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Systems biology rests on the idea that biological complexity can be
better unraveled through the interplay of modeling and experi-
mentation. However, the success of this approach depends critically
on the informativeness of the chosen experiments, which is usually
unknown a priori. Here, we propose a systematic scheme based on
iterations of optimal experiment design, flow cytometry experi-
ments, and Bayesian parameter inference to guide the discovery
process in the case of stochastic biochemical reaction networks. To
illustrate the benefit of our methodology, we apply it to the
characterization of an engineered light-inducible gene expression
circuit in yeast and compare the performance of the resulting model
with models identified from nonoptimal experiments. In particular,
we compare the parameter posterior distributions and the precision
to which the outcome of future experiments can be predicted.
Moreover, we illustrate how the identified stochastic model can
be used to determine light induction patterns that make either
the average amount of protein or the variability in a population
of cells follow a desired profile. Our results show that optimal
experiment design allows one to derive models that are accurate
enough to precisely predict and regulate the protein expression in
heterogeneous cell populations over extended periods of time.

stochastic kinetic models | optimal experiment design | in vivo control |
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The use of quantitative mathematical models to investigate
biochemical reaction networks is nowadays common practice.

Typically, models are built based on the available biological
knowledge and used to generate hypotheses, which are then re-
fined or invalidated through experimentation. For this process to
be successful, it is of paramount importance to design and perform
experiments that yield the information required to identify the
model under consideration. Optimal experiment design techniques
have been extensively studied for ordinary differential equation
models (1–5), which are typically used to describe the average
behavior of cell populations (6–8). With the development of
high-throughput measurement techniques, such as flow cytom-
etry, it has, however, become evident that restricting the atten-
tion only to the average population behavior neglects the
potentially valuable information contained in the full population
distribution (9–11). This additional information can be captured by
stochastic models. Recently, methods for parameter inference (12–
15) and optimal experiment design (16, 17) for stochastic models
have been developed and applied to a number of biological systems
(12, 18). However, a systematic characterization procedure that
exploits the information gained from each performed experiment
has not yet been fully developed or experimentally validated.
Here, we provide the first study, to our knowledge, in which a

noisy biochemical reaction network is characterized and ultimately
also controlled through iterations of optimally designed flow
cytometry experiments and stochastic modeling. Specifically, we
consider a gene expression circuit in yeast that has been engi-
neered such that the expression of the gene can be induced and
inhibited by exposure of the cells to red and far-red light (19, 20).
We use optimal experiment design to ensure that the light induction
pattern yielding the most informative output is administered to

the cells and that the most informative measurement times are
chosen. The collected data are then used in a Bayesian parameter
inference scheme to improve the quality of the model. The
updated model, in turn, serves as the basis for designing additional
optimal experiments in an iterative fashion until the outcome of
future experiments can be predicted with low uncertainty. Ulti-
mately, we obtain a stochastic model that is capable of predicting
the response of the entire cell population to arbitrary light in-
duction patterns with high precision. This result allows us to in
silico plan light induction patterns that regulate statistics of the
protein population distribution to desired profiles. Our experi-
mental results show that different reference profiles can be suc-
cessfully tracked over long time horizons. In contrast to previous
studies, the use of a stochastic model allows us to regulate not only
population averages as done in refs. 20–23 or individual cells as in
ref. 24 but also the variability across the population.

Results
Stochastic Modeling of the Light-Inducible Gene Expression Circuit.
We consider the engineered gene expression circuit presented in
ref. 20. The main component of this system is a light-responsive
Phytochrome/Phytochrome-Interacting Factor (Phy/PIF) mod-
ule (19) that can be used to drive the expression of a YFP re-
porter by shining red and far-red light on a population of yeast
cells. Fig. 1 shows the stochastic reaction network that we pro-
pose as model of the system.

