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The recent increase in multidrug resistance against bacterial infections has become a major concern
to human health and global food security. Synthetic antimicrobial peptides (AMPs) have recently
received substantial attention as potential alternatives to conventional antibiotics because of their
potent broad-spectrum antimicrobial activity. These peptides have also been implicated in plant
disease control for replacing conventional treatment methods that are polluting and hazardous to
the environment and to human health. Here, we report de novo design and antimicrobial studies

of VG16, a 16-residue active fragment of Dengue virus fusion peptide. Our results reveal that
VG16KRKP, a non-toxic and non-hemolytic analogue of VG16, shows significant antimicrobial activity
against Gram-negative E. coli and plant pathogens X. oryzae and X. campestris, as well as against
human fungal pathogens C. albicans and C. grubii. VG16KRKP is also capable of inhibiting bacterial
disease progression in plants. The solution-NMR structure of VG16KRKP in lipopolysaccharide
features a folded conformation with a centrally located turn-type structure stabilized by aromatic-
aromatic packing interactions with extended N- and C-termini. The de novo design of VG16KRKP
provides valuable insights into the development of more potent antibacterial and antiendotoxic
peptides for the treatment of human and plant infections.

The remarkable increase in multi-drug resistance against conventional antibiotics observed in various
pathogenic microorganisms has become one of the major concerns towards human health and global
food security"?. Several Gram-negative bacterial strains are resistant towards multiple antibiotics and
pose a great threat due to the absence of active bactericidal compounds®*. The use of antimicrobial
peptides (AMPs) as novel antibiotics has been proposed and widely accepted for a long time. Due
to their rapid and broad spectrum of antimicrobial properties along with their generalized mode of
action, AMPs have been proposed for the treatment of microbial infections, specifically those caused by
antibiotic-resistant bacteria>’. AMPs are generally small peptides having antimicrobial activity despite
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a high degree of variability in their sequence, mass, charge and three-dimensional structure®. They con-
stitute a vast group of molecules that are widely distributed throughout nature®. A variety of organisms,
ranging from invertebrates to plants, animals and humans, produce AMPs to protect themselves against
infection, and share common elements in their defense mechanisms against pathogens®. In fact, AMPs
are less susceptible to fall prey to bacterial resistance than traditional antibiotics’®. A majority of these
AMPs are cationic and selectively bind to the negatively charged lipids of bacterial membrane, mainly
through an electrostatic interaction, and have the ability to follow an amphipathic arrangement, with
a segregation of the charged face from a hydrophobic face that permits its entry into the hydrophobic
microbial membrane, leading to membrane disruption and cell death''~'*. In case of Gram-negative
bacteria, AMPs have to encounter lipopolysaccharide (LPS), a major component present in leaflet of the
outer membrane, in order to gain access into the plasma membrane!*-'. LPS acts as an efficient barrier
against entry of antibiotics or antimicrobial proteins or peptides rendering them inactive; the observed
resistance in Gram-negative bacteria may therefore be attributed fairly to LPS, although other modes
of AMP resistance do exist’. A number of recent studies have demonstrated that bacterial resistance to
cationic AMPs might occur through a variety of mechanisms, including chemical modification of mem-
brane lipids, repulsion via modification of negative charges in their membrane, sequestration, proteolytic
destruction, export through efflux pumps, uptake and destruction via transporters, and release of glycos-
aminoglycans (GAGs), polysaccharides and other polyanionic scavenging species!’~%.

A major concern to global food security involves the significant worldwide loss in crops caused by
plant pathogens such as bacteria, viruses, fungi and other microbial organisms; such losses account for
more than 10% of the overall loss in global food production®.. Due to their genetic variability and ability
to mutate, plant pathogens continuously invade plants and compromise their tendency for growth and
reproduction. Prevention and control of bacterial and fungal diseases in plants is largely based on copper
compounds and other synthetic chemicals, which are considered to be environmental pollutants and may
be toxic or even carcinogenic®?. Consequently, the development of non-toxic and non-polluting treatments
to control bacterial and fungal diseases in plants has been the focus of extensive research in agriculture.
In this regard, non-cytotoxic membrane-associated peptides with LPS-binding affinities have attracted
considerable attention as promising antibiotics for agricultural applications and plant disease control. In
this study, we have investigated the antimicrobial properties of VG16, a 16 residues conserved fusion
peptide chiefly responsible for host endosomal membrane fusion with viral envelope and subsequent
progression of infection (Fig. 1A-C)?. The structural and functional characterization of the interaction
of VG16 with different model membranes, such as zwitterionic dodecylphosphocholine (DPC) detergent
micelles, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidyl glycerol (POPG) lipid vesicles and anionic sodium-dodecyl-sulfate (SDS) detergent
micelles, have shown that VG16 forms a loop-like structure in both neutral DPC/POPC and anionic
POPG membranes®. A close inspection of the three-dimensional structure determined by NMR spec-
troscopy reveals that the structure is stabilized by a hydrophobic triad formed by Trp101, Leul07 and
Phe108 of VG16 (Fig. 1B)*. This hydrophobic packing interaction is very crucial for membrane fusion.
For instance, replacement of Trp101 with Ala eliminated the hydrophobic triad formation and com-
pletely abolished membrane fusion®. Since anionic membrane mimetic models, such as SDS micelles and
POPG vesicles, are bacterial membrane mimetic models, the loop-like structure motivated us to utilize
VG16 peptide as a building block for the de novo design of antimicrobial peptides against Gram-negative
bacteria. In this study we show that VG16KRKP, a 16 residues analogue of VG16, exhibits a ~10-fold
reduction in the MIC values against a range of Gram-negative bacteria (Fig. 1D). We also report live-cell
NMR study of this peptide and attempt to provide a correlation between the three-dimensional solution
structure of designed AMPs in lipopolysaccharide (LPS) (mimics the outer-membrane of Gram-negative
bacteria) and its direct application to treat pathogenic bacterial infection in rice and cabbage, caused by
Xanthomonas oryzae and Xanthomonas campestris, respectively. Our findings indicate that the designed
peptide is capable of resisting disease progression in plants.

