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Although forest succession has traditionally been approached as a
deterministic process, successional trajectories of vegetation change
vary widely, even among nearby stands with similar environmental
conditions and disturbance histories. Here, we provide the first
attempt, to our knowledge, to quantify predictability and uncertainty
during succession based on the most extensive long-term datasets
ever assembled for Neotropical forests. We develop a novel approach
that integrates deterministic and stochastic components into different
candidate models describing the dynamical interactions among three
widely used and interrelated forest attributes—stem density, basal
area, and species density. Within each of the seven study sites, suc-
cessional trajectories were highly idiosyncratic, even when controlling
for prior land use, environment, and initial conditions in these attrib-
utes. Plot factors were far more important than stand age in explain-
ing successional trajectories. For each site, the best-fit model was able
to capture the complete set of time series in certain attributes only
when both the deterministic and stochastic components were set to
similar magnitudes. Surprisingly, predictability of stem density, basal
area, and species density did not show consistent trends across at-
tributes, study sites, or land use history, and was independent of plot
size and time series length. The model developed here represents the
best approach, to date, for characterizing autogenic successional dy-
namics and demonstrates the low predictability of successional tra-
jectories. These high levels of uncertainty suggest that the impacts of
allogenic factors on rates of change during tropical forest succession
are far more pervasive than previously thought, challenging the way
ecologists view and investigate forest regeneration.
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U nexplained variation (uncertainty) is ubiquitous in ecology,
and often constrains our ability to elucidate the mechanisms
that drive variation in forest structure and dynamics. This issue is
reflected in the long-standing controversy over the relative impor-
tance of determinism and stochasticity in shaping community as-
sembly (1-4). Although it has been widely demonstrated that both
deterministic and stochastic processes drive community assembly in
mature forests (5, 6), their relative importance in explaining forest
succession has not been rigorously evaluated (7). More than one-half
of the tropical biome is in some stage of recovery from past human
disturbance (8), yet no previous study has quantitatively assessed the
extent to which regenerating forests follow predictable trajectories.

Since the early days of community ecology, succession has been
viewed either as a deterministic (1) or a stochastic (2) process.
Forest succession, however, has been traditionally approached as a
predictable process, mostly driven by autogenic factors intrinsic to
the forest site (9, 10). Deviations from this expectation are usually

www.pnas.org/cgi/doi/10.1073/pnas.1500403112

attributed to allogenic factors, such as prior land use or priority
effects (11, 12). As a result, most of our knowledge on forest
succession is based on chronosequences (13), a space-for-time
substitution approach that assumes that succession follows a
single, largely deterministic trajectory over time. Recent studies,
however, have shown that successional pathways vary widely, even
among neighboring stands with similar environmental conditions
and disturbance history (14-18). In the case of posthurricane
succession in Nicaragua, such variation has been attributed to
stochastic processes associated with nonequilibrium community
dynamics (18). As long-term successional studies in the tropics are
rare, assessing predictability of successional trajectories in species-
rich communities has not been possible across a broader range of
geographical and historical settings.

Successional dynamics has been typically studied through the
lens of three widely used forest attributes—stem density, basal
area, and species density, whose dynamics are often evaluated
independently of one another (12). These metrics, however, are
likely to change interdependently during succession. In partic-
ular, successional changes in stem density are associated with
changes in basal area, and vice versa (9, 17). Yet, other possible
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interrelations between these attributes have not been previously
explored in a successional scenario. For instance, although rates of
change in species density are expected to depend upon changes in
stem density (19, 20), it is not clear whether changes in basal area
affect rates of species gain or loss. Also, the causal relationship
between species density and rates of change in stem density and
basal area is poorly understood. To our knowledge, a clear syn-
thesis addressing the simultaneous interdependence of the rates of
change of these three forest attributes is currently lacking. A
promising approach to address this issue is to view regenerating
tropical forests as complex adaptive systems, which integrate many
of the features characterizing reassembling plant communities,
namely self-organization, memory, nonlinearity, and uncertainty
(21, 22). Through such a holistic perspective, we can gain a mech-
anistic understanding of how the interacting components influ-
encing succession produce a system dynamics that cannot be easily
predicted from their individual behavior (23).

