
Analysis of the size dependence of macromolecular
crowding shows that smaller is better
Kim A. Sharp1

E. R. Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania,
Philadelphia, PA 19104

Edited by Barry Honig, Howard Hughes Medical Institute, Columbia University, New York, NY, and approved May 21, 2015 (received for review March
18, 2015)

The aqueous milieu inside cells contains as much as 30–40% dissolved
protein and RNA by volume. This large concentration of macromole-
cules is expected to cause significant deviations from solution ideality.
In vivo biochemical reaction rates and equilibria might differ signifi-
cantly from those measured in the majority of in vitro experiments
that are performed at much lower macromolecule concentrations.
Consequently crowding, a nonspecific phenomenon believed to arise
from the large excluded volume of these macromolecules, has been
studied extensively by experimental and theoretical methods. How-
ever, the relevant theory has not been applied consistently. When the
steric effects of macromolecular crowders and small molecules like
water and ions are treated on an equal footing, the effect of the
macromolecules is opposite to that commonly believed. Large mole-
cules are less effective at crowding than water and ions. There is
also a surprisingly weak dependence on crowder size. Molecules
of medium size, ∼5 Å radius, have the same effect as much larger
macromolecules like proteins and RNA. These results require a reas-
sessment of observed high-concentration effects and of strategies to
mimic in vivo conditions with in vitro experiments.

macromolecular crowding | hard sphere fluids | exclusion effects |
depletion effects

The milieu inside cells contains a large amount of solutes that
include small ions, metabolites, and macromolecules. Typical

protein/RNA concentrations range from 300 mg/mL to 400 mg/mL
or about 30–40% by weight. These are 10-fold or more higher than
the macromolecular concentrations usually encountered in in vitro
measurements and could lead to significant nonideality in solution
behavior. The possibility that in vivo biochemical reaction rates and
equilibria might be quite different from measured values due to this
nonideality has stimulated considerable research. Macromolecular
crowding in particular has stimulated a large number of studies,
which have been extensively reviewed (1–5). Crowding has been
variously described as physical occupation of volume by the mac-
romolecules, which is then unavailable to other molecules, as an
excluded volume effect, as a nonspecific effect due to steric re-
pulsion, and as eliminating positions at which the protein can be
placed (2, 5, 6). The other contribution to nonideality is from in-
teractions between various solution components, either attractive or
repulsive—repulsive interactions distinct from the van der Waals
core repulsion or steric factor underlying crowding. We know very
little about the contribution of intersolute interactions to non-
ideality in vivo. Crowding has been more extensively studied be-
cause the steric or excluded volume of a macromolecule is a well-
defined property, it is always present, and its qualitative effect on
biochemical reactions seems obvious (2). However, as I demon-
strate in this paper, the effect of crowding macromolecules on a
biochemical reaction is not obvious, the relevant theory has not
been consistently applied, and indeed the effect is opposite to that
commonly believed.
Analyses of the effect of crowding macromolecules on bio-

chemical reactions often start with a schematic similar to that in Fig.
1A. Here a protein or other macromolecule is introduced into a
solution containing some concentration of large crowding molecules.

