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Abstract

Congenital myopathy is a clinicopathological concept of characteristic histopathological findings 

on muscle biopsy in a patient with early-onset weakness. Three main categories are recognized 

within the classical congenital myopathies: nemaline myopathy, core myopathy, and centronuclear 

myopathy. Recent evidence of overlapping clinical and histological features between the classical 

forms and their different genetic entities suggests that there may be shared pathomechanisms 

between the congenital myopathies. Animal models, especially mouse and zebrafish, have been 

especially helpful in elucidating such pathomechanisms associated with the congenital myopathies 

and provide models in which future therapies can be investigated.
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Introduction

The diagnosis of a congenital myopathy involves a constellation of clinicopathological 

features typically involving a patient with early-onset weakness together with characteristic 

histopathological findings on muscle biopsy and normal to slightly elevated creatine 
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phosphokinase levels. Involvement of the extraocular and/or facial musculature is also 

common. The three main clinicopathologically defined categories of classical congenital 

myopathies are nemaline myopathies (NMs), core myopathy, and centronuclear myopathy 

(CNM). Recent findings suggest that the congenital myopathies are a more diverse group of 

disorders with varied but overlapping clinical and histologic phenotypes, showing more 

similarities than anticipated. Increasing evidence suggests that some of the histological 

features on muscle biopsies can occur on a spectrum that crosses the boundaries of 

individual genetic entities. Animal models have been especially helpful in elucidating the 

pathomechanisms of the congenital myopathies. Recent advances suggest that abnormal 

excitation-contraction coupling may be a common theme in the congenital myopathies, 

either as a result of malformed contractile filaments in the case of the NMs or disruption of 

calcium homeostasis at the level of the triad (the smallest functional component of the 

myofiber that includes the T-tubule and sarcoplasmic reticulum [SR]) in the case of the 

centronuclear/myotubular and core myopathies.

This review discusses advances leading to this expanded picture of congenital myopathies 

over the past 3 years, with an emphasis on emerging clinical and histologic phenotypes and 

genotype-phenotype relationships. We focus on the most common histologic types of 

congenital myopathies (nemaline, core, and centronuclear), and highlight the broadening 

spectra of genotypes and overlapping histological phenotypes within each category. We also 

discuss the recent relevant developments of animal models for elucidating disease 

mechanisms and preclinical therapeutic possibilities.

Congenital Myopathies with Rods

In biopsies from patients with NM, the muscle cells contain typical rod-like accumulations 

of Z-disk–derived material [1]. Rods typically are found in the sarcoplasm but may also be 

intranuclear [2]. Rod formation has been associated with mutations in skeletal muscle α-

actin (ACTA1) [3], nebulin (NEB) [4], tropomyosin 3 (TPM3) [5], tropomyosin 2 (TPM2) 

[6], troponin T1 (TNNT1) [7], cofilin (CLF2) [8], and, most recently, a member of the BTB/

Kelch family of proteins (KBTBD13) (Table 1) [9••].

Clinically, the NMs are subclassified into severe congenital, intermediate congenital, typical 

congenital, childhood-onset, and adult-onset forms [10]. The typical presentation consists of 

proximal weakness, respiratory insufficiency, and prominent facial weakness, most often 

sparing of the extraocular muscles [10]. The clinical phenotype associated with intranuclear 

rods may be more severe than that associated with sarcoplasmic rods [11•]. Patients with 

nebulin-related NM may have distal predominant weakness [12]. Also, some of the genes 

associated with NM have been associated with distal arthrogryposis (TPM2 [13], NEB [14], 

and TPM3 [15]). There is no association between clinical severity and the number of rods 

observed in a biopsy [16].

The disease genes associated with NM encode components of the thin filament part of the 

contractile apparatus, and NMs are thus considered diseases of the thin filament. Overall, 

they represent diseases in which mutations disrupt the ability of the myofiber to generate 

adequate force during contraction. While numerous studies have supported these 
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conclusions, the most comprehensive data are provided from recent discoveries in ACTA1-

related and NEB-related congenital myopathies (see below).

ACTA1-Related Myopathies

Mutations in skeletal muscle α-actin cause primarily sporadic autosomal-dominant NM, and 

are associated with a range of congenital myopathies that additionally include congenital 

fiber-type disproportion (CFTD) and core-rod, cap, and zebra body myopathies [3, 11•]. 