Here, we develop a novel modeling approach that addresses
these dynamic interdependencies and that quantifies predictability
and uncertainty in successional pathways by integrating both de-
terministic and stochastic components. We apply these models to
an unparalleled dataset from seven lowland tropical secondary
forests spanning four Neotropical countries (Brazil, Costa Rica,
Mexico, and Nicaragua). Each study site includes 4-15 plots that
document long-term successional forest dynamics (Table S1).
Within each site, plots were established in close proximity and
share similar land use history, climate, and soil conditions. These
data comprise most of the studies on secondary forest dynamics in
the Neotropics and encompass different land use histories and
climate regimes, providing an unprecedented opportunity to in-
vestigate the generality of the successional dynamics observed.

To quantify predictability and uncertainty during succession, we
first illustrate among-plot variability in the successional trajectories
of stem density, basal area, and species density, and evaluate the
effect of stand age on these forest attributes. Then, we quantify
the predictability of successional trajectories within each site by
modeling succession as the realization of a dynamical, strictly de-
terministic process resulting from the initial conditions in stem
density, basal area, and species density, and the simultaneous in-
teraction among these state variables over successive time steps
(Fig. 1). Finally, we assess the degree of uncertainty underlying the
predictability of the deterministic model by incorporating a sto-
chastic component governed by a parameter that defines the rel-
ative magnitude of the deterministic and the stochastic components
(Fig. 1). This approach allows us to address the following questions:
(!) How much of the variation in successional trajectories within
each site is explained by stand age? (ii) Can a single dynamical
model describe the simultaneous interaction among rates of change
in stem density, basal area, and species density? (ii7) What is the
relative importance of predictability and uncertainty in successional
trajectories within each site? (iv) Is any of the forest attributes more
predictable than the others? (v) Is the degree of uncertainty in
successional trajectories related to previous land use?

Results

Variability in Successional Trajectories and Effect of Stand Age.
Successional trajectories of stem density, basal area, and spe-
cies density varied widely within and among sites (Fig. 2). Within
each site, plot identity (random effect) was more important than
stand age since abandonment (fixed effect) in explaining varia-
tion in forest attributes, accounting for over 60% of the total
variance in most cases (Table S2). For instance, in Brazil 1, plot
identity explained over 80% of the variance in all three attrib-
utes, and stand age did not significantly predict basal area or
species density. Sites without previous land use (Costa Rica 2
and Nicaragua) showed similar patterns to sites used previously
as pastures (Brazil 2 and Costa Rica 1), with plot identity
explaining over 90% of the variance in certain cases. Strikingly,
the contribution of age and its interaction with plot identity was
low in comparison with that of plot identity alone, explaining less
than 20% of the total variance within sites (Table S2).
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Fig. 1. lllustration of the model as the realization of the process X(t) starting at
two different initial conditions. The model integrates predictability and un-
certainty as described by a system of stochastic differential equations, where X
denotes the state of the system at a given time. The system is characterized by
three state variables: stem density, basal area, and species density. The thick lines
represent two trajectories, expressed by the deterministic component of the
model only, in a phase space defined by normalized stem density, basal area, and
species density, and starting at two different initial conditions. The thin, dotted
lines represent two trajectories, as expressed by the stochastic model. As the
zoom shows, the stochastic trajectory is the result of a random walk starting at
the initial condition. The stochastic model drives the system from time t to time
t+ At, and the possible outcomes follow a Gaussian probability distribution.

Predictability in Successional Trajectories. To quantify predictability
of successional trajectories within each site, we modeled suc-
cession as the realization of a dynamical process resulting from
initial conditions in stem density, basal area, and species density,
and their simultaneous interaction, over successive time steps.
We evaluated the fit of three candidate dynamical models
(Methods). The nonlinear dynamical model performed markedly
better than the linear model or the linear model with in-
teractions, both of which performed poorly (Table S3).