Results and Discussion

Evaluation of antimicrobial activities of rationally designed AMPs. Several crystal structures
of LPS-binding receptors, co-crystallized with LPS, have shown that several positively charged amino
acid residues are required to stabilize the complex structure through the formation of plausible salt
bridges and/or hydrogen bonds between LPS phosphate groups and protein basic residues?’. Therefore,
a high positive charge may also be vital for overcoming the anionic LPS barrier. In fact, the structured
LPS-binding motif of YW12, a potent AMP designed on the basis of the structure of a 3-barrel outer
membrane protein of E. coli (FhuA) co-crystallized with LPS, comprises a centrally located stretch of
four consecutive Lys and Arg residues'*?. This stretch shows multiple hydrogen bonds and salt bridge
interactions with the biphosphate groups of lipid A in LPS***. However, inspection of the amino acid
sequence of VG16 revealed a paucity of positively charged residues (Fig. 1C), responsible for electro-
static interaction between peptide and anionic LPS that enable the cell-mediated uptake of the AMPs
into the hydrophobic interior. Thus, we hypothesized that inserting cationic “KRK” stretch in the VG16
peptide would improve its potency against Gram-negative bacteria (Fig. 1C). To this end, we designed
VGI16KRKP, where Arg and Lys residues were introduced in the extended loop region observed in the
NMR structure of VG16*. Moreover, Pro10 was also inserted in the central region to bring hydrophobic
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VG16 VDRGWGNGCG

VG16A VARGWGNGCG
VG16KRKP VARGWKRKCP
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(D)
Peptide 50% Neutralisation E.coli X campestris X oryzae  P. aeruginosa  B. subtilis C. albicans C. grubii
name of 1 EU/mL (uM)
VG16 >50 >100 >100 >100 >100 >100 >100 >100
VG16A >50 >100 >100 >100 >100 >100 >100 >100
VG16KRKP 12 8 10 15 >100 50 2 5

Figure 1. Rational design of peptides. (A) X-ray crystal structure of the Dengue virus envelope protein
(IOAN.pdb). (B) Active fragment of the virus fusion peptide, VG16. (C) The amino acid sequences of the
designed peptides VG16A and VG16KRKP. (D) LPS (1 EU/ml) neutralization and corresponding MIC values
(in pM) against Gram-positive and Gram-negative bacteria and fungi for the peptides used in this study.

and aromatic residues, such as Leull and Phel2, close to Trp5 (Fig. 1C). Interestingly, VG16KRKP is
capable of neutralizing LPS by around 50% at a concentration of 12uM (Fig. 1D). VG16 alone, without
the KRKP residue, showed neither any bactericidal effect nor antifungal activity against the strains tested
up to a concentration of 100 uM (Fig. 1D). Regarding the bacterial selectivity, VG16KRKP showed MIC
values of 8uM for E. coli, but no activity against P. aeruginosa, indicating the peptide is highly selective,
even if both are Gram-negative bacteria. This may be attributed in part to the presence of an alginate
capsule present outside the bacterial membrane in the case of P. aeruginosa, which is known to inhibit the
entry of antimicrobial agents, rendering them inactive?”?. Nonetheless, further studies are additionally
needed to investigate the presence of other potential modes of action, if any, of the designed peptide.
VG16KRKP was active against plant pathogens X. campestris and X. oryzae, with comparable MIC values
(Fig. 1D). It also inhibited the growth of B. subtilis with an MIC value of 50 pM. Moreover, VG16KRKP
also showed strong antifungal activity against Candida albicans and Cryptococcus grubii with MIC values
of 2 and 5pM, respectively (Fig. 1D). In all cases, VG16 and VG16A are inactive, suggesting the impor-
tance of the presence of positive charges in the amino acid sequence. Studies on the effects of the net
positive charge, hydrophobicity and amphipathicity on the activity of AMPs have shown that an increase
in positively charged residues and hydrophobicity up to a certain extent while maintaining amphipathi-
city have led to an increase in their observed antimicrobial activity and bacterial cell selectivity?®*. In
light of these results, our further studies focused exclusively on the VG16KRKP peptide.

Live-cell NMR spectroscopy provides information on the disruption of bacterial membrane
leading to cell lysis. Interaction of the designed VG16KRKP peptide with E. coli (DH5a) cell was
investigated at different peptide concentrations as well as with different peptide to cell ratios using solu-
tion NMR spectroscopy. Under all employed experimental conditions, the cells started to die rather
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immediately after peptide addition, as evidenced from the appearance of new peaks corresponding to
the metabolites released from the cells lysis (Fig. 2A). In particular, for the untreated cells, after over-
night incubation, the number of vital cells was comparable with those at t,, while for those treated with
the peptide, typically a reduction of 1 to 2 orders of magnitude in the number of colony forming units
(CFU) was observed (data not shown). These data represent a further demonstration of antibacterial
activity of the peptide.

