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Genetic screening based on loss-of-function phenotypes is a
powerful discovery tool in biology. Although the recent develop-
ment of clustered regularly interspaced short palindromic repeats
(CRISPR)-based screening approaches in mammalian cell culture
has enormous potential, RNA interference (RNAi)-based screening
remains the method of choice in several biological contexts. We
previously demonstrated that ultracomplex pooled short-hairpin
RNA (shRNA) libraries can largely overcome the problem of RNAi
off-target effects in genome-wide screens. Here, we systematically
optimize several aspects of our shRNA library, including the pro-
moter andmicroRNA context for shRNA expression, selection of guide
strands, and features relevant for postscreen sample preparation for
deep sequencing. We present next-generation high-complexity li-
braries targeting human and mouse protein-coding genes, which
we grouped into 12 sublibraries based on biological function. A pilot
screen suggests that our next-generation RNAi library performs com-
parably to current CRISPR interference (CRISPRi)-based approaches
and can yield complementary results with high sensitivity and high
specificity.
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Functional genomics approaches in mammalian cells have the
potential to dissect gene functions and to complement ob-

servational genomics approaches for the identification of disease
mechanisms and therapeutic strategies. For many years, RNA
interference (RNAi) was the technology of choice for loss-of-
function screens in mammalian cells. Clustered regularly inter-
spaced short palindromic repeats (CRISPR)-based screening
approaches recently developed by us and others (1–4) provide a
highly promising orthogonal strategy. In particular, CRISPR
interference (CRISPRi) has reduced off-target effects and can
reach high levels (90–100%) of knockdown (1), and CRISPR
cutting can generate null alleles.
Despite the advantages of CRISPR-based strategies, there are

still important uses for RNAi technology. RNAi is a single-
component system that works in otherwise unengineered cells,
and can thus be used in challenging biological contexts. Because
CRISPRi blocks transcription at the transcription start site of
endogenous genes, it does not allow selective targeting of func-
tionally distinct coding and noncoding RNAs derived from the
same primary transcript, such as splice isoforms or noncoding
RNAs embedded in the introns of coding transcripts, whereas
RNAi reagents can be designed for specific targeting of ma-
ture RNAs (mRNAs).
Hence, there is a continued need to improve RNAi-based

screening platforms. We have previously established a quanti-
tative framework to derive robust results from pooled screens of
ultracomplex short-hairpin RNA (shRNA) libraries that target
each gene with ∼25 independent shRNAs and contain thousands
of negative-control shRNAs (5). Such complex libraries can be
constructed using massively parallel oligonucleotide synthesis,
and phenotypes in pooled populations can be determined using
next-generation sequencing, as previously established by others

and us (6, 7). Ultracomplex libraries minimize the rates of both
false-negative results (caused by lack of shRNA activity) and
false-positive results (caused by shRNA off-target effects), through
the use of a rigorous statistical approach (5, 8). Our framework
enables the sensitive identification of genes modulating a phe-
notype of interest, and of active shRNAs targeting these genes.
Thus, it can provide the basis for construction and screening
of double-shRNA libraries for the systematic analysis of genetic
interactions between large numbers of genes to reveal cellular
pathways (8).
Here, we present next-generation shRNA libraries targeting

the human and mouse genomes. We tested several parameters to
optimize the design of shRNAs and their expression in micro-
RNA (miRNA) contexts. A pilot screen establishes that our next-
generation RNAi platform performs comparably to our CRISPRi
platform in detecting hit genes, and that results from these or-
thogonal approaches yield complementary results. Recently, our
next-generation shRNA platform described here for the first time
enabled us to identify the molecular target of a compound en-
hancing memory in mice, using a technically challenging flow
cytometry-based screen (9).
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Results
Systematic Comparison of miRNA Contexts for shRNA Expression.
Although shRNAs can be expressed in mammalian cells from
RNA polymerase III promoters, such as the U6 promoter, such
strategies can lead to nonspecific toxicity associated with high
shRNA expression levels, possibly because of saturation of the
endogenous RNAi machinery (10). For our previous double-
shRNA–based approach for the quantification of genetic inter-
actions (8), we therefore implemented an alternative strategy de-
veloped by the Elledge laboratory (11), in which shRNAs are
processed from a miR-30a context embedded in an RNA poly-
merase II transcript.
The miR-30a context has been used successfully in many cell