As the nonlinear model included nine terms and 18 parameters
(Methods), we attempted to reduce the number of parameters
through backward elimination of terms that were not supported by
available data (9). More specifically, rates of change in stem
density or in basal area are not likely to be causally related with
species density, and the relationship between rates of change in
species density and basal area has not been explored yet in a
successional scenario. We tested the seven possible combinations
that had eight, seven, or six terms (16, 14, and 12 parameters,
respectively) instead of the nine terms (18 parameters) included in
the full nonlinear model. The model that best fitted the observed
data differed among sites (Table S4), indicating that the processes
driving successional dynamics were neither consistent nor uniform
across a broad range of secondary forests.

Fig. 3 shows how the derivatives (rates of change) of stem density,
basal area, and species density varied as a function of each attribute
alone, based upon the fitted parameters of the best-fit nonlinear
model for each site. Some bivariate patterns were consistent among
sites, suggesting generality in successional processes across study
sites. In most sites, increasing stem density led to decreasing rates of
change in stem density, but to positive and increasing rates of
change in basal area (Fig. 3 A and D). These results suggest high
tree mortality in dense early successional stands, whereas the
remaining trees rapidly accumulate basal area. Similarly, stands with
high basal area showed positive and increasing rates of change in
stem density in most sites, but negative and decreasing rates of
change in basal area (Fig. 3 B and E). These findings indicate that,
when stands reach a saturation point in terms of basal area, regu-
lation occurs through the death of large trees, rather than through
recruitment limitation. Also, in most sites, rates of change in species
density increased as stem density increased (Fig. 3G), but decreased
as species density increased (Fig. 3I). These results reflect species
colonization through tree recruitment early in succession, whereas,
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Fig. 2. Observed successional trajectories of stem density, basal area, and
species density. For each plot within each site, temporal changes in stem
density, basal area (in square meters), and species density are plotted against
age since pasture or clearcut abandonment (lines connecting same symbols).
Each of these attributes was standardized by plot size, depending upon the
site (Methods).

as succession unfolds, rates of species gain reach a saturation point
determined by the number of species that can establish in the
community (20). Notably, rates of change in stem density, basal
area, and species density showed wide variation among sites, even in
cases when the direction of these trends was consistent among sites
(Fig. 3 and Table S5).

The dynamical models also revealed several interactions among
state variables that have not been demonstrated in previous stud-
ies. In Brazil 1 and Mexico dry, increased species density was as-
sociated with positive and increasing rates of change in stem
density (Fig. 3C). In Brazil 2 and Mexico wet, rates of change in
basal area decreased dramatically at low levels of species density,
and then stabilized (Fig. 3F). Although these patterns may not
reflect causal relationships, they might mirror the resultant pat-
terns of underlying processes specific to some sites. For instance,
during the first years of succession in Mexico wet, the low diversity
assemblage of pioneer species experienced an acute mortality
episode that was accompanied by a sudden reduction in basal
area (17).

Norden et al.

Relative Importance of Predictability and Uncertainty in Successional
Trajectories. Despite the overall good fit of the nonlinear deterministic
models (Fig. S1), the correlation between observed and predicted
temporal trajectories of the three state variables for each plot within
each site was not significantly positive in many cases (143/201; Table
S6). To assess the degree of uncertainty underlying the pre-
dictability of the deterministic model, we incorporated a stochastic
component to the nonlinear models by generating 1,000 trajectories
given the observed initial conditions and a parameter @, which
modulates the amount of noise integrated to the model. The model
envelopes defined by the stochastic trajectories included the great-
est part of the observed trajectories only when the relative magni-
tude of the stochastic and deterministic components was set to be
similar (0.8 <a <1.2; Fig. 4), and only in one or two of the three
attributes. The sole site for which the model was able to predict the
entire set of time series for all three attributes was Mexico wet, and
this needed an important contribution of the stochastic component
(a>1). Although the predictability of the model (the fraction of
data points within the model envelope) increased as the relative
magnitude of the stochastic component increased, it never reached
the maximum value (one) for many forest attributes in certain sites
(e.g., Costa Rica 1 and Mexico dry). Indeed, in some cases, the
predictability of the stochastic model decreased as « increased (e.g.,
species density in Nicaragua) because the addition of noise to the
nonlinear deterministic model launched the trajectory of the system
into a region of phase space with negative values in the state vari-
ables, resulting in a mathematical artifact (Methods).