Avoidance of steric overlap between the crowders and the protein
constrains the protein’s possible positions. Its center can explore only
the inside of the small red shaded region. Therefore, the crowders, it
is argued, make it harder to transfer the protein into the solution.
Equivalent ways of expressing this are that the crowders increase the
chemical potential of the protein, its effective concentration in the
intermacromolecular volume is increased, or its activity is increased.
Presumably, the excluded volume effect is greater the larger the
crowders are and the higher their concentration is. In Fig. 1B, this
qualitative picture is extended to a binding reaction: Applying the
effective concentration argument leads almost inescapably to the
conclusion that the crowders enhance binding. This all seems very
reasonable, and more quantitative analyses of crowding then aim to
measure or calculate exactly how much the protein’s configurational
space is reduced by given size crowders at particular concentrations.
In this argument the crowding effect of macromolecules is predi-
cated on the idea that other molecules must avoid energetically
costly steric overlaps, so they are constrained to a smaller volume of
the solution. What is missing, however, is the solvent: principally
water and small ions. These solvent molecules also cannot overlap
each other, the protein, or the crowders. If the protein is constrained
to the smaller volume between crowders, why is it not also con-
strained to the smaller volume between the waters? The volume
between big crowding molecules is also filled with small crowding
molecules! More than 20 y ago Berg argued that water must be
included (7), but with rare exceptions (8, 9) his work was ignored.
More realistic schematics of the chemical potential and dimerization
reactions are shown in Fig. 1 C–E. The issue is not that crowders
(protein, RNA, cosolutes like Ficoll, and PEG) exclude; everything
excludes. It is that these crowders are significantly larger than water
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and ions. Now the pertinent questions are “Is it easier to insert a
protein into a packed solvent of small molecules or a packed ‘sol-
vent’ of small and large molecules?” and “Is it easier to form a
protein complex by removing protein surface area from a well-
packed solvent of small molecules or from a packed solvent of small
and large molecules?” The theory of hard sphere (HS) fluid mix-
tures is tailor made to answer these questions because it treats in a
rigorous way the thermodynamic properties of mixtures of different
size particles than cannot overlap because of steric interactions. The
rest of this paper applies the theory to crowding by high concen-
trations of macromolecules with some surprising conclusions. To
focus on size effects, I treat all molecules as rigid. Flexible macro-
molecular crowders introduce interesting complications from poly-
mer theory that are beyond the scope of this paper. This paper deals
only with effects on equilibria, such as protein binding and protein
stability. The effect of crowders on rates, through solution viscosity
changes for example, is not considered.

Theory
Hard Sphere Fluid Mixtures. The theory of HS fluid mixtures is well
established and rigorous (10–14). Before applying it quantitatively
to crowding, it is useful to describe qualitatively what it says about
the processes depicted in Fig. 1 C–E. This introduces the physical
content of the theory and perhaps shakes the automatic assump-
tion that large molecules must be better crowders than small ones.
All molecules must avoid steric overlaps. In statistical mechanics

terms, this avoidance lowers the solution entropy relative to an ideal
gas at the same number density due to the reduction in the mutual
configurational phase space available for all of the molecules. There
is a concomitant increase in free energy and chemical potential.
Simplifying somewhat, when we place a protein into solution, some
fraction of the solvent molecules have their configurational entropy
reduced by avoiding overlap with the protein and each other (Fig.
1C). From here on the term solvent refers to everything the protein
may encounter: water, ions, cosolutes, and crowders. The change in
entropy can be quantified by changes in the local density distribu-
tions of the solvent molecules caused by the solute, as described in
detail below. These local density changes occur principally for sol-
vent close to or in contact with the protein solute. Now in Fig. 1C,
Left (no macromolecular crowders) a larger number of small mol-
ecules are affected by the presence of the protein, whereas in Fig.
1C, Right a lesser number of molecules (some large, some small)
are affected, because one large crowder replaces many smaller

solvent molecules. Note that the solution volume is increased by
approximately the same amount in each case, by the protein’s
partial molar volume. The net entropy change depends both on the
magnitude of local density changes and the number of molecules
affected. We must resist the intuition from mechanics that it is
somehow harder to move a large molecule out of the way vs. a small
one. In thermodynamics the entropy change from a given change in
local density is the same for a small molecule and a large one. Of
course different size molecules may experience different solute-
related perturbations in their local density, but because more
molecules are affected by the presence of the protein when we have
just small solvent molecules, i.e., no crowders, it should hopefully no
longer be obvious that there is a larger configurational entropy
decrease upon adding a protein to a solution with large crowders.
To proceed further we need the quantitative theory of HS fluids as
applied to a mixture of different size molecules.
In the theory of liquids and solutions, a quantity of particular

importance is the radial distribution function (rdf) gij(r), which
describes the relative probability of finding molecules of types i
and j at a distance r from each other. gij(r) is the local density of
molecule i around j at distance r relative to the bulk density of i,
ρi(r)/ρi