ACTA1 is the primary protein component that polymerizes to form the thin filaments in the 

functioning myotube [3].

Attempts to establish consistent genotype-phenotype correlations in ACTA1-related 

myopathies have been largely inconclusive, and mutations associated with classic NM are 

scattered throughout the gene [11•]. While there is no consistent relationship between the 

location of ACTA1 mutations and the severity of disease [11•, 17, 18], there is some recent 

evidence suggesting that mutation location is correlated with histopathological appearance. 

ACTA1 mutations have been associated with both cytoplasmic and intranuclear rods [11•, 

19], while intranuclear rods are most often associated with mutations of p.Val165 [11•]. 

Mutations that cause CFTD are preferentially found within tropomyosin-interacting sites on 

the surface of the protein [20]. This is an interesting relationship, given that TPM3 mutations 

appear to cause CTFD more commonly than NM [20].

Acta1 transgenic and knock-in mouse models have provided a means for gaining further 

insight into pathophysiology and possible treatments of ACTA1-related myopathies. 

Transgenic mouse models of dominant ACTA1 mutations show that, as in human disease, 

increased disease severity is associated with decreased levels of functional protein [21••]. 

Studies of overexpression of alternate actin isoforms in Acta1 knockout mice show that 

cardiac actin [22] but not cytosolic actin [23] is capable of improving the functional 

phenotype of the Acta1 knockout mice. Because of an observed association of muscle 

hypertrophy with milder disease, Acta1 (His40Tyr) knock-in mice were exposed to 

hypertrophy-promoting factors (FHL1 and IGF1) and this resulted in increased body weight, 

improved mobility, and decreased rod pathology [20]. Based on suggestive data from a 

small clinical cohort study [24], Nguyen et al. [25] examined the effect of L-tyrosine 

administration to the same knock-in mouse model. Promisingly, the L-tyrosine treatment 

resulted in improved mobility and decreased rod pathology on muscle biopsy.

NEB-Associated Myopathies

Mutation in the nebulin gene causes recessively inherited NM [4]. Other than mode of 

inheritance, NEB-related NM is difficult to distinguish from other rod myopathies. While 

thigh muscle groups are diffusely affected in ACTA1-related myopathies, they are relatively 

spared in NEB-related myopathy [26]. Muscle MRI shows more prominent involvement in 

the distal lower leg muscles in these patients, especially in the ankle dorsiflexors [26]. There 

is also evidence for histological overlap between NEB-related myopathy and core myopathy, 

as a patient with NEB mutations was discovered to have core-rod myopathy [27••]. 

However, the m pattern was similar to that observed in patients with NEB-related NM as 

opposed to patients with core myopathy alone [27••].
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Studies of myocytes in vitro and vertebrate models provide further insights into the 

molecular mechanism underlying weakness in NEB-associated myopathy. Quantification of 

nebulin expression in patient biopsies reveals a possible correlation between the quantity of 

nebulin expression and the severity of disease [14]. Studies of myotubes in vitro suggest that 

nebulin plays an important role in mediation of actin filament stability [28]. In Neb knockout 

mice, nebulin-deficient myofibers have decreased thin filament length and decreased 

generation of maximal tension in the setting of supramaximal calcium levels [29–31]. These 

findings are in keeping with what has been observed in patient myofibers [32•, 33]. A 

recently described zebrafish mutant with a recessive nebulin mutation shares the common 

features observed in both the mouse models of nebulin and patient-derived myotubes [34]. 

Thus, it seems that nebulin absence/deficiency leads to shortened thin filaments resulting in 

defective cross-bridge kinetics and submaximal force generation during muscle contraction.

Other Rod Myopathies

Recent discoveries of two new genes causing NM highlight an expanding understanding of 

the overlap between different histological subtypes within the congenital myopathies. The 

most recent genetic discovery in NM are mutations in KBTBD13 causing a dominant rod 

myopathy with cores [9••], referred to as NM type 6. This myopathy is characterized by 

childhood-onset of slowly progressive weakness of neck and proximal muscle groups, and a 

slowness of movement that is not common in other congenital myopathies [35]. This 

slowness of movement, together with core-like structures, may represent a sign of abnormal 

excitation-contraction coupling. Muscle biopsies show softly defined core areas referred to 

as “pseudocores” [35], distinct from the sharply demarcated core structures observed in 

RYR1 mutations [36, 37] and NEB mutations [27••]. The exact role of KBTBD13 is 

unknown, but other BTB/Kelch family proteins are involved in regulation of cytoskeleton 

remodeling, gene transcription, and myofiber assembly [9••].