Overall, the observed patterns were highly idiosyncratic, and the
predictability of forest attributes did not show consistent trends
across attributes, sites, or land use history. None of the forests at-
tributes showed higher predictability than the others (Fig. 4), and
sites without any previous land use (Brazil 1, Costa Rica 2, and
Nicaragua) showed similar patterns to those used for pastures
(Brazil 2 and Costa Rica 1) or agriculture (Mexico wet and Mexico
dry). Furthermore, the magnitude of noise intensity required to
increase model predictability was independent of plot size and of
time series length (Figs. S2 and S3). Indeed, the larger Costa Rican
plots (>1 ha) showed similar idiosyncratic patterns to those ob-
served in other sites.

Astem density
max(Astem density)

Abasal area

max(Aspecies density) max(Abasal area)

o Brazil 1

= — Brazil 2
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Fig. 3. Among-site variation in the values of the fitted parameters of the
deterministic model. Derivatives of stem density (A-C), basal area (D-F), and
species density (G-/) as a function of each of these properties alone, obtained
from the fitted parameters of the nonlinear dynamical model in Eq. 2c. The
derivative of each forest attribute is divided by its observed maximum to
evaluate the contribution of each attribute to each derivative on a unitless
scale. Note that stand age is not explicitly addressed in the plot axes.
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Fig. 4. Predictability of the stochastic model as a
function of noise intensity. Mean fraction of the ob-
served data points describing the successional trajec-

tories in stem density, basal area, and species density
that lie within the envelope generated by the sto-
chastic model at different levels of noise intensity.
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Discussion

Our multisite, long-term study sheds new light on the nature of
successional dynamics. Our model was able to reproduce many of
the general successional trends observed for these trajectories, yet
the spatiotemporal trajectories in these forest attributes revealed
high levels of uncertainty. Even when accounting for previous land
use and variation in initial conditions at the first census, the de-
terministic and stochastic components of the model had to be
similar in magnitude to predict successional trajectories accu-
rately. Although variation in successional pathways has been
widely acknowledged (14, 15, 18), quantifying the magnitude of
this variability has remained an elusive goal. To our knowledge,
our results provide the first quantitatively robust, multisite as-
sessment of the extent of uncertainty during tropical forest suc-
cession using long-term datasets.

Previous attempts to model secondary forest dynamics have fo-
cused on mechanistic approximations based on species-specific
equations to predict changes in species performance and compo-
sition in temperate stands (24, 25). This level of accuracy is im-
practical in tropical forests, where hundreds of tree species coexist.
Here, we intended to represent nature through models focusing on
the autogenic forces that drive succession. We acknowledge that
our approach was not strictly mechanistic, yet parameters esti-
mated by the deterministic component of our model reinforced our
understanding of stand dynamics at different stages of succession.
We detected different processes occurring early in succession, such
as density-dependent thinning and basal area accumulation as a
consequence of increasing tree recruitment (9). Likewise, the
competitive pressure leading to a decrease in species colonization
rates was also observed in most sites (20). Although these results
have already been reported in the literature, they validate our
model and demonstrate that the fitted parameters do reveal many
of the ecological processes driving successional dynamics. Our
model further reveals previously unexplored patterns, such as the
relationship between species density and rates of change in stem
density and basal area. As these associations were only observed in
a few sites, further work may help to disentangle the mechanisms
through which species diversity affects biomass dynamics and
thereby ecosystem function (26). Overall, the strength of these
processes differed widely among sites, which may reflect site-
specific characteristics related to species composition, stand age
distribution, and environmental and landscape factors.

Most of our understanding in tropical successional ecology is
embedded in a deterministic framework where successional path-
ways are primarily driven by autogenic factors, and prior distur-
bances due to anthropogenic land use are typically the only allogenic,
external forces considered (11, 12). Our results showed that suc-
cessional pathways were highly idiosyncratic among nearby plots of
the same age since abandonment with similar disturbance history,
and therefore we strongly advise caution in making inferences about
rates of vegetation change based on single-time censuses (27).