Significance

System identification addresses the problem of identifying un-
known model parameters from measured data of a real system.
In the case of biochemical reaction networks, the available
measurements are typically sparse because of technical and/or
economic reasons. Therefore, it is of paramount importance to
maximize the information that can be gained by each experi-
ment. Here, we apply a systematic design scheme for single-cell
experiments based on information theoretic criteria. For the
considered light-inducible gene expression circuit, we show
that this scheme allows one to precisely identify model pa-
rameters that were practically unidentifiable from data mea-
sured in random experiments. This result provides evidence
that optimal experiment design is a key requirement for the
successful identification of biochemical reaction networks.
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The effect of the light on the expression of the gene is modeled
by multiplying the mRNA production rate kM by a function
uðt; γ,LÞ that depends on some of the unknown model parameters γ
and the applied sequence of light pulses L, as detailed in Fig. 1
and SI Appendix, section S2.1. To capture the variability of the
light-responsive module, we model the mRNA production rate
kM as a random variable that is distributed according to a gamma
distribution PkM with unknown mean MkM and variance VkM (SI
Appendix, section S2.2) (16). Therefore, the time evolution of the
amount of molecules in each cell is described by a conditional
chemical master equation (SI Appendix, section S2.2) that de-
pends on the particular realization of kM in the cell. Statistics of
the entire population can be computed from this family of
master equations by deriving a system of moment equations (12)

d
dt
~μðt; γÞ=Aðγ, uðt; γ,LÞÞ~μðt; γÞ+Bðγ, uðt; γ,LÞÞ, [1]

which, given a parameter vector γ, describes the time evolution
of the population moments ~μðt; γÞ up to a desired order. For the
moments up to order four, which are required in the sequel,
Eq. 1 is a system of 65 coupled ordinary differential equations.
For our model, the population moment equations are nonlinear,
because the moment evolution depends on the product between
the input signal uðt; γ,LÞ and some of the moments, but they are
closed in the sense that they do not depend on moments of
higher order.

Systematic Characterization Procedure. To optimally identify the
model parameters, we propose an iterative characterization pro-
cedure that comprises three steps (Fig. 2A). The key ingredients
are an algorithm that searches for the most informative light in-
duction pattern and measurement times, an experimental setup to
perform the selected experiment based on the precomputed
input light pattern and output measurements collected at the
predetermined times, and a Bayesian moment-based inference
scheme to compute posterior distributions of the model parameters
from the measured data.
The optimal experiment design algorithm aims at finding

the most informative experiment. To this end, we use as in-
formation measure the determinant of the Fisher information
matrix (FIM), whose inverse provides a lower bound for the
variance of any unbiased parameter estimator (Cramér–Rao
inequality) (25). To evaluate the FIM, the solution of the pop-
ulation moment equations (Eq. 1) and its partial derivatives with
respect to the model parameters are computed for each candi-
date experiment using the best available estimate γ̂ of the model
parameter vector γ (more details on the optimization algorithm
and the choice of the experiments’ length are given in Materials
and Methods and SI Appendix, section S3).
The solution of the population moment equations (Eq. 1) is

also used to determine the likelihood of means and variances of
the measured fluorescence distributions given a vector of model
parameters. This likelihood is used in the Bayesian inference
algorithm to draw samples from the parameter posterior dis-
tribution using a Sequential Monte Carlo algorithm (SI Appendix,
section S4) (26).
Using this procedure, we designed a first optimal experiment

(Fig. 2B) based on an initial estimate of the parameters γ̂0 taken
from the literature (SI Appendix, Table S5). We then administered
the resulting light induction pattern to the cells using a custom-
built LED-based light delivery system and measured by flow
cytometry the resulting fluorescence intensity at the optimal
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Fig. 1. Stochastic modeling of the light-inducible gene expression circuit.
(Top Left) The binding and unbinding of PhyB-PIF3 caused by the light pulses
is modeled by multiplying the mRNA production rate by the signal
uðt; γ, LÞ=U e−dr ðt−tc Þ