bulk (and vice versa). For hard sphere species i and j with
diameters di and dj gij(r) is zero when r < di/2 + dj/2, which is the
essence of the excluded volume effect. The value of the rdf at the
point of contact, gij(r = di/2 + dj/2), is denoted here by g0ij. HS
theory provides expressions for g0ij for every (i, j) in terms of the
diameters di and mole fractions xi of all of the species and the
packing fraction ξ (the volume fraction filled by the hard
spheres) (12, 13). From this one can then determine the excess
entropy of the fluid with respect to an ideal gas, Sex (12–14). Sex,
which is negative in sign, accurately describes the reduction in
entropy due to the mutual avoidance of overlaps between all of
the component spheres. From the excess entropy it is straight-
forward to obtain an expression for the excess HS chemical
potential μi

ex of solute i with respect to the ideal solute chemical
potential term ln(ρi), where ρi is the number density or con-
centration of the solute. μi

ex is positive in sign and represents the
extra work of introducing a spherical solute into a solvent rep-
resented as a mixture of different size hard spheres while avoiding
any steric overlaps. For component i in a mixture of two hard
sphere components 1 and 2, μi

ex can be written as a cubic poly-
nomial of the solute’s diameter di (14, 15),

Fig. 1. Excluded volume effects. (A) Insertion of protein (in red) into a solution containing macromolecular crowders (in gray). Dashed circles indicate the
zone around crowders that excludes the protein: Its center can access only the red hatched volume. (B) Dimerization in the presence of macromolecular
crowders. The dashed circles indicate how the volume of the zone from which crowder centers are excluded is decreased upon binding. (C) Transfer of
a protein from water (blue spheres) into an aqueous solution containing macromolecular crowders. (D and E) Binding in water vs. an aqueous solution
of crowders.
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μexi
kT

=L0 +L1di +L2d2i +L3d3i , [1]

where k is Boltzmann’s constant, and T is temperature. The co-
efficients in Eq. 1 are given by

L0 =−lnð1− ξÞ [2]
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[5]

The factors D1, D2, and D3 are the mole fraction-weighted aver-
ages of the solvent diameter, diameter squared, and diameter
cubed, respectively. For a two-component solvent

Di = x1di1 + x2di2, i= 1,  2,  3 [6]

and x1 + x2 = 1.
Although the expression for chemical potential given by Eqs. 1–6

looks rather complicated, there is a straightforward physical in-
terpretation for each of the terms. The cubic and quadratic terms
describe the dependence on solute volume and area, respectively.
The linear term may be interpreted as the curvature of the solute,
so collectively the linear, quadratic, and cubic terms account for the
shape and size of the solute. All are positive and so contribute
unfavorably to the free energy of introducing the protein solute
into solution.
Two physically distinct factors enter into the expressions for the

coefficients: (i) the solvent packing fraction ξ and (ii) the diameter
averages, Di=1,2,3. These averages depend on the solvent composi-
tion, which is defined by the amounts and sizes of the two solvent
components, namely water (x1 and d1) and crowder (x2 and d2). The
constant term L0 is independent of solvent composition and is not
discussed further. The other three coefficients L1, L2, and L3 do
depend on solvent composition through Di=1,2,3. Attention is drawn
to the factors ofD3 = x1d31 + x2d32 in their denominators. Now πD3/6 =
Vav is the number-averaged solvent molecular volume. For pure
water (x1 = 1) Vav would simply be the hard sphere volume of a
water molecule. As increasing amounts of a large crowder are
added, Vav increases because d2 >> d1. The number-averaged
solvent diameter (D1) and diameter squared (D2) that appear in
the numerators of the coefficients also increase. However, they
increase less rapidly thanD3 as they depend on lower powers of d2.
So as large crowders are added, the volume, area, and curvature
coefficients Li=1,2,3 all decrease.
The coefficient L3 is unique in that it alone depends on (d1 − d2),

the difference in diameter between the two solvent components.
This difference appears in the second term of Eq. 5 and reduces the
contribution of the volume term to the excess chemical potential.
Physically it arises because there are more ways to pack a mixture
of small and large spheres together than the pure components
separately.
Now consider protein folding or binding. The effect of crowders

depends on how they change the difference in excess chemical
potential between two states: unfolded vs. folded or free vs. bound,
respectively. Partial molecule volume changes, although significant
for these processes, are typically less than 1% of the total volume of
the proteins themselves for folding (16, 17) and dimerization (18).