One-dimensional 'H NMR spectra reveal dramatic broadening as well as reduction of NMR signal
intensities of VG16KRKP even in the presence of different number of cells. It is worth mentioning that
the concentration of the peptide was kept unchanged while the number of cells was decreased by a factor
of 2, 3 or 4, depending on the dilution factor (Fig. 2B). After several hours of co-incubation, the peptide
resonance intensities considerably increased, while the line shape returned to a stage comparable to
those of the peptide alone, as a consequence of significant cell death and subsequent peptide dissociation
(Fig. 2A). The interaction could also be deduced from the dramatic changes in the indole (NeH) ring
protons of Trp5 (resonating at ~10 ppm) (Fig. 2C), aromatic resonances (Fig. 2D), along with methyl and
other aliphatic protons (Fig. 2E) of VG16KRKP.

Furthermore, scanning electron microscopy (SEM) was performed to determine the rate of killing of
the bacteria by VG16KRKP. Bacterial suspension of the two Gram-negative bacteria E. coli and X. oryzae,
containing 10°cells, were incubated with VG16KRKP for different time intervals and analyzed by SEM
in order to understand the nature and extent of cell lysis (Supplementary Fig. S1). The concentration
of VG16KRKP used was close to MIC against both the Gram-negative bacteria (Fig. 1D). Interestingly,
shrinkage in the bacterial wall and cell lysis, leading to leakage of intracellular material, was evident from
SEM images as early as 5min post cell incubation with the peptide (Supplementary Fig. S1). After 45min
of incubation, no clear shape for cells was observed (Fig. 2E,G), indicating that the peptide is very active
and efficient against both the Gram-negative bacteria used here.

VG16KRKP binds LPS, which in turn mediates its disaggregation. As mentioned earlier, AMPs
should first interact with LPS before gaining access into the cell for its lysis. The intrinsic fluorescence of
the Trp residue present in the peptides was used to determine the binding parameters. Addition of small
aliquots of LPS into the sample containing VG16/VG16A did not show significant blue shift (~3nm) of
Trp fluorescence (Fig. 3A). In contrast, ~11nm of blue shift was observed in the emission maxima of
VGI16KRKP upon successive addition of LPS (Fig. 3A). The noticeable blue shift of the emission wave-
length is a strong evidence of the insertion of the Trp residue of VG16KRKP into the LPS hydrophobic
environment. Additionally, downward trends of the ITC profiles were observed for the binding inter-
action of either VG16A or VG16KRKP with LPS, suggesting an exothermic or enthalpy-driven process
where electrostatic/ionic interaction plays a vital role. Figure 3B and Supplementary Fig. S2 summarize
the thermodynamic parameters of peptide binding to LPS. The interaction of VG16KRKP with LPS has
been estimated to have dissociation constant (Kp) of 9.5pM, one order of magnitude lower than that for
VGI16A (Supplementary Fig. S2). Taken together, these results suggest that the lack of positive charges
in VG16/VG16A impedes their efficient binding to the LPS micelle.

To further explore the bacterial entry process through LPS layer, a combination of spectroscopic and
microscopic methods was utilized. Transmission electron microscopy (TEM) images of LPS obtained in
the absence and in the presence of VG16KRKP are shown in Fig. 3C,D, respectively. LPS in aqueous solu-
tion shows a ribbon-like assembly with variable width, thickness and few hundred pm length (Fig. 3C).
This result indicates the formation of large inhomogeneous aggregation of LPS. A similar observation
has been reported earlier in two independent studies®*2. In contrast, TEM images confirmed the disag-
gregation of ribbon-like assembly of LPS to small thread-like structures with filamentous forms in the
context of VG16KRKP treatment for 3hours (Fig. 3D). In addition, small dense spherical particles of
LPS molecules in the presence of VG16KRKP were also observed from the TEM image (Fig. 3D). Similar
morphological changes of LPS in the presence of the KYE28 peptide (derived from human heparin cofac-
tor II) have been recently observed®. Shai and co-workers have also reported EM images of LPS upon
treatment with a series of 12 amino-acid peptides and their fatty acid conjugated analogues to study dis-
aggregation®. Similar conclusions can also be drawn from dynamic light scattering (DLS) experiments.
The hydrodynamic diameter (~1000nm) and high polydispersity of LPS in aqueous solution show two-
and seven- fold decrease upon incubation with VG16 and VG16KRKP, respectively (Supplementary Fig.
S3). This result also supports that VG16KRKP has a stronger effect on disaggregation of LPS micelle.
Studies of LPS disaggregation using light scattering studies demonstrating a reduction in polydispersity
and diameter of LPS micelles upon treatment with AMP have been previously reported®.