types. However, our comparison of the processing precision of
endogenous miRNAs suggests that miR-30a processing is less
precise than other human miRNAs (Fig. S1 and Dataset S1), in
particular with respect to the 5′ end, which plays an important
role in determining the seed region and thus the spectrum
of mRNA targets. This observation raises the possibility that
shRNAs expressed from other miRNA context may result in
more potent and more selective gene knockdown. A systematic

comparison of different miRNA contexts for shRNA expression
has not been previously described. To experimentally determine
the performance of a large number shRNA expression formats,
we conducted a pooled screen of targeted and negative-control
shRNAs expressed in different formats. We designed a pooled li-
brary targeting a set of human genes (RAB1A, SEC24A, TRAPPC8,
TRAPPC11, and VPS53, all encoding trafficking factors, and
RPS25, encoding a protein of the 40S ribosomal subunit), whose
knockdown we had previously found to confer resistance to the
toxin ricin (8). The library contained 25–50 different shRNAs
targeting each gene, as well as 1,000 negative-control shRNAs
designed not to target any human transcript, expressed from 79
different formats.
The formats were based on 11 different endogenous human

miRNA contexts and rationally designed variations of these con-
texts. These variations included the use of G-U wobble base pairs
to destabilize interactions between the guide and passenger strands,
introduction of a “bulge” in the stem (often found in endogenous
miRNAs) caused by a noncomplementary base in the middle of
the passenger strand, and use of the endogenous three bases at
the 3′ end of the guide, instead of the bases complementary to the
shRNA target site. We also tested mutations of the loop sequence
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Fig. 1. Massively parallel comparison of miRNA contexts for shRNA expression. (A) Experimental strategy to test performance of different miRNA contexts
and variants for shRNA expression in a pooled genetic screen. Guides targeting genes with known ricin resistance phenotypes were selected, along with
negative-control guides. These were expressed in 79 different shRNA formats, which were variations on 11 endogenous human miRNA contexts. The resulting
pooled library of >100,000 different shRNAs was introduced into the human K562 cell line using lentiviral infections. The cells were grown untreated or
treated with ricin, and the frequencies of cells expressing a given shRNA in these two populations were determined using deep sequencing. From these data,
ricin-resistance phenotypes were calculated for all shRNAs. (B) Comparison of 79 formats with respect to three metrics derived from the pooled screen: On-
target effect (x axis, a measure of phenotype strength across all ricin hit genes), off-target effects (y axis, a measure of the deviation from wild-type for
negative-control shRNAs), and hit detection (heat map, a measure of the statistical significance of detecting ricin hit genes). Metrics are defined quantitatively
in Materials and Methods. In several instances, formats derived from the same miRNA context show similar performance across the three metrics (dashed
ovals). (C) Comparison of ricin resistance phenotypes for shRNAs targeting TRAPPC8 (red circles) and negative-control shRNAs (empty circles) expressed either
in a miR-30a–standard context or a miR-100–bulge context. Phenotypes of targeted shRNAs were correlated between the two expression formats.
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to generate a restriction enzyme cleavage site in the encoding
DNA for use during sample preparation after pooled screens.
Furthermore, we evaluated several miRNA-specific modifica-
tions aimed to create an optimal structure for Drosha processing:
sequences were replaced or removed to generate single-stranded
basal segments that are required for efficient and accurate pro-
cessing (miR-7-2) (12), to make a simple duplex structure in the
lower stem region for simplicity of design (miR-96, miR-125b-2,
miR-130a, miR-190a, and miR-211), to convert the first nucleo-
tide of the small RNA product into uridine, which typically ap-
pears in the first position of endogenous small RNAs (miR-100
and miR-130a), or to create a flexible loop structure (miR-125b-1
and miR-340), which enhances processing efficiency (13, 14).
We designed >100,000 oligonucleotides encoding shRNAs

targeting ricin resistance genes and negative-control shRNAs
expressed in the different formats (Dataset S2), cloned them into
lentiviral vectors, and introduced them into human K562 cells
(Fig. 1A). We then cultured the cells either in the presence or
absence of ricin, after which we quantified frequencies of cells
expressing each shRNA in the two populations by deep se-
quencing. This process enabled us to quantify a ricin-resistance
phenotype (ρ) for each shRNA (5), and to calculate a P value for
each gene and expression format by comparing the strength of
phenotypes of shRNAs targeting each gene to the phenotypes of
negative-control shRNAs for a given format.
To evaluate the performance of the different formats, we