Changes in solvent accessible area upon folding or binding, in
contrast, are of the same order of magnitude as the total protein
accessible areas, perhaps 30% or more (19). So the leading con-
tribution from excluded volume effects will be controlled by the
magnitude of the area coefficient L2, whatever the sign of the
volume change (The area change upon folding or binding of course
is negative). The curvature term can be thought of as a correction to
the surface area term, but it becomes less important for larger
protein solutes (SI Text). L2 quantifies the excluded volume con-
tribution to a macromolecule’s surface free energy. It favors re-
duction in solvent exposed area and thus the folded state and the
bound state. But large crowders reduce this driving force.
In summary, HS fluid theory states that the steric effect of large

crowders reduces the excess chemical potential of a protein in so-
lution relative to pure water. The idea that the small size of water
contributes to a high surface free energy at the solute–water in-
terface is not new. Indeed this is the basis for a physical explanation
of the hydrophobic effect (20). Large crowders reduce the steric
penalty for solvent exposed surface area of a protein, so they dis-
favor association and folding. Large crowders also act on the
volume and curvature contributions in the same manner. The un-
derlying reason is that the entropic cost of avoiding overlaps with a
single large molecule is less than that of the many smaller solvent
molecules it displaces. This is a nonspecific, purely excluded volume
effect that arises when we treat the steric effects of large crowders
and small molecules like water and ions on an equal footing.

Relationship to Earlier Applications of Hard Sphere Theory. In the
limit of x2 = 0 in Eq. 1, Di = d1

i, L3 = (ξ + ξ2 + ξ3)/((1 − ξ)3d1
3) and

we recover the standard equations for scaled particle theory (SPT)
(10, 21) in which the solvent (e.g., pure water) is homogeneous with
respect to particle size. This form of SPT has been used, for ex-
ample, to study solvation of apolar solutes in water (21). The other
limit, x2 = 1, Di = d2

i , corresponds to pure crowder and has been
applied to macromolecular crowding (22). However, as illustrated
in Fig. 1A this omits the effect of water and the crucial fact that the
solvent consists of molecules of different sizes. Berg, on the other
hand, treated the solvent as a mixture of different size spheres
representing water and crowders (7). The expression he used for
excess chemical potential is mathematically identical to Eqs. 1–5
used here, with two distinctions. First, the coefficients were not
explicitly factored into separate solvent packing and composition
terms in the manner of Snider and Herrington (14). So the effects
of crowder size and solvent packing were not separately analyzed, as
they are here. Second, Berg applied the theory in a manner whereby
the composition and solvent density covary in a complex way to
balance what is known as the virtual HS pressure. This leads to
unrealistically large mixing volume changes (SI Text).

Results
To illustrate the application of HS fluid mixture theory to crowding,
Eqs. 1–5 were evaluated with parameters corresponding to typical
crowding conditions in the experimental literature. For water
d1 = 2.8 Å. Given the experimental density this corresponds to
a packing fraction ξ = 0.383. To isolate the effect of crowder
concentration and size, the same packing fraction is used for
crowder solutions. The effect of different packing fractions is
considered once solvent composition effects are examined.
Fig. 2A shows the effect of a 40-Å diameter crowding molecule

on the chemical potential coefficients Li=1,2,3 for crowder concen-
trations from 0% to 33% by volume in water. For pure water the
coefficients are all positive. The crowder decreases all three co-
efficients monotonically as its concentration is increased. Taking the
magnitudes of Li=1,2,3 as a measure of crowding power, the large
molecule is a poorer crowder than water. This is illustrated by the
effect of crowder concentration on the net excess chemical potential
of a solute of diameter 10 Å (Fig. 2B). The crowder decreases the
excess chemical potential by about a factor of 2. Looking at the
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individual contributions, most come from the solute volume and
area-dependent terms. The curvature term is smaller, indicating
that corrections to the crowding effect for nonspherical solutes will
be second order relative to the area term.
Next, the effect of crowder size was examined. Its diameter d2

was increased from the size of water, 2.8 Å, up to 40 Å. The
volume concentration was kept fixed at fv = 33% by setting the
crowder’s mole fraction to

x2 =
fvd31

fvd31 + ð1− fvÞd32
. [7]