8016 | www.pnas.org/cgi/doi/10.1073/pnas.1500403112

Interestingly, the strength of such idiosyncrasy was not linked to the
nature or intensity of prior land use. The sites where secondary
forests were regenerating after pasture (Brazil 2 and Costa Rica 1)
or shifting cultivation (Mexico wet and Mexico dry) did not show any
notable difference in terms of predictability of successional trajec-
tories compared with sites with forests regenerating after clear-cut-
ting with no subsequent land use (Brazil 1 and Costa Rica 2). Even
the forest plots in Nicaragua, where monitoring in all plots started
simultaneously soon after the passage of Hurricane Joan, showed
high among-plot variability in their successional trajectories.

The complexity of site factors and their interaction with land use
is widely acknowledged and challenges our ability to predict suc-
cessional pathways at local or regional spatial scales (7). Topo-
graphic variation in soil quality and drainage, distance to other forest
patches, continuous changes in the surrounding landscape, initial
species and functional composition, fire frequency, and neighbor-
hood effects all influence rates of vegetation change in successional
pathways (27). Moreover, a myriad of local factors including priority
effects, invasive species, weed control, last crop planted, nutrient
treatments, pathogen and herbivore loads, and persistent edge ef-
fects can alter successional processes and push community trajec-
tories in unpredictable directions (18). Although the nonlinear
model developed here does not explicitly include local and land-
scape factors, a key feature of our approach is its high sensitivity to
initial conditions in stem density, basal area, and species density,
which may account for some of these historical contingencies. Our
results underscore the need for future cross-site, long-term succes-
sional studies that consider local, previously unmeasured factors,
and ongoing changes in the surrounding landscape.

By emphasizing the emergent properties of communities, we
believe that the model developed here represents, to date, the best
approach for characterizing tropical forest successional dynamics.
Despite the high levels of uncertainty detected, we might be able to
elucidate the underlying processes behind the patterns observed,
and to anticipate ecosystem change through the further de-
velopment of high-dimensional models (28). Other metrics, such as
species and functional dominance could also provide critical insights
about the dynamic relation between functional traits and biomass
accumulation (26). A challenging goal remains to model multidi-
mensional variables such as species or functional composition. Al-
though more complex, successional pathways based on these metrics
may be more predictable, as species and functional composition are
likely to be determined by niche-based processes (29, 30).

A potential limitation of our results is that they portray the first
decades of succession, which reflect the predominant age classes of
regenerating forests in the Neotropics (12). Only one site, Mexico
dry, comprises secondary stands over 60 y old, and Nicaragua is the
sole site that shows rates of change in forest structure since the
beginning of the successional process (18). Despite representing
the most extensive monitoring of forest succession in the tropics,
10-15 y of census data are insufficient to capture the entire range
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over which rates of vegetation change are the most dynamic (20).
Longer time series would allow to evaluate the extent of conver-
gence in successional trajectories within the next decades (31). Also,
they would give essential information about how secondary forests
respond to unpredictable climatic events, thereby elucidating forest
resilience and identifying potential tipping points (32). As abrupt
changes are unlikely to be predicted by deterministic models, our
approach would provide insights about the extent of uncertainty in
these atypical cases.

Because all natural systems interact with their surroundings and
are subject to historical contingencies, it is highly impractical to
measure all of the factors affecting forest succession. This com-
plexity constrains our capacity to distinguish ecological signals from
noise in the successional process. When patterns do not follow
deterministic predictions, ecologists often invoke stochasticity (3).
Such a dual perception of ecological processes hampers a synthetic
understanding of community reassembly in regenerating for-
ests (6). Indeed, in complex adaptive systems, erratic patterns can
arise from either stochastic processes that emerge from seemingly
random fluctuations, or from unexplained but causal variability
emerging from “unknown unknowns” (33). Thus, despite the high
levels of ecological noise observed here, what we typically view as
stochasticity may ultimately be explained by deterministic factors
that have not been measured or incorporated. Our study calls for a
better evaluation of the historical contingencies and landscape
variables affecting succession. As regenerating forests have a great
potential to become important biodiversity reservoirs and deliver
environmental cobenefits in an economically viable manner (34),
we urgently need a better interpretation of research findings re-
lated with successional ecology. If secondary succession is highly
context dependent—as supported by this study—evaluating the
extent of uncertainty in successional trajectories in relation to local,
landscape, and regional variables will allow a better understanding
of the sources of variation in stand dynamics in human-modified
landscapes. New, integrated approaches that model communities
as complex systems will enable prediction of response envelopes
to guide the research agenda and the effective management of
regenerating forests, which currently encompass more than one-
half of all tropical forests globally (8).