In order to gain more insights into the mechanism of disruption of LPS aggregation at atomic-resolution,
31P NMR experiments of LPS alone as well as in the presence of different concentrations of VG16KRKP
were carried out using MnCl,, a paramagnetic quencher, as a dopant. The paramagnetic ion Mn>*
quenches *'P NMR peaks of LPS phosphate head groups in its vicinity. In the absence of VG16KRKP, a
negligible quenching of the phosphate head group signal was observed for the sample containing 10 mM
MnCl, and 0.5mM LPS (Fig. 3E). The heterogeneous aggregation of LPS makes Mn”" ions inaccessible
to the phosphate groups of LPS. Addition of VG16KRKP to the sample containing LPS at a molar ratio of
1:1 showed a negligible effect on *'P peaks of LPS phosphate groups, confirming that LPS remains intact
as a heterogeneous aggregate (Fig. 3E). However, upon subsequent addition of up to 3mM VG16KRKP
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Figure 2. Cell lysis by VG16KRKP. (A) '"H NMR spectrum of a solution of 1.5mM VG16KRKP, 10 mM
PBS, pH 7.2 in the absence (1) or in the presence of 10° cells after 30 min (2), 3h (3) or 9h (4) of co-
incubation. Spectral regions characterized by the appearance of new signals are highlited in green. (B)
Changes in broadening and intensity of VG16KRKP resonances after cell addition and cell dilution. (1) 'H
NMR spectrum of a solution containing 1 mM VG16KRKP, 10mM PBS, pH 7.2, 64 scans; (2) 'H NMR
spectrum of a solution containing 1 mM VG16KRKP and 10° cells, 10mM PBS, pH 7.2, 64 scans (2% in
intensity); (3) 'H NMR spectrum of a solution containing 1 mM VG16KRKP and 3.3x 10°cells, 10 mM
PBS, pH 7.2, 64 scans (2x in intensity). The last sample was obtained by 1:3 dilution of the sample in 2
with a 1 mM VG16KRKP solution. (C-E) Chemical shift difference of VG16KRKP 'H resonances after
cell addition and cell dilution, evidenced by expansions of spectra depicted in panel D. (C) NeH resonace
of Trp (spectrum 1, 4X intensity; spectra 2 and 3, 8 x intensity); (D) aromatic resonances around 7 ppm
(spectrum 1, 2x intensity; spectra 2 and 3, 4x intensity); (E) Ha and aliphatic region (spectrum 1, 1x
intensity; spectra 2 and 3, 2x intensity). All spectra were acquired on 600 MHz at 25°C. (F) SEM images
of E. coli in the (i) absence and (ii) presence of 10uM of VG16KRKP. (G) SEM images of X. oryzae in the
(i) absence and (ii) presence of 10pM of VG16KRKP. All images were taken 45min post incubation at 25x
magnification.
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Figure 3. Binding studies of VG16KRKP with LPS. (A) Intrinsic tryptophan fluorescence emission

spectra of VG16A or VG16KRKP in the absence and presence of LPS micelle. (B) Upper panel showing
endothermic heat of reaction vs. time (minute) upon interaction of VG16KRKP with LPS micelle. The lower
panel shows enthalpy change per mole of peptide injection vs. molar ratio (peptide:LPS) for VG16KRKP. In
this experiment, 50 pM of LPS micelle was titrated against 200 uM of peptide, VG16KRKP. TEM images of
LPS micelle (C) alone and (D) in the presence of VG16KRKP. Scale bar =1 um. (E) *'P NMR spectra of the
phosphates of LPS micelle in presence of MnCl, in free form and upon addition of increasing concentrations
of VG16KRKP signifying the fragmentation of LPS micelles, as evident from the reduction in intensity.

(LPS:VG16KRKP = 1:6), a drastic quenching of the intensity of >'P peaks of LPS phosphate head groups
was detected. This result points towards the fragmentation or disruption of LPS aggregation by forma-
tion of a small lipid vesicle, which tumbles sufficiently fast on the NMR time scale (Fig. 3E), suggesting
that the peptide follows detergent-like mechanism to fragment LPS aggregates. Collectively, the results
from *'P NMR experiments on LPS in the presence of the MnCl, quencher support the hypothesis of a
two-step mechanism of membrane fragmentation demonstrated for AMP or amyloid beta peptide®>.

Structuralinsightsinthe absence and presence of LPS by NMR spectroscopy. One-dimensional
'H NMR spectrum was monitored to understand the binding of peptides to LPS. Addition of small but
increasing concentrations of LPS caused visible concentration-dependent broadening (without inducing
any chemical shift change) for most of the proton resonances of VG16A as well as those of VG1I6KRKP
(Supplementary Fig. S4), implying a fast chemical exchange between free and bound forms of the peptide
in the NMR time scale, which is an ideal situation to determine the bound conformation of the peptide
in the presence of LPS by transferred NOESY (trNOESY)*”%, It is worth mentioning that LPS aggregates
into a large molecular weight micelle/bilayer at 14 pg/mL concentration®. The trNOESY spectra of VG16
(Supplementary Fig. S5A, left panel) and VG16A (Supplementary Fig. S5A, right panel) showed very few
cross peaks characterized by intra-residual as well as sequential NOE contacts between the backbone
and side-chain proton resonances (Supplementary Fig. S5). It is interesting to note that 43.8% of the
residues of VG16/VGI16A are Gly and hence, due to its flexibility, VG16/VG16A are highly dynamic in
aqueous solution as well as in LPS (Supplementary Fig. S5D). On the other hand, the trNOESY spectra
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of VG16KRKP at a LPS:peptide molar ratio of 1:50 yielded a large number of NOE cross peaks, thus
signifying the development of a well-folded conformation (Fig. 4A,B). Analysis of the spectra revealed
the presence of strong sequential aN (i, i+ 1) and HN/HN NOEs for most of the residues along with
few long range (i to>i+5) NOEs. A closer look at the NOE distribution showed that residues Vall,
Ala2, Trp5, Cys9, Prol0, Leull and Phel2 were characterized by a higher number of NOE contacts in
the presence of LPS (Fig. 4B and Supplementary Fig. S6). All long-range NOE contacts are summarized
in Table S1. The most important long-range NOE contacts were observed between the ring protons
of Trp5 and the aliphatic side-chain (3, ~y and §) protons of Leull. NOE contacts were additionally
observed between the residues Trp5 and Phel2 (Fig. 4B). Surprisingly, the indole (NeH) ring protons of
Trp5 did not show any NOE contact with other peptide residues. The Cys9-Pro10 bond of VG16KRKP
in LPS adopts trans conformation due to the presence of Cys9CaH/Prol0CdHs NOEs. Additionally, sev-
eral long range NOEs such as Phel1COHs/Trp5C3Hs, Trp5H6/Leul1CaH, Cys9CaH/Lys6, Lys14CoH/
Leull and Prol0C~Hs/Trp5H6 are also observed (Fig. 4B and Table S1). Notably, the aN (i, i+ 1)
NOE:s such as Trp5/Lys6 and Arg7/Lys8 are broad in nature (Fig. 4A), indicating the dynamic prop-
erties of “KRK” segment of VG16KRKP. Strikingly, the C-terminal residues Gly13-Lys14-Gly15-Gly16
of VG16KRKP did not show any NOEs in the context of LPS, indicating that this region still remains
highly flexible.