Mutations in the cofilin gene cause a recessive myopathy with both minicores and rods [8]. 

The CFL2 gene encodes a protein that influences actin dynamics though interaction with 

tropomyosin [38]. Two siblings were described with hypotonia at birth, delayed motor 

milestones, and inability to run [8]. In contrast to classical NM, these patients have no 

involvement of facial muscles or distal leg weakness [8].

Together, the identification of CFL2 and KBTBD13 mutations in rod myopathy with cores 

underscores the growing and overlapping list of gene mutations associated with both cores 

and rods. This list additionally includes ACTA1 [39], NEB [27••], and RYR1 [36, 37, 40], 

and suggests the possibility of shared pathomechanisms between the rod and core 

myopathies. The common pathomechanisms are unknown at this time, but may represent 

defects in excitation-contraction coupling.

Myopathies with Cores

The core myopathies are characterized by the histopathological finding of areas lacking 

histochemical oxidative and glycolytic enzymatic activity reflecting an absence of 

mitochondria [41, 42]. Cores are called unstructured if they contain accumulations of 

disorganized myofibrillar material. They are referred to as either central cores (running the 
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length of the myofiber) or minicores (short zones of myofibrillar disorganization that are 

wider then they are long on a longitudinal section) [41, 42]. Based on these features, patients 

with core myopathy are traditionally subclassified as having either central core disease 

(CCD) or multiminicore disease, although this distinction may sometimes be blurred. 

Clinically, these myopathies manifest with proximal muscle weakness with onset 

congenitally, in infancy, or in early childhood [43, 44]. Less commonly, there may be bulbar 

and facial weakness [44]. Core myopathy is thought to be the most common congenital 

myopathy [45•], but may still be under-recognized because the characteristic 

histopathological changes may not be present on biopsies at an early age. The genes 

associated with core myopathies are presented in Table 1.

RYR1-Related Core Myopathies

Myopathies with cores are most commonly associated with mutations in the RYR1 gene 

[46], which encodes the skeletal muscle ryanodine receptor. RyR1 is a ligand-gated calcium 

channel located on the SR, where it functions as a critical regulator of calcium homeostasis 

and as the channel required for excitation-dependent calcium release during excitation-

contraction coupling. Central cores related to RYR1 mutations are usually identified in type I 

fibers and the muscle biopsy often shows significant fibroadipose tissue [47]. RYR1 related 

cores may be described as structured or unstructured depending on the pattern of ATPase 

activity and the degree of myofibrillary disorganization demonstrated by electron 

microscopy [44].

Core myopathies caused by RYR1 mutations can be dominant or recessive. Autosomal-

dominant and de novo mutations are usually associated with CCD, and characterized 

clinically by infantile-onset of static or slowly progressive proximal weakness involving hip 

and axial muscles [44]. Skeletal deformities are common and may include hip dislocation 

and foot deformities [48]. Bulbar weakness and respiratory compromise are rare features 

[38]. Of note, there is a wide range of clinical presentations, especially in relation to age of 

onset [49].

Historically, dominantly acting mutations in the RYR1 gene causing core myopathies 

localized more commonly to the C-terminal domain of the gene, which encodes the 

transmembrane and luminal portion of the channel [46], while RYR1 mutations causing 

malignant hyperthermia (MH) were usually located in the N-terminal and central regions of 

protein [50]. However, while this genotype-phenotype correlation still holds true for MH, 

recent data suggest that dominant CCD mutations in RYR1 span the length of the gene [49]. 

Of note, de novo dominant mutations have also been described in individuals with core-rod 

myopathy [40].

Mutations causing recessive RYR1-related myopathy appear to be distributed over the entire 

sequence of the RYR1 gene [51]. Histologically, recessive RYR1 mutations are often 

associated with multiminicores, which are shorter than classical central cores, lack 

myofibrillary organization, and are seen in both type I and type II muscle fibers [51, 52]. 