compared three metrics: (i) the on-target strength of shRNA
phenotypes, (ii) the extent of off-target effects (deduced from
the phenotype distribution of negative-control shRNAs), and
(iii) the confidence of calling hit genes (the P values for known
ricin resistance genes). These metrics are quantitatively defined
in Materials and Methods. Interestingly, we found that on-target
strength and off-target effects were independent features across
different expression formats (Fig. 1B). As expected, formats
achieving high on-target phenotypes but low off-target effects
performed best at hit gene detection (Fig. 1B). Different formats
derived from the same endogenous miRNA context commonly
shared performance characteristics (Fig. 1B). The on-target
phenotypes achieved with independent shRNAs targeting the
same genes were highly correlated for many of the well-per-
forming expression formats (Fig. 1C and Fig. S2A).
The traditionally used miR-30a context was among the best

expression formats, displaying high on-target activity, low off-
target activity, and excellent hit detection performance (Fig. 1B
and Fig. S2B). miR-100–based formats had even slightly higher
on-target activity in this study. However, we decided to use the
miR-30a context for our next-generation library, given its well-
established performance in many experimental contexts. miR-
100 context-based shRNA expression should be an attractive
alternative for future applications that require alternative ex-
pression formats.

Variations of the miR-30a Expression Format. We next tested the
impact of modifications of the miR-30a context expression for-
mat on shRNA knockdown performance. A commonly used
variation of the wild-type miR-30a context, which was present in
our previous libraries, is a point mutation introducing an EcoRI
site in the encoding DNA for cloning purposes (Fig. 2A).
However, this point mutation also disrupts a CNNC motif re-
cently shown to be important for effective miR-30a processing
(15). We previously developed an shRNA expression vector in
which this CNNC motif is restored (5). A similar strategy has
been reported by others (16). We also wanted to test a pair of
point mutations in the shRNA loop region that would generate a
restriction site in the encoding DNA (Fig. 2A). Cleavage of this
region during the preparation of samples for deep sequencing is
a strategy to circumvent PCR amplification of the inverted-
repeat region encoding the full-length shRNA.

We expressed these sequence variants of an shRNA targeting
GFP in a K562 line stably expressing GFP and quantified GFP
knockdown by flow cytometry. The wild-type miR-30a context
containing the CNNC motif resulted in stronger GFP knock-
down than the EcoRI version of miR-30a. Mutations in the loop
region designed to introduce a HindIII site were not detrimental
to knockdown performance. We therefore chose the combination

A

C

B

Fig. 2. Individual characterization of shRNA expression formats. (A) Varia-
tions of the miR-30a context. (Upper) A point mutation (red) in the sequence
downstream of the hairpin creates an EcoRI site (underlined) in the encoding
DNA. This destroys the CNNC motif (underlined in purple) shown to be im-
portant for miR-30a processing (15). (Lower) Two point mutations (red)
in the hairpin loop create a HindIII site (underlined) in the encoding DNA.
(B and C) An shRNA targeting GFP was expressed in different formats in a
K562 cell line stably expressing GFP. Median GFP fluorescence was quantified
by flow cytometry, and is normalized to GFP fluorescence in a cell line with a
negative-control expression construct lacking a hairpin. The dotted line in-
dicates the level of GFP fluorescence for the expression format we have
previously used (EF1a promoter, EcoRI context, WT loop). (B) shRNA ex-
pressed from the WT context resulted in stronger knockdown compared
with EcoRI context. Introduction of HindIII in the loop was not detrimental.
(C) In K562 cells, expression from the SFFV promoter resulted in stronger
knockdown than expression from the EF1a promoter.
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of CNNC-containing miR-30a context with HindIII-modified
loop for our next-generation library.
We and others have previously used the housekeeping pro-

moter EF1a to express miRNA-context–based shRNAs. We
wanted to test if a stronger promoter would result in higher
shRNA activity. We selected the viral SFFV promoter, which is
short and drives high levels of transcription in several cell lines.
Indeed, SFFV-driven shRNA expression resulted in stronger
knockdown in K562 cells (Fig. 2C). We therefore used this pro-
moter to construct our next-generation shRNA library. However,
because the SFFV promoter can be silenced in certain cell types
(17), we also generated an alternative backbone vector containing
the EF1a promoter instead.

