Skip to main content
. 2015 Jun 15;112(26):8013–8018. doi: 10.1073/pnas.1500403112

Table S3.

Predictive power of the candidate deterministic models

Site Linear model (9) (Eq. 2a) Lineal model with interactions (9) (Eq. 2b) Nonlinear model (18) (Eq. 2c)
NSE AIC NSE AIC NSE AIC
Brazil 1 0.96 −669.2 0.96 −740.2 0.98 −983.2
Brazil 2 0.77 −555.5 −9,066,779 −673.7 0.92 −919.5
Costa Rica 1 −28.2 +1,107.7 −43,311,385 +4,497.4 0.95 −602.1
Costa Rica 2 −18.7 +524.2 0.81 −290.6 0.92 −264.6
Mexico wet −0.62 −563.7 −29,741,865 +5,776.9 0.89 −626.8
Mexico dry −10.4 −1,253.0 −2,600,253 +5,534.9 0.98 −1,233.6
Nicaragua −3.1 +890.5 −11,087,299 +6,302.8 0.93 −1,020.3

Linear model (Eq. 2a), linear model with interactions (Eq. 2b), and nonlinear model (Eq. 2c). For each candidate model, we report the Nash–Sutcliffe efficiency coefficient (NSE) and the Akaike information criterion (AIC), which accounts for the number of parameters of each model (in parentheses). Values in bold indicate the best-fit model for each site.