Recessive mutations are also seen with other histological findings including central nuclei 

and CFTD [53••, 54].
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Recently, Wilmshurst et al. [53••] described a series of 17 patients with RYR1 mutations and 

central nuclei on muscle biopsy. Inheritance was autosomal recessive in the majority of 

patients. There was early infantile presentation with hypotonia and weakness followed by 

progressive clinical improvement. Extraocular eye muscle involvement was also a 

prominent feature. Muscle biopsies from all of the patients manifested nuclear 

centralization/internalization without the presence of central cores commonly associated 

with RYR1 mutations. Interestingly, two-thirds of patients demonstrated central cores or 

minicores on biopsies performed later in life [53••]. An additional seven patients with RYR1-

related myopathy were described with prominent central nuclei on histopathology [55•]. 

These patients, particularly those biopsied at older ages, also demonstrated large areas of 

sarcomeric disorganization on muscle biopsy [55•]. Thus, cores or other core-like areas may 

develop over time in patients with RYR1-related CNM, emphasizing yet another 

histopathological continuum.

Histological findings may also depend on the muscle sampled, as there is evidence for 

striking differential muscle involvement in the RYR1-related myopathies. Muscle MRI 

showed relative sparing of the rectus femoris regardless of mode of inheritance and 

histopathologic subtype [56], and may represent a tool for early diagnosis of myopathies 

related to RYR1 mutations. Additional evidence suggests that the gradient of distribution and 

severity of muscle involvement on muscle MRI may be helpful in differentiating dominant 

RYR1-related disease from recessive RYR1-related disease without ophthalmoparesis [57].

RYR1-related myopathies are thought to result from abnormal excitation-contraction 

coupling secondary to impaired calcium release in the setting of a defective ryanodine 

receptor calcium channel. How this defect is related to the histological development of core 

structures remains unclear. The development of cores was recently studied in an 

Ryr1Y522S/WT mouse model with MH and mild core myopathy [58]. This mouse had 

progressive core development with localized mitochondrial damage and subsequent 

disruption of nearby SR and T-tubule structures, followed by development of early cores 

with absent mitochondria and shortened sarcomeres [58]. Disruption of the T-tubule system 

is commonly observed in both core myopathies and centronuclear/myotubular myopathies, 

which may explain why both cores and central nuclei may be observed in patients with 

RYR1 mutations [53••, 58].

A second knock-in mouse models the common and clinically severe CCD mutation 

p.Ile4898Thr [59•]. Histologically, the diseased mouse muscle undergoes transition from 

minicores to central cores and rods [59•]. Interestingly, this mutation was recently observed 

in patients with severe core-rod myopathy [40]. Therefore, additional study of this model 

may provide key insight into overlap between rod and core myopathies.

SEPN1-Related Core Myopathies

SEPN1 encodes selenoprotein N1, a member of the selenocysteine-containing protein 

family, which may play a role in intracellular calcium homeostasis and protection against 

redox-related cellular damage [60]. SEPN1 gene mutations are associated with 

multiminicores, which are typically smaller in size than those associated with recessive 

RYR1 mutations [47], although there is a large histological spectrum associated with SEPN1 
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mutations that also includes nonspecific myopathic changes, CFTD, and Mallory body-like 

inclusions [61, 62]. Scoto et al. [63] describe a large case series of patients with SEPN1-

related myopathies. Clinically, patients with SEPN1-related disease manifest with a 

predominantly axial myopathy with weak neck flexors, spinal rigidity, and scoliosis, as well 

as prominent respiratory compromise disproportionate to their extremity weakness. The 

respiratory compromise may be progressive even while limb weakness remains relatively 

mild and static. The majority of these patients achieve and maintain independent 

ambulation. Bulbar weakness is reported while extraocular muscle involvement does not 

seem to occur [63]. There is no relationship between morphological pattern of minicores and 

the type or localization of SEPN1 mutations [64].

Studies in zebrafish and human muscle demonstrate that SepN1 interacts closely with the 

RyR1and is thereby involved in the regulation of intracellular calcium homeostasis [65]. A 

mouse Sepn1 knockout model, while not expressly recapitulating the weakness and 

histopathology of the human disease, is likely to provide a system for further exploration of 

the pathogenesis of SEPN1 mutations [66].