The values of the curvature, area, and volume coefficients shown
in Fig. 2C all decrease as the crowder gets larger: Thermody-
namically speaking, crowding is reduced. The effect plateaus for
a crowder/water diameter ratio of about 4, corresponding to a
surprisingly modest crowder diameter of ∼10 Å. This is consid-
erably smaller than globular proteins, which have diameters of
30 Å and up. The physical basis for the plateau is straightfor-
ward. As the crowder size increases, the mole fraction required to
make up 33% of the volume of the solvent decreases, and these
two effects balance. The solvent composition terms in Eqs. 3–5 are
the mole fraction averaged solvent dimensions Di=1,2,3. Using
Eqs. 6 and 7, one can show that these tend to the limitDi = d1

i/(1− fv)
as d2 >> d1, becoming independent of crowder size.
In Fig. 2B, the 4:1 crowder/protein solute diameter ratio used

corresponds approximately to the case investigated by Benton
et al. (23), who studied the effect of the large crowder Ficoll 70 on
a small 9,200 g/mol protein chymotrypsin inhibitor. Application to
other crowder–solute size ratios used in the literature is straight-
forward using Eqs. 1–5. Because the solute volume, area, and
curvature coefficients are all affected in the same way by crowder
size, the direction of the net effect is the same whether the
crowder is smaller than or larger than the protein solute. The

conclusion from Fig. 2 A–C is that based purely on steric factors
large molecules are less effective crowders than water or solvent
components of similar size to water. Because water is pretty much
the smallest solvent component available, this effectively rules out
more effective crowders based on size.
Finally I consider the effect of changes in packing fraction of the

solvent when large crowder molecules are added to it. Calcula-
tions were done for a constant solvent composition of 33%
crowder and 67% water by volume. A crowder diameter of 40 Å
was used, well into the plateau region of Fig. 2C, so crowder size is
eliminated as a factor. Fig. 2D shows the curvature, area, and
volume coefficients L1, L2, and L3 as the packing fraction is varied
from 0.33 to 0.48. The triangles in blue are the coefficient values
for pure water at ξ = 0.383 for reference. L1, L2, and L3 with
crowder present are less than the pure water values over a wide
range of packing fractions, meaning less crowding power. The
horizontal lines indicate that the packing fraction would have to
increase to ∼0.48 to reverse the size effect and make a macro-
molecule as good as water as a crowder. To be better than water
would require a still larger increase. To put this in perspective, the
change in solvent volume relative to pure water corresponding to a
change in ξ is given by ΔV(%) = 100(0.383/ξ − 1). This is plotted
on the upper abscissa scale in Fig. 2D. Changes greater than −20%
are required. What packing fraction changes actually occur in vivo
needs to be investigated.

Discussion
The contribution of HS fluid mixture theory to understanding
crowding is twofold. First, it explicitly recognizes that all of the
components of a solvent—water, ions, and macromolecules—
will exclude the solute. Second, it accounts for the fact that each
macromolecular crowder replaces many smaller solvent mole-
cules. Thus, a smaller number of solvent molecules are perturbed
by the presence of a given size solute, with a reduction in the
excess chemical potential contribution from steric effects. The
particular model used to quantify this is idealized (What model
for steric effects is not?), treating the molecules as spherical and
rigid. However, to first order the effect depends on relative
numbers of perturbed solvent molecules, so the conclusions
reached here are likely to be very general. Moreover, the terms
depending on area and curvature are affected in the same way by
crowders, suggesting the conclusions carry over to nonspherical
solutes. This analysis also indicates that more attention to packing
effects is needed. For example, Graziano has shown, using scaled
particle theory, that one can explain the protein-stabilizing effect
of the small molecule sucrose through packing changes (9).
The effects of excluded volume are framed here in terms of re-