Methods

Study Sites and Data. We used multitemporal (repeated-measures) forest
dynamics data from multiple lowland Neotropical terra firme forests located
in Brazil, Costa Rica, Mexico, and Nicaragua (more details in S/ Methods and
Table S1). Within each site, 4-15 permanent plots were established in sec-
ondary stands of different ages but with similar disturbance histories and
environmental conditions, and were monitored annually for at least 8 v,
except for a few plots that were accidentally burnt.

Dynamical Modeling. We quantified predictability and uncertainty during
succession in each of the seven sites by using dynamic, stochastic models to fit
the observed rates of change in stem density, basal area, and species density
simultaneously (Fig. 1). We excluded from this analysis six plots in Brazil 1, one
in Brazil 2, and two in Mexico wet as they were monitored for less than 4
consecutive years because of burnings. Stochastic models integrate pre-
dictability (deterministic drivers) and uncertainty (stochasticity), as described by
a system of stochastic differential equations of the Langevin form (35):

9 X(0)=g(X(1), ) + h(X(1), 1) T(t), 1]

where X denotes the state of the system at a given time, characterized by three
state variables: stem density, basal area, and species density. The right side of
Eq. 1 describes the magnitude of the derivative of each component X over time
as the sum of a deterministic function g(X(t),t), and a stochastic function
h(X(t), t)-T'(t), where I'(t) stands for terms of Gaussian white noise (Fig. 1).

Deterministic component of the model. We first defined the deterministic com-
ponent of Eq. 1, g(X(t), t), through a system of first-order differential equa-
tions, where the change in each state variable at time t + z depends only on its
state at time t. For each site, this system of equations simultaneously models all
of the observed trajectories of stem density, basal area, and species density
over time, starting at the first census value for each plot. It must be noted that
initial conditions for each plot denote the first observation available for each
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trajectory and are not modeled as the beginning of the successional process at
to after land abandonment. Thus, our results are not biased by among-plot
variability in stand age at first census, or by temporal changes in the rates of
change in forest structure attributes as succession unfolds.

Because forest structure attributes varied over widely different ranges, we
normalized these state variables by scaling them between 0 and 1, so that
X = (X—Xmin)/(Xmax — Xmin)- This standardization allowed values to be adjusted
for different levels of magnitude, without changing the shape of the distribu-
tion. The common z standardization was not applied to keep the state variables
positive. Otherwise, this would cause mathematical artifacts in one of our can-
didate models (Eq. 2¢), as the system of equations cannot be solved in the do-
main of the real numbers because a negative number cannot be raised to
a fractional power.

For each of the seven sites, we tested three candidate models. Linear
functions are the most commonly used approximation to investigate the
relationships between quantitative variables, and provide an accurate picture
for assessing local stability points in the study of dynamical systems. Thus, our
first model described a linear relationship between the rates of change in
stem density (D), basal area (BA), and species density (S) as follows:

D
%2311D+ a;nBA+ 6135
dBA
W: a; D+ apBA+ axS- [2a]

ds

——= a3 D+ axnBA+ asxs

gr= 32 33

Because this model ignores possible interactions among the state variables,
which are frequent in ecological systems, we formulated a second, alternative
model, which included interactions among the state variables as follows:

dD

E:a11D+ a;DxBA+ a;3DxS
dBA
ot = a1BA+ anBAXD+ a3BAXS. [2b]

£= az15+ az3SxD+ a3sSXBA

However, most systems are inherently nonlinear in nature. Indeed, rates of
community change during succession are characterized by saturating curves
(20). Also, as successional trajectories are highly sensitive to initial condi-
tions, small differences may be amplified and lead to divergent trajectories,
thereby resulting in nonlinearities (23). For these reasons, the third model
included nonlinearities in the system as follows:

db
E=a11Db” + auBAb” + a135b”

dBA

W= az1Db21 + azzBAb22 + az3S"B . [ZC]