Myopathies with Central Nuclei

CNMs are characterized by excessive internalized/centralized nuclei within myofibers on 

muscle biopsy without prominent findings of degeneration or regeneration. There may be 

abnormal patterns on NADH-TR staining, which can be helpful in differentiating different 

subtypes of CNM. Clinically, the age of onset and pattern of weakness vary depending on 

the gene involved and the specific mutation. As with the congenital myopathies discussed 

earlier, there is increasing evidence of histological overlap and recent studies in animal 

models that have helped to clarify the underlying molecular mechanisms. Genes associated 

with CNM are summarized in Table 1.

MTM1-Related Centronuclear Myopathy

X-linked CNM or myotubular myopathy is caused by a mutation in the MTM1 gene coding 

for myotubularin, a member of the phosphoinositide phosphatase protein family [67]. 

Phosphoinositides and their regulatory enzymes are primarily involved in the trafficking of 

membranes and vesicles between subcellular organelle membranes [68].

Myotubular myopathy most commonly presents with severe symptoms starting from birth 

[69]. Affected male neonates are profoundly hypotonic and weak with significant respiratory 

failure and feeding problems, often resulting in early mortality. External ophthalmoplegia is 

common, although it may not be noticeable at birth [69]. Surviving individuals have 

significant morbidity, including lifelong wheelchair and ventilator dependence. A minority 

of boys with MTM1 mutations have a more mild clinical presentation [69]. Mutations are 

found throughout the gene, and there is limited correlation between genotype and phenotype 

[70]. However, a few mutations have been observed to cause milder symptomatology [70, 

71]. Female carriers are usually asymptomatic, although there are rare reports of 

unfavorably skewed X-inactivation leading to a severe infantile form [72] or a mild adult-

onset form in females [73].
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The histopathology of myotubular myopathy has been reviewed by Romero [74]. Myofibers 

show single, very central nuclei within round fibers, often with a dark central region 

surrounded by a pale peripheral halo on NADH-TR staining [74]. In muscles of patients 

with the milder and more slowly progressive forms of MTM1-associated myopathy, 

necklace fibers, which appear as a basophilic ring of internalized, but not necessarily 

centralized, nuclei aligned beneath the sarcolemma, are a fairly distinct feature [75•].

Recent advances from the study of animal models for myotubular myopathy have provided 

insight into the molecular mechanism of the disease and have opened avenues for the 

development of effective treatments. A zebrafish model of myotubular myopathy 

recapitulated the salient aspects of the human disease and, importantly, identified structural 

and functional abnormalities in the T-tubule/terminal SR (triad) system [76••]. This study 

additionally uncovered triad abnormalities in biopsies from patients with MTM1 mutations. 

Subsequently, the observations of structural and functional abnormalities in the triad, 

including defective excitation-contraction coupling and altered calcium homeostasis, have 

been demonstrated and expanded upon in both murine and canine models of myotubular 

myopathy [64, 77, 78, 79••]. These studies have led to a conclusion that a major aspect of 

disease from MTM1 mutations is due to abnormalities in the excitation-contraction coupling 

machinery. This pathology is likely caused by the loss of myotubularin function at the triad, 

as several studies have demonstrated its localization to this structure, although the exact 

pathomechanisms are still under investigation [64, 76••, 78].

Additional studies using the murine knockout model and the zebrafish model of myotubular 

myopathy have suggested new avenues for therapy development. Buj-Bello et al. [78] have 

successfully demonstrated rescue of both histopathologic abnormalities as well as muscle 

functional properties by adeno-associated virus-mediated re-expression of MTM1, revealing 

the potential efficacy of gene therapy for the disease. A separate study by Lawlor et al. [80] 

showed that treatment with an activin inhibitor improves muscle strength and prolongs 

lifespan of the Mtm1 knockout mice. Lastly, exposure of the zebrafish myotubular myopathy 

model to an acetylcholinesterase inhibitor resulted in significantly improved movement 

[81••]. This, in combination with a case report describing clinical features of a 

neuromuscular disorder and qualitative improvement with pyridostigmine in a patient with 

myotubular myopathy [81••], suggests that augmentation of neuromuscular junction function 

may be an additional viable treatment strategy.