e−dr ðt−tc Þ +h (Top Right). When a pulse is applied, tc is reset to the
current time, and U is set to one (red pulse) or zero (far-red); dr and h are
unknown parameters that capture the natural decay of the signal after a red
pulse because of dark reversion (20). When the signal is active, mRNA (M) is
produced with a rate kM ·uðt; γ, LÞ. To capture cell to cell variability in the
light-responsive module, we assume that kM varies between different cells
according to a gamma distribution PkM with unknown mean MkM and vari-
ance VkM . When mRNA is present, protein P is produced with rate kP and
becomes fluorescent with rate kF. All of the species degrade: the mRNA (M)
with rate cM and the dark (P) and fluorescent (F) protein with rate cP = cF as
detailed in the reaction network at the bottom. The empty set notation is
used whenever a certain species is produced or degrades without involving
the other species. We assume that each fluorescent protein molecule emits
an unknown but deterministic amount r of fluorescence. The fluorescence
distribution in the cell population is recorded over time using flow cytometry
(Middle Right). In total, the model (Bottom) comprises three species, six re-
actions, and nine unknown parameters γ = ½MkM   VkM   kP   kF   cM   cP   dr   h  r�⊤ (SI
Appendix, section S2). AD, activation domain; BD, binding domain; FR, far-
red pulse; Pfr, far-red-absorbing phytochrome form; PhyB, phytochrome B;
PIF3, phytochrome-interacting factor 3; Pr, red-absorbing phytochrome form;
R, red pulse; UAS, upstream activating sequence.
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Fig. 2. Optimal characterization of the light-inducible gene expression
circuit. (A) Illustration of the iterative experiment design scheme. (B) Applied
light induction pattern (red and black bars) and measured means and vari-
ances (black dots) in the first optimal experiment. The blue line is the model
output with the maximum a posteriori estimate γ̂1 obtained from the data of
this experiment. (C) Applied light induction pattern and measured means
and variances in the second optimal experiment. The blue line is the model
output with the maximum a posteriori estimate γ̂2 obtained from the data of
the two optimal experiments. FR, far-red pulse; R, red pulse.

Ruess et al. PNAS | June 30, 2015 | vol. 112 | no. 26 | 8149

SY
ST

EM
S
BI
O
LO

G
Y

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423947112/-/DCSupplemental/pnas.1423947112.sapp.pdf


measurement times. Subsequently, the data were processed and
used in the inference algorithm to determine the parameter pos-
terior distribution. Fig. 2B shows that the model output computed
using the corresponding maximum a posteriori estimate γ̂1 agrees
well with the means and variances of the measured fluorescence
distributions. This result, however, does not guarantee that the
maximum a posteriori estimates can be used to predict the
outcome of new experiments. Indeed, the parameter posterior
distribution (SI Appendix, Fig. S4) is flat in some dimensions,
indicating that some of the parameters are practically un-
identifiable from the data measured in the first experiment only.
Based on these considerations, we concluded that one experi-

ment is not sufficient to characterize the system. Consequently, we
designed a second experiment that, according to the FIM com-
puted with the maximum a posteriori estimate γ̂1, optimally com-
plements the already performed one (SI Appendix, section S3.2).
The resulting light induction pattern and measurement times are
shown in Fig. 2C.
After performing the second experiment, we again used Bayesian

moment-based inference to update the parameter posterior distri-
bution. The resulting distribution shows (SI Appendix, Fig. S4) that
additional certainty about the model parameters was gained from
the second experiment. To determine whether the residual pre-
diction uncertainty is sufficiently small to terminate the iterative
procedure, we used the obtained model to predict the outcome
of a 10-h experiment with a randomly chosen light pattern. In
particular, to quantify how the uncertainty in the posterior dis-
tribution of the model parameters influences the prediction of
future experiments, we computed the posterior predictive dis-
tribution (SI Appendix, section S5.1). Fig. 3A shows the 98%
confidence region for both fluorescence mean and variance
computed from the obtained posterior predictive distributions.
We judged these confidence regions to be sufficiently tight to
terminate the iterative procedure. The parameter posterior dis-
tribution thus obtained (SI Appendix, Fig. S4) corresponds to our
final model.