Three-dimensional structure of VG16KRKP in LPS. Twenty ensemble structures of VG16KRKP
associated to LPS was determined using NOE based distance constraints (Fig. 4C,D and Table 1) and ver-
ified using PROCHECK NMR*. The LPS-bound backbone ensemble structure of VG16KRKP was rigid
whereas the side chains of the positively charged residues remain highly dynamic. The positively charged
ammonium (H;N*-) group of Lys residues and guanidinium groups of Arg residues of VG1I6KRKP
maintain a distance of ~11-14A (Fig. 4E), comparable to that obtained between the two phosphate
head groups of the lipid A moiety of LPS*. The structure of LPS-bound VG16KRKP is amphipathic,
with the positively charged residues (Arg3, Lys6, Arg7 and Lys8) oriented in one specific direction, thus
forming a charged surface region (Fig. 4D,E). Conversely, the hydrophobic residues Trp5, Leull and
Phel2 from the central region of the peptide sequence pack together forming a hydrophobic triad, and
stabilize a loop-type structure (Fig. 4D,E). This hydrophobic cluster is further intensified by the presence
of Vall and Ala2, which are packed towards Trp5, and by Prol10 (Fig. 4E). Due to the lack of NOEs, the
C-terminus, Gly13-Lys14-Gly15-Gly16, is extended (Fig. 4E). Interestingly, this structure bears a close
resemblance to the LPS-bound structure of the synthetic peptide YI12, a modified and more potent
form of YW12. This peptide and the fusion domain of the influenza virus haemagglutinin protein in
DPC micelles show i to i+ 5 aromatic packing interactions between Phe and Trp residues (Fig. 4F)*%
they resemble the i to i+ 7 aromatic packing interaction between Trp5 and Phel2 observed herein. The
position of Trp residue of VG16KRKP in the hydrophobic core of LPS bilayer was measured using fluo-
rescence quenching experiments in the presence of two spin-labeled fatty acids, 5-DSA (5-doxyl stearic
acid) and 16-DSA (16-doxyl stearic acid). It was found that the Trp residue of VG16KRKP was around
6.8 A from the center of the LPS bilayer (Fig. 4E), suggesting that the Trp residue as well as the associated
hydrophobic hub are inserted into the hydrophobic core of LPS bilayer, most likely interacting with the
acyl chains of LPS.

VG16KRKP is non-toxic and non-hemolytic. To evaluate VG16KRKP as a therapeutic agent, we
performed hemolytic assay on human blood samples and cytotoxicity assay on HT1080 cell line. The in
vitro hemolytic assay on human blood measures the hemoglobin release in the plasma as a consequence
of RBC lysis mediated by the agent being tested. Interestingly, VGI6KRKP showed almost no hemolysis
of RBC up to a concentration of 250 M, ~30 times higher than its MIC value (Fig. 5A), whereas 2%
Triton X, used as a control, did 100% of hemolysis. Furthermore, VG16KRKP did not show any signifi-
cant (less than 5%) toxicity on HT1080 cell line up to a final concentration of 50.M VG16KRKP, i.e., ~6
times higher than the MIC value (Fig. 5B). The 0.5% Triton X 100 was used as a control for the toxicity
assay and it showed only 20% cell viability after treatment with Triton X 100. These results collectively
indicate that VG16KRKP is a non-hemolytic and non-toxic peptide.

VG16KRKP-treated Xanthomonas shows impaired infectivity to plant. Our data showed sig-
nificant antimicrobial activity against two devastating plant pathogens, namely Xanthomonas oryzae and
Xanthomonas campestris (Fig. 1D), isolated from the fields of Kalyani, West Bengal, India. To depict the
efficiency of the peptide in inhibiting leaf blight disease development in vivo, the in vitro mixtures used
for the antimicrobial assays were also used to inoculate rice plants. X. oryzae alone and the bacteria
pretreated with 500p.M VG16KRKP were used for inoculation. Leaf curling was observed in 86% of
infected plants, 5 days post infection, and also to a greater extent when compared to that observed in
only peptide treated plants (28% had any disease-like symptom) (Fig. 6). At 10 to 12 days post infection,
lesion formation was also more pronounced in infected plants compared to peptide treated plants. In
control plants, no leaf curling or lesion formation was observed (Fig. 6A). Upon observation of uprooted
plants, the wet weight of infected plants (n=14 in each set) was found to be 38% lesser compared to
control plants (Fig. 6B,i). The wet weight of treated plants was however only 9% lesser than the control
plants (Fig. 6A,B). The number of healthy leaves was 63% and 22% lower for bacteria-infected plants and
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Figure 4. Structure of VG16KRKP in LPS. Selected regions of two-dimensional '"H-"H trNOESY spectra
of VG16KRKP in LPS showing (A) fingerprint region of C*H-NH resonances, and (B) long-range NOEs
between aromatic ring protons and aliphatic side chain residues. Peaks, which are marked by the symbol *
are unassigned due to the cis-trans configuration at Cys9-Prol0 bond. All experiments were performed on a
Bruker Avance 500 MHz at 25°C. (C) Side chain representation of twenty-ensemble VG16KRKP structures
in LPS. (D) Cartoon representation of average structure of VG16KRKP conformations bound to LPS. The
hydrogen bonds, which help in the stabilization of structures, are shown as black dotted lines. All the
positive charges are facing one side, marked by circle. (E) Hydrophobic packing constituted by the residues
Vall, Ala2, Trp5, Prol0, Leull and Phel2 are shown by space filling. Interestingly, the positive charge
residues maintain a distance similar to the distance between two phosphate head groups of LPS (~12 A).
Depth of insertion study using fluorescence quencing experiments show that the position of Trp5 residue