ﬁ: 831Db3' + ¢33zBAb32 + 8335‘733
dt

The best-fit model was found using a genetic algorithm, a heuristic method in
which a randomly created population of parameters is optimized by means of
crossover and mutation operators in a process that mimics natural selection (36).
By these means, new solutions to the system of equations are created, different
from the parent solutions, thereby avoiding local minima. The algorithm was run
2,000 times until reaching the minimum objective function, i.e., the minimum
root-mean-square error of the observations and model estimates, as follows:

‘ BAobs — BAsim ‘
maX(BAobs)

[31

n .
min(s) = Z(‘D"b‘ Deim|

|Sobs_ Ssim‘)
+ B
<\ max(Dops)

max(sobs)

where D, BA, and S are the normalized, temporal trajectories in stem density,
basal area, and species density, respectively, 5§ refers to the objective function,
and n, the number of plots within a site. This method implements a numerical
solution for these first-order differential equations by defining a At = 0.1y.
This time step is small enough to assume that the instantaneous rate of change
modeled can be assimilated to the rate of change at each time step.

We assessed the predictive power of the three candidate models using the
Nash-Sutcliffe model efficiency (NSE) coefficient (37), defined as follows:

n L \2
X7, (1)

NSE=1-—/———~, [4]

Z:’ﬂ (Yl_obs _ m) 2
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where Y,-"bs is the ith observed value, Yf"m is the ith simulated value, Yps is
the mean of observed data, and n is the total number of observations for
each site. The NSE coefficient is a normalized statistic that determines the
relative magnitude of the residual variance compared with the measured
data variance. This metric indicates how well the plot of observed versus
modeled data fits the 1:1 line. NSE ranges between —co and 1, with NSE = 1
being the optimal value. Values between 0 and 1 are generally viewed as
acceptable levels of performance, whereas values <0 indicates that the
mean observed value is a better predictor than the simulated one, which
indicates unacceptable model performance (37).

To account for the number of parameters as a criterion for model selection
and avoid overfitting, we calculated an approximate Akaike information
criterion (AIC) for each model, as follows:

AIC=-2 x loglik +(2 x npar), [51

where loglik is the log-likelihood of the regression relating observed and
fitted values and npar is the number of parameters of each candidate
model. This approximate AIC balances the goodness of fit (as measured by
the log-likelihood of the regression relating observed and fitted values) and
the number of parameters of the models (38).

Because the nonlinear model (Eq. 2c) performed better than the linear
model (Eq. 2a) or the linear model with interactions (Eq. 2b), we did a
backward elimination of the terms for which no previous information on
their effects on the rates of change in stem density, basal area, or species
density was available. These were (i) the effect of species density on the
rates of change in stem density, (ii) the effect of species density on the rates
of change in basal area, and (iii) the effect of basal area on the rates of
change in species density. Overall, we compared the seven models resulting
from the elimination of these three terms separately and all its possible
combinations (Table S4). For each site and each attribute, the best-fit model
was selected using the NSE and AIC, as described above.

Stochastic component of the model. In a second step, we incorporated the
stochastic component of Eqg. 1 as Gaussian white noise added to each of the
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coefficients estimated from Eq. 2c. We generated a set of infinite trajectories
of the process constrained within an envelope, given the set of initial con-
ditions observed in each site (Fig. 1). The width of the envelope depends on
the magnitude of the stochastic component in Eq. 1, so that

h(X(t)) = a-g(X(t)), [6]

where « is the modulating factor determining noise intensity. When a =0, the
magnitude of the stochastic component of the model is null. If a=1, the
deterministic and stochastic components of the model are equivalent. If &> 1,
the magnitude of the stochastic component of the model is greater than that
of the deterministic model. In the stochastic model, each component of X is
treated as a random process. If we set X(t;) =x + Ax, then the distribution of
the predicted values of x at the next step of the trajectory X(t; +z) is given by
a Gaussian function with mean x + g(x)r and SD h(x)\/z (35) (Fig. 1). The
codes for running the stochastic model were written in Matlab 7.2.
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