To validate the obtained model, we performed the experiment
in Fig. 3A and verified that the means and variances of the
fluorescence distributions measured every 30 min are within or
very close to the precomputed confidence regions. We further
validated the model by comparing the entire predicted fluores-
cence distribution with the measured one at different times
(Fig. 3B); the model predictions were obtained by simulating the
system using the stochastic simulation algorithm by Gillespie (27)
with the maximum a posteriori estimate γ̂2. The results agree very
well with the experimentally measured distributions, indicating
that the model is capable of predicting entire population
distributions, although only measured means and variances were
used in the identification.

Random Experiments Cannot Be Used to Characterize the System.
The results above show that our iterative characterization pro-
cedure leads to a predictive model after only two experiments.
To show that optimal experiment design is necessary to obtain
this result, we performed two experiments of the same duration
(5 h) and with the same number of measurements (10 equally
spaced) as the optimal experiments but randomly chosen light
induction patterns (SI Appendix, section S7.1). The parameter
posterior distribution computed from the resulting data shows that
the random experiments convey much less information than the
optimal ones, leading to large residual uncertainty about the pa-
rameter values (SI Appendix, Fig. S8).
Fig. 4 shows that the model identified from the two random

experiments cannot adequately predict the outcome of other ex-
periments (that is, the large uncertainty remaining in the parameter
posterior distribution propagates to the predictive distributions
of the fluorescence mean and variance). Adding a third random
experiment improves the situation only marginally (SI Appendix,
Figs. S8 and S9). According to our experience, a large number of
random experiments would be required to obtain an accurate
model of this system.
Because the light-inducible gene expression circuit is a rela-

tively simple system, it is also reasonable to design experiments
based on intuition/experience only. It is obviously a subjective
matter what kind of experiments should be termed intuitively
good for the characterization of this system. We decided that the
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Fig. 3. Validation of the identified model. (A) Measured and predicted
(Upper) mean and (Lower) variance of the fluorescence distribution in a
validation experiment. Model predictions are visualized in terms of the means
(solid lines) and 98% confidence regions (shaded regions) of the posterior
predictive distributions. (B) The measured fluorescence distributions (black)
agree very well with simulated distributions (blue) obtained with the max-
imum a posteriori estimate γ̂2.
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Fig. 4. Comparison of the posterior predictive distributions computed using
the parameter posterior distribution obtained from the two optimally
designed (blue), the best pair of experience-based (green), and the two
random (magenta) experiments for a second validation experiment. Model
predictions are visualized in terms of the means (solid lines) and 98% con-
fidence regions (shaded regions) of the posterior predictive distributions.
The light sequence was chosen to produce damped oscillations of the mean
fluorescence. The means and variances of the measured fluorescence dis-
tributions are shown with black dots.
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most objective choice was to use the experiments performed for
the identification of this system in ref. 20. Hence, we chose three
of the experiments shown in figure 1 of ref. 20 (one for each
panel), applied the corresponding light induction patterns to the
cell population, and measured the fluorescence for 5 h every
30 min, equivalently to what was done for the random experiments.
The parameter posterior distribution computed from the resulting
data (SI Appendix, Fig. S11) and the corresponding model pre-
dictions (SI Appendix, Fig. S12) show that any combination of
only two experience-based experiments leads, on average, to
worse results than the two optimal experiments. Table 1 gives a
summarizing comparison of how well a number of different ex-
periments are predicted by the models obtained from the optimal,
the random, and two different pairs of experience-based experi-
ments. From Table 1, it can be seen that the performance of the
experience-based approach depends strongly on the particular
choice of the pair of experiments. Furthermore, the model
identified from the two optimal experiments outperforms the
one identified from the best pair of experience-based experi-
ments in five out of six cases. We conclude that, for this system,
experimental effort can be saved if optimal experiment design
is used.