is ~6.8 A from the center of the LPS bilayer, suggesting the Trp and othe residues of VG16KRKP, associated
with Trp have strong van-der-Waals interaction with the acyl chain of LPS. (F) Superposition of DPC bound
fusion domain of hemagglutinin (1IBN.pdb) (structure is stabilized by i, i+ 5 residues) and LPS bound
VG16KRKP (2MWL.pdb) (structure is stabilized by i, i+ 7 residues).
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Distance restraints

Intra-residue (i—j=0) 29
Sequential (|i—j|=1) 55
Medium-range (2<[i—j|<4) 10
Long-range (Ji—j|>5) 10
Total 104

Angular restraints

P 13
\J 13
Distance restraints from violations (>0.4A) 0

Deviation from mean structure (A)

Average backbone to mean structure 0.32£0.09

Average heavy atom to mean structure 1.00+0.16

Ramachandran plot®

% Residues in the most favourable and

additionally allowed regions 905
% Residues in the generously allowed Region 9.5
% Residues in the disallowed region 0.0

Table 1. Summary of structural statistics for the 20 lowest energy ensemble structures of VG16KRKP
in LPS. *Procheck NMR based analysis.

peptide-treated plants, respectively, in comparison to control plants (Fig. 6B,ii). Bacteria-infected plants
root length and shoot height were slightly affected, showing a reduction of 11% and 17%, respectively.
In contrast, peptide-treated plants show negligible effect with a reduction of 1% and 4%, respectively
(Fig. 6A,Biiii,iv). These results indicate that peptides are capable of weakening the pathogen, thus an
inhibition of disease progression has occurred.

To further quantify the pathogen in rice plants upon treatment, equal amounts of surface sterilized
leaf tissues from mock infected, Xanthomonas-infected and peptide-treated Xanthomonas infected plants
were crushed and plated on suitable media and X. oryzae growth was compared. No colonies were
observed in control sets even when clarified tissue extract was spread. Samples from plants infected
with peptide-treated bacteria had a ~10 fold reduction in the number of colony forming units (CFU)
compared to infected samples. Similar data was also obtained when 10-fold diluted samples were used
(Fig. 6C). These data indicated that VG16KRKP-treated bacteria were unable to sustain their growth
in planta, thus the peptide could effectively prevent bacterial disease development in a crop plant. We
also extended our study with same peptide on X. campestris, a causative agent of black rot infection in
cabbage (Brassica oleracea) and observed that VG16KRKP-treated plants show almost similar symptoms
as control plants (see Supplementary Fig. S7). Taken together, VG16KRKP is able to control the bac-
teria infected plant disease for two different plant systems. Meanwhile, it is important to mention that
degradation of the peptide on the plant surface, caused by proteases and phenolic compounds, cannot
be completely ruled out®. Nevertheless, growth promoting bacteria are generally found to be associated
with the rhizosphere and therefore may be protected from exposure to peptide**.

Recently, the three-dimensional structure of a plant defensin antimicrobial peptide has been deter-
mined?*. Most of the plant defensins are cysteine-rich peptides and are responsible for innate immunity
and metal tolerance, such as zinc, in plants*-*%. Unlike AMPs, the defensins are larger in size, and their
positive charge along with their hydrophobic residues are scattered at the surface of the molecule, hence
they do not adopt amphipathic structure®. In most of the plant defensins, Pro residue plays an important
role as well, where the prolines mostly prefer trans conformation than cis conformation®. In general,
proline rich AMPs, isolated from insects, have also been investigated extensively due to their variety of
modes of action to destabilize the membrane®*>!. Additionally, Pro-rich AMPs cross the blood brain bar-
rier (BBB) easily, and hence can be used as a potential novel carrier. It is to be noted that the VG16KRKP
peptide contains Cys as well as Pro residues, which means it satisfies the plant defensin activity. Moreover,
the Pro residue of VG16KRKP prefers trans conformation in LPS. We, therefore, believe that our small
designed AMP may be an alternative solution to plant defensins for killing bacteria.