DMN2-Related Centronuclear Myopathy

A subset of individuals with dominant CNM possess mutations in the DNM2 gene [82]. 

DNM2 encodes the dynamin-2 protein, a large GTPase involved in membrane traffic, 

endocytosis, and interaction with the actin and microtubule filamentous networks [83]. 

Clinical forms of DNM2-related CNM range between mild onset in late childhood or 

adulthood and severe, early onset [82, 84–86]. Characteristic muscle involvement includes 

facial and extraocular muscle weakness, and ptosis is frequently present [87]. Extremity 

weakness is often diffuse, although MRI studies show more prominent involvement of the 

distal limbs in many patients [88, 89]. In terms of genotype-phenotype correlations, 

mutations causing severe disease are most commonly found in the pleckstrin-homology and 
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GTPase effector domains, while more mild disease is associated with middle domain 

mutations [90].

The characteristic pathology of DMN2-related myopathy has also been reviewed by Romero 

[74]. Muscle fibers demonstrate nuclear centralization and, to a lesser degree, nuclear 

internalization. A characteristic histopathological feature of DNM2 mutations is strands 

radiating from the central nucleus, which are identified with NADH-TR staining on 

transverse sections. Type I myofiber predominance and hypotrophy are also commonly 

observed.

Although the specific pathomechanisms underlying DNM2-related CNM are still unknown, 

recent studies have provided insight into the molecular basis of the disease. Two in vitro 

studies found that CNM-causing mutations can increase Dyn2 GTPase activity and alter the 

self-assembly properties of Dyn2 polymers [91, 92]. In a knock-in mouse model of DNM2-

related CNM, subtle alterations in triad organization were reported and there was a 

significant increase in basal cytosolic calcium [93]. Similarly, Cowling et al. [94] showed 

that viral overexpression of mutant Dyn2 in mouse muscle causes substantial T-tubule 

disorganization resembling the changes seen in models of myotubular myopathy. Unlike 

MTM1, Dyn2 does not appear to localize to the triad [93, 94], and the relationship between 

Dyn2 function and triad architecture is still unclear.

BIN1-Related Centronuclear Myopathy

Amphiphysin 2-related CNM is a comparatively rare form of CNM. It is associated with 

mutations in the BIN1 gene encoding the protein amphiphysin 2, which binds to DNM2 

during clathrin-mediated endocytosis [95]. Clinical features include marked facial weakness, 

prominent masticatory weakness, external ophthalmoplegia, ptosis, and proximal muscle 

weakness [96].

Several studies have shown that a muscle-specific iso-form of amphiphysin 2 is important 

for T-tubule biogenesis [97, 98]. In the initial characterization of BIN1-related CNM, Nicot 

et al. [99] demonstrated that expression of mutant protein disrupted tubule formation in an 

ex vivo model of T-tubule biogenesis. Amphiphysin 2 localization and triad architecture 

have been shown to be altered in muscle from patients with MTM1, DNM2, and BIN1 

mutations, as well as the mouse knockout model for Mtm1 [100••]. Thus, a potential 

common mechanism emerges with the known genetic causes of CNM involved in the 

disruption of triad formation and thus the mediation of excitation-contraction coupling. This 

then also establishes a pathophysiological link between the centronuclear and core 

myopathies that is reflected in the shared histological features seen in some RYR1-related 

myopathies.

Conclusions

Congenital myopathies are a group of muscle disorders largely defined by their 

histopathological appearance, but more recently have been expanded to include varied and 

overlapping phenotypes as well as genotypes where a single histological appearance can be 

caused by mutations in multiple genes and mutations in a single gene can result in multiple 

Nance et al. Page 9

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2015 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phenotypic and histological presentations. In addition, distinct histopathological features, 

once thought to be defining for a given subtype, can be observed in the same patient 

associated with variable genetic diagnoses. These overlapping histopathological features 

reinforce the concept of overlapping pathophysiological mechanisms. Disruption of 

excitation-contraction coupling and control of the skeletal muscle contractile apparatus are 

now emerging as the most important pathophysiological consequences in the majority of the 

common subtypes. Animal models, especially zebra-fish and mouse knockout models, have 

been crucial in generating this broader understanding of the molecular pathophysiology and 

will provide excellent models for understanding more about genotype-phenotype 

relationships and the development of new treatments.
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