Regulating Statistics of the Cell Population. Our final model of the
gene expression circuit seems to be sufficiently accurate to pre-
dict moments of the fluorescence distribution for any light in-
duction pattern. Consequently, we can use it to regulate statistics
of the amount of fluorescent protein in the population. To il-
lustrate this point, we used the maximum a posteriori estimate γ̂2

identified from the two optimal experiments to compute two
light induction patterns that make the mean of the fluorescence
distribution follow two different reference profiles (SI Appendix,
section S8.2). Fig. 5 A and B shows that a very good tracking of
the reference is achieved in both experiments.
Given that our stochastic model can be used to predict higher

order statistics of the fluorescence distribution, we can also
choose reference time courses for other population statistics.
Fig. 5 C and D shows two experiments in which references for the
variance and the coefficient of variation of the fluorescence
distribution are tracked. For the model under consideration, we
found that, with the red and far-red light as the only control
inputs, it is practically impossible to independently regulate the
mean and the variance of the fluorescence distribution, which is
in line with the results reported in refs. 28 and 29 (SI Appendix,
section S8.1).

Discussion
Stochastic models of biochemical reaction networks have be-
come a widely used tool for understanding the role of random-
ness in molecular biology (30, 31). The main goal of our study
was to show that optimally designed experiments can be a key

ingredient for the successful identification of such models. This
point was shown by the fact that random experiments did not
provide sufficient information to obtain precise estimates of all
of the model parameters (Fig. 4 and SI Appendix, Fig. S8). The
main reason for this is that, to be informative, an experiment
should have an input tailored to the properties of the system
under study, such as its frequency spectrum (32), which are, of
course, unknown a priori. Intuition about the modeled process
can be used to derive nearly optimal inputs; however, this guess
becomes more difficult with increasing system complexity. Iter-
ative experiment design allows one to overcome this problem by
encoding implicitly the input requirements in the FIM.
The validity of our model is ultimately certified by the fact that

the regulation results in Fig. 5 were obtained by applying pre-
computed light induction patterns in an open loop fashion. Al-
though the use of feedback control (20, 24) is always recommended
to compensate for unpredictable disturbances or unknown initial
conditions, the success of our open loop experiments is proof
that the remaining mismatch in our model is practically negli-
gible, contrary to what was observed for the deterministic model
used in ref. 20. As noted therein, the mismatch between the real
system and deterministic models is mainly caused by the pres-
ence of “inevitable intracellular fluctuations.” Our results show
that very accurate models that capture these fluctuations can be
obtained by using a stochastic approach.
As a side contribution, the regulation results serve also to ex-

perimentally show that, with an accurate stochastic model obtained
through optimal experiment design, it is possible to regulate not
only the average gene expression, as done in previous studies
(20–23), but also higher order statistics (for instance, the vari-
ance or the coefficient of variation of the produced protein). It
can be envisioned that this will be useful for further investigating
the role of stochasticity in biological systems.

Materials and Methods
Strains, Growth Conditions, and Experiment Protocol. The yeast strain used in
this study was described previously in ref. 20. For all experiments, cells were
grown in SDC (synthetic defined complete) media with Trp and Leu dropouts
(SDC-Trp-Leu) at 30 °C in the dark. The cultures were grown in exponential
phase for a minimum of 13 h before all experiments. They were then di-
luted to an OD (optical density at 600 nm) of 0.1 in media supplemented
with phycocyanobilin (catalog no. P14137; Frontier Scientific) at a saturating

Table 1. Comparison of optimal, random, and experience-based
experiments

Optimal
Best experience

based
Worst experience

based Random

Fig. 5A −44.7* −125.1 −356.5 −225.6
Fig. 5B −174.4* −210.0 −342.3 −310.7
Fig. 5C −67.7* −135.9 −315.1 −261.4
Fig. 5D −67.1* −71.2 −131.5 −143.6
Fig. 3 −28.8* −123.0 −335.0 −206.2
Fig. 4 −69.6 30.6* 20.2 −115.9