Conclusion

Unlike current methods for agricultural pathogen management that include applications of hazard-
ous chemicals, AMPs are of paramount interest for application in agriculture. They are biodegradable
and generally do not induce bacterial resistance®*>. In fact, small peptides that form a major part of
defense mechanisms of a variety of organisms have been widely used for the development of genetically
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Figure 5. Hemolytic and cytotoxic effects of VG16KRKP. (A) Bar plot showing percentage of hemolysis
of human RBC upon addition of increasing concentrations of VG16KRKP. (B) Bar plot showing percentage
viability of human fibrosarcoma cell line upon treatment with increasing concentrations of VG16KRKP.

engineered disease-resistant plants®*. Therefore, application of AMPs towards the protection of crops
can help in controlling plant pathogens and in turn improve agriculture by reducing environmental haz-
ards. We have provided a comprehensive study on a de novo designed peptide, both from structural and
functional aspects, including its application for treating plant disease, thus enabling a correlation between
the two aspects. Observing the potency of this peptide against Gram-negative plant pathogens such as X.
campestris and X. oryzae, we have studied disease progression in rice and cabbage through external appli-
cation of peptide-treated pathogens. Peptide treatment to the bacteria was effective in inhibiting diseases
to a significant extent. This observation is of considerable importance, as it demonstrates the potential
use of the peptide in controlling agriculturally important pathogens. Further studies will be useful to
modify the peptide for increasing its potency against pathogens, and to study its stability and economical
feasibility in usage as a foliar spray for inhibiting plant diseases. Our present results also encourage the
development of disease resistant transgenic plants. In this context, studies involving the preparation of
nanoparticles attached to AMPs for external applications to the plant and the development of transgenic
plants including the overexpressed designed peptide are in progress.

Methods
Plant Materials and Culture. Grains of rice (Oryza sativa) variety IR64 were surface sterilized using

5% HgCl,, washed thoroughly with distilled water to remove all traces of HgCl, and planted in soil
rite. The plants were grown in normal light at 30°C. Cabbage (Brassica oleracea) seeds variety VC612
and Golden Acre obtained from Sutton Seeds, India, were soaked overnight in water, planted in Soil
rite (Keltech, India) and grown in a growth chamber at 10000 lux, 25°C, 85% relative humidity and a
photoperiod of 16 hours.
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Figure 6. Application of VG16KRKP in treating X. oryzae infection in rice plants. (A) Images of 67 days
old uprooted control, infected, and peptide-treated rice plants showing inhibition of disease upon treatment.
(B) Bar plots showing variation in wet weight of plants (i), healthy leaves (ii), root length (iii), and shoot
height (iv) between control, infected and peptide-treated rice plants. A student’s t-test was performed in
each case. (C) Bar plot of number of colony forming units (CFU) of X. oryzae obtained from equal amounts
of crushed leaf tissue of control, infected, and peptide-treated plants which show a 10-fold reduction in the
number of colonies in treated plants, confirming that VG16KRKP is capable of inhibiting disease.

Antimicrobial Activity. The detailed antimicrobial activity of the peptides VG16, VG16A and
VG16KRKP against E. coli DH5«, X. campestris pv. Campestris, X. oryzae, B. subtilis, P. aeruginosa, C.
albicans and C. grubii is described in the Supplemental Information.

Scanning Electron Microscopy (SEM). E. coli and X. oryzae were cultured in luria broth (LB) and
PS broth (Peptone 1%, sucrose 1%), respectively to mid-log phase and harvested by centrifugation at
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8000 rpm for 10min. Cell pellets were washed twice with 10mM PBS and resuspended to an ODy, of
0.01. The cell suspensions were incubated with peptide at a concentration corresponding to its MIC for
different time periods starting from 5min to 1hour at 37°C. After incubation, 10uL of bacterial sus-
pension was spotted on a slide and fixed with 10uL of 4% (v/v) glutaraldehyde in PBS at 4°C overnight.
Thereafter, the slides were washed twice with PBS and dehydrated by treatment with a graded ethanol
series (30%, 50%, 70%, 90%, and 100%), for 15min each. The samples were air dried, followed by gold
coating and observed under a SEM.

Transmission Electron Microscopy (TEM). A suspension of E. coli 0111:B4 LPS (0.1 mg/mL) in
10mM phosphate buffer, pH 7.4 was incubated with VG16KRKP for 3hours in a molar ratio of 1:1.
The 1pL aliquot was placed on a formvar coated copper grid, stained with 1% uranyl acetate, dried and
imaged in a JEOL 110 Operating at 80 KV voltage. An LPS sample without peptide served as a control.

Fluorescence Spectroscopy. The intrinsic Trp fluorescence emission spectra of 5uM peptide upon
titration with increasing concentrations of LPS (ranging from 0 to 10p.M) was measured at an emission
range of 300-400 nm using an excitation wave length of 280 nm, and excitation and emission slit of 5nm.
All the fluorescence experiments were performed at 25°C in a quartz cuvette of path length 0.1 cm using
a Hitachi F-7000FL spectrometer. Peptide and LPS stocks were prepared in 10 mM Phosphate buffer of
pH 6.0. The detailed method for the calculation of depth of insertion has been discussed in supplemental
information.

Isothermal Titration Calorimetry (ITC). The binding interaction of VG16 or VG16KRKP with LPS
was assessed using iT'C200 micro-calorimeter (MicroCal Inc., Northampton, MA). Peptide and LPS
stocks in 10mM phosphate buffer, pH 7.4 were degassed. A 300pL sample cell containing 50 pM LPS
was titrated with the peptide from a stock solution of 1.5mM at 298K and a stirring speed of 300 rpm. A
total of 20 injections, at an interval of 120sec with 2pL of peptide aliquots per injection were performed.
Micro Cal Origin 5.0 software was used to plot the raw data and the association constant (K,), change in
heat of enthalpy of (AH), free energy of binding (AG) and entropy (AS) were analyzed using a single
site binding model using the equations AG= —RT In K, and AG=AH—-TAS, respectively.

