual cell
propensity or capacity for association and
phagocytosis, and not simply because of
the duration of exposure. Differential
states of activation or polarization might
explain these differences, but we were
unable to test this. Neither is it possible
to clearly establish if phagocytosis of
bacteria was completed, or if this effect
lies in a reduced association or adhesion
to the cell.

In conclusion, our study demonstrates
that human macrophages challenged with
smoke ex vivo are similar to HAP-exposed
macrophages in vivo. We show dose-related
increases in cytokine production and
decreases in phagocytosis and oxidative
burst function in response to smoke
exposure. We propose that particulate
loading of alveolar macrophages offers
a marker of macrophage functional
impairment, and a link between household
particulate exposure and respiratory
infection. n
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