For each performed experiment, the log of the mean likelihood of the
measured data according to the different parameter posterior distributions
is computed.
*The best model (that is, the one with highest expected likelihood).
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Fig. 5. Regulation of population statistics. Light blue lines are the reference
time courses, and the black dots are the measured data. (A) The mean of the
fluorescence distribution is made to follow a piecewise constant reference.
(B) The mean of the fluorescence distribution is made to follow a ramp. (C) The
variance of the fluorescence distribution is made to follow a piecewise con-
stant reference. (D) The coefficient of variation (CV) of the fluorescence dis-
tribution is regulated to a constant value.
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concentration (50 μM). The cells were then incubated in the dark for an
additional 20 min.

For each inference experiment, 17mL cell culturewas placed in a glass tube
inside a custom-built turbidostat with a hotplate magnetic stirrer. The tur-
bidostat was operated inside a custom-built light delivery system using the
650- and 730-nm high-power LED (light emitting diode) sources described in
ref. 20. Density was kept constant at an OD of 0.1 using growth media with
the same saturating chromophore concentration as described above. For
each validation and control experiment, 3 mL cell culture was kept in 15-mL
light-shielded plastic culture tubes (BD Falcon) in the incubator at 30 °C with
a shaking speed of 230 rpm. For these experiments, a 1:2 manual dilution
was applied every 90 min, which was approximately the doubling time of
our strain under the used experimental conditions. The tubes were briefly
placed inside the light delivery system for light pulse application and
returned to the incubator afterwards.

For all experiments, light pulses of ∼30 sec duration were applied. Cell
fluorescence was measured on a BD Accuri Flow Cytometer. YFP was excited
at 488 nm, and the fluorescence was collected through a 533/30 filter. Cells
were measured at slow flow speed for ∼3 min for each time point.

Data Analysis and Noise Model. The measured flow cytometry data were
gated by forward and side scatter to remove aberrant cells and other un-
wanted particles from the sample. The remaining fluorescence intensities
were then normalized by the forward scatter of each cell to reduce variability
stemming from different cell sizes. Analysis of the data showed that this
procedure leads to fluorescence distributions that are similar to the distri-
butions that would have been obtained with a smaller gate on the forward
scatter. The advantage of larger gates is that more cells are kept inside the
gate, which is desirable for the accuracy of the computed population sta-
tistics. Let fynðtsÞgNn=1 be the final sample of the processed data at time ts. We
assume that these fluorescence measurements are affected by additive noise
terms caused by autofluorescence artifacts and technical errors that are
modeled as realizations of a random variable A, which has a distribution
that is time-invariant and independent from the gene expression process (SI
Appendix, section S2.3). As a consequence, time-dependent and process-
correlated variabilities coming, for example, from the fact that the cells are
not well mixed are allowed only through the parameter kM. Details are
provided in SI Appendix, section S2.4, where we report results suggesting
that the noise assumed in our model suffices to explain the observed vari-
ability in replicates of the same experiment (SI Appendix, Fig. S2) and discuss
alternatives. Finally, we compute the sample means μ̂1ðtsÞ= 1=N

PN
n=1ynðtsÞ

and the centered sample moments μ̂iðtsÞ= 1=N
PN

n=1ðynðtsÞ− μ̂1ðtsÞÞi of or-
der i= 2,3,4.