NMR Spectroscopy. All NMR experiments were performed at 25°C on a Bruker Avance III 500 MHz
NMR spectrometer, equipped with a 5mm SMART probe. Two-dimensional (2D) homonuclear TOCSY
(80 ms mixing time) and NOESY (200 ms mixing time) were acquired for 1 mM of peptide in aqueous
solution with 10% D,O and a pH of 4.5. The spectral width was 11 ppm in both dimensions. The inter-
action of the peptide with LPS was monitored by 1D proton NMR spectra with a line broadening effect
of the peptide (1 mM) in the presence of various concentrations of LPS. 2D NOESY experiments for each
peptide (VG16/VG16A/VG16KRKP) in LPS were performed with three different mixing times (100, 150
and 200 ms). 456 t1 increments (with 112 scans and 16 dummy scans per increment) and 2K t2 data
points were recorded in each experiment with a 1s recycle delay. TOCSY and NOESY experiments were
performed with States TPPI°® and quadrature detection in tl1 dimension; WATERGATE was used for
water suppression®’. All 2D spectra were processed with a squared sine bell apodization and zero filling
to 4K (t2) X 1K (t1) data matrices. All experiments were recorded using 4, 4-dimethyl-4-silapentane
5-sulfonate sodium salt (DSS) as an internal standard (0.0 ppm). A series of 1D proton-decoupled 3'P
NMR spectra of 0.5mM LPS alone and upon titration with increasing concentrations of peptides, with
and without 5mM MnCl, as a paramagnetic quencher, were recorded at 298 K with 3,072 scans (meas-
urement time ~90 minutes/experiment). Both LPS and peptides were dissolved in water supplemented
with 10% D,O at pH 4.5.

Live-cell NMR Experiments. Live-cell NMR experiments were performed on a Bruker Avance III
600 MHz NMR spectrometer, equipped with a 5mm QCI cryoprobe. Each sample (total volume 550 L)
was transferred into a 5mm NMR tube and maintained at a temperature of 310K during experiments.
Final peptide concentration was in the range of 0.5-1.5mM, with a total cell number varying from
3 x 10® to 2 x 10°. Sample preparation and other NMR experimental parameters are given in detail in
the Supplementary Information.

Calculation of NMR Derived Structures. For the NMR-derived peptide structure calculations, the
volume integrals of NOE cross-peaks were qualitatively differentiated into strong, medium and weak,
depending on their intensities in the NOESY spectra in presence of either LPS. This information was
further converted to inter-proton upper bound distances of 3.0, 4.0 and 5.0 A for strong, medium and
weak, respectively, while the lower bound distance was fixed to 2.0 A. The backbone dihedral angle (phi)
of the peptide kept flexible (—30° to —120°) for all non-glycine residues to limit the conformational
space. The CYANA program v2.1 was used for all structure calculations®® with iterative refinement of the
structure based on distance violation (hydrogen bonding as constraint was excluded for structure calcu-
lation). The stereochemistry of NMR-derived ensemble structures were checked using Procheck®. The
calculated structures have been deposited to protein data bank (PDB) with accession codes of 2MWL.
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Antibacterial Assay on Rice and Cabbage Plants. 40 days old cabbage and 55 days old rice plants
were used for the assay. Three experimental sets of plants were maintained. The rice plants were inoc-
ulated by clip inoculation method®. Briefly, log phase cultures of the infecting bacteria were washed
three times and re-suspended in 10 mM phosphate buffer, pH 7.4 to an OD of 1, roughly corresponding
to 108 cells/mL and were used for infection. Sterile scissors were dipped into cell suspension and leaf
tips were excised. For infecting cabbage plants, an insulin needle (BD Sterile needle, 32G x 5/32") was
used to prick the veins of the leaves and cell suspension was applied using a cotton swab. 10.D. cell
suspensions of X. oryzae and X. campestris pv campestris alone were used to inoculate the infected set of
rice and cabbage plants respectively. Control sets of plants were inoculated with phosphate buffer (pH
7.4) alone. 1 0.D. cell suspension of X. oryzae or X. campestris pv. campestris pre-treated for 5hours with
500 1M VG16KRKP were used to inoculate treated set of rice and cabbage plants respectively. The rice
and cabbage plants were observed for development of symptoms up to 12 and 30 days post infection
(dpi) respectively, uprooted and compared to observe morphological changes, if any.

Determination of Pathogen Density in Plant Tissue. Leaf tissue (20 mg) was cut with individual
sterile scissors from control, infected and treated sets of rice plants, surface sterilized by dipping in 5%
HgCl, for 5 to 7minutes and washed well in autoclaved double distilled water to remove all traces of
HgCl,. Sterile condition was maintained during rest of the procedure. Tissues were crushed in 1 mL
10mM phosphate buffer, pH 7.4 using separate mortar and pestle maintained for each set. An aliquot of
the suspension was diluted ten folds (up to 10~2dilution). Undiluted (50pL) and diluted tissue suspen-
sions were spread on LB agar plates supplemented with 50 pg/mL Rifampicin in triplicates and incubated
at 28°C for 2-3 days till bacterial growth appeared. The CFU were counted in each case and compared.
The experiment was repeated thrice.

Statistics. All biological experiments were repeated at least three times and three biological replicates
were used wherever applicable. Results are expressed as mean =+ standard error. Student’s t-test was also
performed to determine the statistical significance of the difference between two populations of plants
and p value < 0.05 was considered significant.
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