duction in solvent entropy due to avoidance of steric overlap, but
there is a close connection to other theories of solutions through the
radial distribution function gij(r). The local excess/deficit of species i
at a distance r from species j is proportional to gij(r) − 1, a factor
that appears in theories of the Kirkwood–Buff type (24). Integrating
ρi
bulk(gij(r) − 1) over the solvent volume gives the net excess/deficit
of species i around species j, resulting in a positive or negative
preferential interaction coefficient, Γ, respectively (25, 26). Positive
Γ indicates a favorable interaction between the species, i.e., a net
reduction in the chemical potential of j due to i (and of i due to j).
In terms of Gibbs’ theory for adsorption isotherms, a positive excess
lowers the surface free energy, whereas a depletion raises the free
energy (27). The radial distribution function value at contact, g0ij,
plays the same role in HS theories because the relevant interaction
is a contact potential. At constant packing fraction, addition of
larger molecules to the solvent reduces the chemical potential co-
efficients (Fig. 2 A–C, particularly the area term). Concomitantly,
the local excess of larger molecules at the solute surface (g02j) is
greater than that of the smaller ones (g01j) (SI Text). There is a
preferential interaction with the solute of the larger spheres over
the smaller spheres. In terms of Gibbs’ theory, the surface free

Fig. 2. Linear/curvature (L1), area (L2), and volume (L3) excess chemical po-
tential coefficients. (A) Dependence on the concentration of a 40-Å diameter
crowder in a solvent with packing fraction 0.383. (B) Corresponding excess
chemical potential contributions for a solute of 10 Å diameter. (C) Dependence
on crowder size for a solvent with packing fraction 0.383 containing 33%
crowder and 67% water by volume. (D) Effect of solvent packing fraction for a
40-Å diameter crowder at 33% concentration by volume. Blue triangles in-
dicate coefficients for pure water at a packing fraction of 0.383 for reference
(from A). Horizontal lines indicate the approximate increase in packing frac-
tion required for the crowder solution to match pure water.
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energy is lowered. So addition of a larger crowder reduces the
penalty for unbound/unfolded states of larger surface area. Noting
that −kTln(gij(r)) = ω(r) defines a potential of mean force (pmf)
between i and j (28), then g02j > g01j can also be interpreted as a more
favorable (or more accurately, less unfavorable) interaction
between the solute and a larger crowder. It should be empha-
sized that because there are no direct forces between pairs of
particles from the hard sphere potential, the interactions de-
scribed by g0ij, whatever terminology is used, are purely entropic,
multibody effects.
Referring to the binding equilibrium in Fig. 1 D and E, the

solvent-excluded volume effect favors the bound state with the
buried surface area: It has a lower free energy. So the free
energy must at some point change as the surfaces approach. In
other words, there must be a force, which overall acts to drive
the surfaces together and desolvate them. Indeed, the compo-
nent of the solvent-induced force arising from cosolute or
crowder exclusion is known as the depletion force (29, 30).
Depletion forces were first described by Asakura and Oosawa
(31), who pointed out that when the distance of closest ap-
proach of two solute surfaces was less than the size of any
cosolute, that component was excluded or depleted from the
intersolute region. This imparts a long-range force on the scale
of the largest solvent component. In the Asakura–Oosawa
(AO) model the force is given by the osmotic pressure of the ex-
cluded cosolute at its bulk concentration, effectively a mean-field
treatment, where the water is treated as a continuum. The leading
contribution to depletion forces, as the name suggests, is avoidance
of energetically costly steric overlaps. Not surprisingly, the depletion
effect is built into HS theories (32). In a recent review of the theory
of depletion forces Trokhymchuk and Henderson note that in the
AO model, the net free energy decrease going from fully separated
surfaces to complete depletion at contact is given by ω(0)/kT =
−3ξdi/2d2 (in the notation of this paper) (30). Thus, at constant
packing fraction, a cosolute molecule of smaller diameter d2 pro-
duces a larger net attraction (albeit the depletion force sets in at
shorter range). In a more accurate treatment of depletion forces,
also based on HS theory, Trokhymchuk and Henderson (ref. 30, fig-
ure 4) find the same qualitative behavior: At constant packing fraction
smaller cosolutes produce a larger net attractive energy at full contact,
although it develops at shorter range. Thus, for crowder size effects on
equilibria, both models for depletion forces agree with the conclusions
of this work. Although kinetic aspects are not considered here, it
should be noted that the range and profile of the depletion forces,
whether there are barriers arising from the granularity of the water
and cosolutes, become important for rates of binding or folding.
There are two difficulties with the standard crowding model