Population Moment Equations. The time evolution of the amounts of mole-
cules in a single cell is described by a chemical master equation conditioned on
the particular realization of the mRNA production rate parameter kM for that
cell. Let x ∈N3 be a vector containing the molecule counts of the different
chemical species, and let pðx, tjkMÞ denote the probability that x molecules
are present in the cell at time t given the particular realization of kM. Then,

d
dt

pðx, tjkMÞ=
X6
k=1

−pðx, tjkMÞakðx; γÞ+
X6
k=1

pðx − νk , tjkMÞakðx − νk ; γÞ, [2]

where νk ∈Z3 and akðx; γÞ : N3↦R+
0 ,  k= 1, . . . , 6 are the stoichiometric transi-

tion vectors and the propensity functions of the six reactions given in Fig. 1,
respectively. The dependence of the mRNA production propensity function
on kM and uðt; γ, LÞ is omitted for simplicity. From Eq. 2, we can derive a
system of population moment equations (SI Appendix, section S2.2):

d
dt

~μeðt; γÞ=Aðγ,uðt; γ, LeÞÞ~μeðt; γÞ+Bðγ,uðt; γ, LeÞÞ, [3]

where ~μeðt; γÞ is a vector that comprises the moments up to a desired order
(in our case four) of the joint distribution of the molecule counts and the
parameter kM at time t for an experiment e characterized by the light se-
quence Le. From the vector ~μeðt; γÞ, we can extract the mean μeF1 ðt; γÞ and the
centered moments μeFi ðt; γÞ,   i= 2, . . . , 4 of the marginal distribution of the
fluorescent protein FðtÞ and convert them to moments that are compatible
with the moments of the measured distributions through multiplication
with the scaling parameter r and convolution with the distribution of the
noise A (SI Appendix, section S2.3). For instance, mean and variance of the
fluorescence intensities are obtained as

μei ðt; γÞ= ri · μeFi ðt; γÞ+ μAi , i= 1,2, [4]

where μA1 and μA2 are the mean and the variance of A.

Experiment Design. As a result of a tradeoff between being able to properly
excite the system and updating the parameter estimates as frequently
as possible in the iterative identification procedure, we fix the maximal
duration of each designed experiment to Tmax = 5 h (SI Appendix,
section S3.4). To determine the informativeness of each candidate exper-
iment e= fLe, t1, . . . , tSg characterized by a light induction pattern Le and S
measurement times t1, . . . , tS ∈ ½0, Tmax �, we compute the determinant of the
FIM Iðγ, eÞ (25). The entries of the FIM are computed from the solution of the
population moment equations (Eq. 3) and the partial derivatives with respect
to all components of the parameter vector γ according to the formula derived
in ref. 16:

Iðγ, eÞ=
XS
s=1

Iets ,  where

�
Iets
�
k,l

=N

∂μe1
∂γk

∂μe1
∂γl

μe2
+N

�
μe2

∂μe2
∂γk

−
∂μe1
∂γk

μe3

��
μe2

∂μe2
∂γl

−
∂μe1
∂γl

μe3

�
�
μe2
�2�

μe4 −
�
μe2
�2	− μe2

�
μe3
�2 , k, l= 1, . . . , 9.

[5]

Here, N is the number of cells measured at every sample time, μe1 = μe1ðts; γÞ
is the mean, and μei = μei ðts; γÞ,   i= 2,3,4 are the centered moments of the
fluorescence intensity distribution at time ts computed from Eqs. 3 and 4
(SI Appendix, section S3.1). The summation goes over all measurement time
points ts,   s= 1, . . . , S. Note that the FIM depends on the model parameters γ
that are to be estimated. These parameters are obviously unknown; hence,
we replace them by the estimate γ̂. To design the first experiment, we use
the parameter vector γ̂0 taken from the literature (SI Appendix, section S3.2),
whereas the second experiment is designed using the maximum a posteriori
estimate γ̂1 obtained from the data collected in the first experiment. Using
Eq. 5, we can compute the FIM for any candidate experiment. We define the
optimal experiment as the solution of the following optimization problem:

e* = arg max
e∈E

fdet  Iðγ̂, eÞg, [6]

where E is the set of all candidate experiments (SI Appendix, section S3.2).
Because of computational limitations, the optimization problem in Eq. 6
cannot be solved exactly. Consequently, the use of the term optimal ex-
periment has to be understood in light of the simplifications made in the
optimization algorithm (SI Appendix, sections S3.3 and S3.4).

Moment-Based Inference. After performing the characterization experiments
ed, d = 1, . . . ,D, we compute an empirical estimate of the means μ̂ed1 =
½μ̂ed1 ðt1Þ . . . μ̂ed1 ðtSÞ� and variances μ̂ed2 = ½μ̂ed2 ðt1Þ . . . μ̂ed2 ðtSÞ� of the fluorescence
distribution from the measured samples. These estimates are then used as
noisy data, D= fðμ̂ed1 , μ̂ed2 ÞgDd=1, in a Bayesian moment-based inference scheme
(12) to compute the parameter posterior distribution:

pðγjDÞ=pðDjγÞpðγÞ
pðDÞ =

 
∏D

d=1 p
�
μ̂ed1 , μ̂ed2 jγ

	!
pðγÞ

pðDÞ [7]

where pðγÞ is the parameter prior, and for each experiment, ed, the likeli-
hood of the measured data according to the parameter vector γ, is given by

p
�
μ̂ed1 , μ̂ed2 jγ

	
= ∏

S

s=1
pts

�
μ̂ed1 ðtsÞ, μ̂ed2 ðtsÞjγ, Ld

	
. [8]

According to the central limit theorem, in the limit of N→∞, pts ð · , · jγ, LdÞ
follows a Gaussian distribution Nðμedðts, γÞ,Σedðts, γÞÞ centered around the
output evolution, μedðts; γÞ= ½μed1 ðts; γÞ μed2 ðts; γÞ�⊤, computed from the solu-
tion of Eqs. 3 and 4 with light induction pattern Ld and variance

Σedðts; γÞ= 1
N

2
64 μed2 ðts; γÞ μed3 ðts; γÞ

μed3 ðts; γÞ μed4 ðts; γÞ−N− 3
N− 1

�
μed2 ðts; γÞ

	2
3
75,

(SI Appendix, section S4.1). To draw samples from the posterior distribu-
tion, we use a Sequential Monte Carlo algorithm described in SI Appendix,
section S4.2 and in ref. 26.
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Posterior Predictive Distributions. To determine how well new experiments
can be predicted by the model, we compute the posterior predictive distri-
butions for the means and variances of the fluorescence distribution in a
future experiment ev characterized by the sequence Lv. These distributions
describe how likely different measurements of means and variances μ̂evðtsÞ=
½μ̂ev1 ðtsÞ μ̂ev2 ðtsÞ�⊤, s= 1, . . . , S are a priori for the new experiment given all of
the previously measured data D. They can be computed from the parameter
posterior distribution pðγjDÞ according to

ppred
ts

�
μ̂ev1 ðtsÞ, μ̂ev2 ðtsÞjD, Lv

�
=
Z
γ

pts

�
μ̂ev1 ðtsÞ, μ̂ev2 ðtsÞjγ, Lv

�
pðγjDÞdγ, [9]

where pts ð · , · jγ, LvÞ is the distribution of μ̂evðtsÞ given that the light induction
pattern Lv is applied to the population and that γ is the vector of model
parameters. These predictive distributions ppred

ts ð · , · jD, LvÞ, s= 1, . . . , S can
be approximately computed by replacing the integral over γ with a sum
over samples γq,q= 1, . . . ,Q drawn from the parameter posterior distri-
bution pðγjDÞ. Since pts ð · , · jγ, LvÞ, s= 1, . . . , S are approximately two-variate

Gaussian distributions that can be computed from the solution of the
population moment equations, we obtain a Gaussian mixture approxi-
mation of the predictive distributions at every measurement time (SI Ap-
pendix, section S5.1):

ppred
ts ð · , · jD, LvÞ≈ 1

Q

XQ
q=1

N �μev�ts; γq�,Σev�ts; γq��. [10]
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