depicted in Fig. 1 A and B. First, it predicts a general, nonspecific
enhancement of every putative protein–protein association in the
cell and a global enhancement in protein stability. As one review
author puts it, excluded volume effects are like gravity, in-
escapable because all macromolecules exclude (2). It is thus
difficult to explain lack of crowding effects or weaker than
expected effects in specific cases. For example, 200 mg/mL of
dextran increases the stability of protein L by less than 0.5 kcal/mol
(33), which is almost below the resolution of stability measurements.
ApoMB dimerization was enhanced by 200 mg/mL of RNaseA but
not by the same concentration of human serum albumin (34). Other
examples are not rare (35, 36) and perhaps are underreported in the
literature as negative results often are. Of particular relevance is the
recent study of Benton et al. in which careful control experiments

compare the effect of large and small crowders at the same volume
concentration and show little effect (23). This is exactly the behavior
expected from the HS fluid mixture model results in Fig. 2C.
The second difficulty is that observed effects of osmolytes and

crowders on protein binding and folding often have significant
enthalpic contributions (23, 37–39). Excluded volume effects are
entropic, whether treated by the mean-field AO, scaled particle, or
HS mixture models. The implications of these enthalpic changes for
the mechanism of osmolyte stabilization were pointed out by Politi
and Harries (37): There must be other intermolecular forces acting
in addition to steric crowding. Sukenik et al. categorized possible
mechanisms based on the measured sign and relative magnitudes of
enthalpic and entropic contributions (38). Senske et al. did a similar
classification of possible mechanisms for protein stabilization based
on observed changes in enthalpy of unfolding and melting tem-
perature Tm (which depends also on entropy) (39). To assign pos-
sible mechanisms one must first determine the baseline effect: the
sign and magnitude of the entropy change expected from purely
excluded volume effects from all solvent components, water and
crowders, as emphasized here. Interestingly, Politi and Harries
found that the favorable entropy for protein folding is diminished
upon adding cosolutes (37), which they point out is opposite to that
predicted by the conventional steric crowding model. However, this
is the direction expected from the HS fluid mixture theory used
here. Replacement of multiple small water molecules by each larger
cosolute reduces the net entropy change.
Looking to the future, to move beyond purely steric excluded

volume effects and account for enthalpic as well as entropic ef-
fects of crowders and cosolutes, it will be necessary to augment
the hard sphere fluid mixture model with the other, longer-range
intermolecular forces. One successful approach is to treat these
forces as a perturbation to the hard sphere potential (40, 41).
Sapir and Harries have already shown that adding longer-range
forces to the mean-field Asakura–Oosawa model for exclusion
effects successfully accounts for enthalpic effects of cosolutes
(29, 42). Adding the water/small ion exclusion effects to those of
the crowders, as described here, should result in further progress.
In summary, it should be emphasized that I am not saying that

high concentrations of macromolecules in the cell do not cause
significant nonideality and hence potentially different behavior from
in vitro experiments. There are many experimental studies that see
effects at high concentrations. I am saying that purely excluded
volume effects from macromolecules do not work in the manner
and direction commonly assumed. The effect is arguably much less
important than believed, as indicated by its observed absence in
cases where it should be present and by the predicted weak
dependence on macromolecular size. Finally, caution should be
exercised in incorporating high macromolecular concentration
conditions into existing in vitro experiments with the aim of making
them more realistic in vivo models. Assuming excluded volume
effects are much smaller than believed, there is a risk of introducing
unanticipated and unrealistic intersolute interaction effects instead.
Even apparently neutral polymer crowders like PEG, dextran, and
Ficoll are known to make specific differential interactions with
proteins and nucleic acids. These interactions are potent enough
that they are widely used for affinity separation by aqueous two-
phase polymer systems (43, 44).
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