Machine Learning of Sequence Rules for shRNA Activity. It is cur-
rently not possible to precisely predict the activity of shRNA
sequences. A major advance was the establishment of the so-
called sensor assay, which enabled the massively parallel de-
termination of shRNA activities (18). From data generated with
the sensor assay, rules for shRNA activity were abstracted (18)
and a proprietary algorithm for the prediction of shRNA activity

was developed (16). Our goal was to test which rules are pre-
dictive of shRNA activity specifically in our expression context.
Our first aim was to compare the performance of 21mer

shRNAs designed using the si-shRNA Selector program (19) and
22mer shRNAs designed using the Hannon laboratory shRNA
retriever program (20). We constructed two libraries targeting
the same set of ∼1,000 genes, each with either fifty 21mer or fifty
22mer shRNAs, and containing >1,000 matched negative-control
shRNAs. The targeted genes were enriched for genes known to
modulate the sensitivity to ricin. We determined ricin-resistance
phenotypes in K562 cells in pooled screens to calculate gene-
based P values. Although there was a correlation in the P values
for hit genes derived from both libraries, the 22mer shRNA li-
brary outperformed the 21mer shRNA library (Fig. 3A). The
22mer library detected more hit genes above a 5% false-discovery
rate (FDR) cut-off, as calculated using the approach by Storey
and Tibshirani (21). We therefore decided to use 22mer shRNAs
for our next-generation shRNA library.
To investigate which sequence properties increased the like-

lihood of 22mer shRNA activity in our expression system, we
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Fig. 3. A sequence score predictive of shRNA performance. (A) Comparison of 21mer vs. 22mer guide design. Two shRNA libraries targeting the same set of
1,079 genes each with 50 21mer guide strands vs. 50 22mer guide strands were used in a ricin resistance experiment. P values for each gene were calculated
based the data from the two libraries. Gray line: cut-off for 5% FDR. (B) Sequence features as predictors of 22mer shRNA activity. Phenotypes of 22mer
shRNAs targeting ricin hit genes were measured in a batch experiment and shRNAs were classifed as active or inactive. Features (quantitatively defined in
Table S1) were target accessibility as predicted from the secondary structure stability of the mRNA context of the shRNA target, and modified versions of the
sensor rules (18). (Left) Areas under the receiver operating characteristic curve (ROC AUC) for sensor rules used as quantitative metrics. Stepwise forward
logistic regression was used to create an integrated sequence score predicting shRNA activity (Table S2). Features included in the sequence scores are marked
by asterisks. (Right) ROC curve for the sequence score; FPR, false-positive rate; TPR, true positive rate. (C and D) Based on shRNA phenotypes in a ricin-
resistance screen targeting genes with 50 shRNAs each, P values for each gene were calculated on the basis of subsets of the data; the number of shRNAs
included per gene was varied. shRNA subsets were either chosen randomly 100 times, and means of −log10 of P values are shown, with error bars indicating
SD, or shRNA subsets were chosen based on the highest sequence scores. (C) Results are shown for three representative genes: a strong hit (RAB1A), a
moderate hit (STX16), and a nonhit (CRYAB). For the purpose of this analysis, sequence scores were created based on a dataset from which shRNAs targeting
RAB1A, STX16 and CRYAB were excluded (Table S2). (D) P values calculated based on 45 shRNAs per gene are compared with P values calculated based on 10
shRNAs per gene for all 1,079 genes targeted by Library 2. Subsets were either chosen randomly (light blue) or based on their sequence score (dark blue).
Sequence scores for individual shRNAs were calculated based on data subsets excluding these specific shRNAs, as described in SI Materials and Methods.
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applied machine-learning approaches to a training dataset of 461
individually cloned shRNAs targeting bona fide hit genes in our
ricin-resistance pilot screen, which we had retested and classified
as active or inactive (Materials and Methods). First, we compared
base frequencies of active and inactive guide strands at each
position of the guide strand, and found that an A or U at the first
position of the guide strand was highly predictive of shRNA
activity (P < 10−7, χ2 test) (Fig. S3A). We also investigated se-
quence properties of the 50 mRNA bases flanking the shRNA
target site on either side, but did not find significant predictors of
shRNA activity (no positions with Bonferroni-corrected P <
0.05, χ2 test).
Features of active shRNAs have previously been deduced

from experimental data obtained with the “sensor” assay (18),
and were termed “sensor rules.” Although the design algorithms
we used to create shRNAs in our primary screen library already
preselected shRNAs that tended to conform to some of the
sensor rules, such as thermodynamic asymmetry, several of the

sensor rules still had predictive power for shRNA activity within
our library (Fig. 3B). Presence of A or U in the first position of
the guide strand, which we independently found to be an im-
portant predictor of shRNA activity (Fig. S3A), is also one of the
sensor rules.
An additional factor that has been reported to affect shRNA

activity is the accessibility of the target site within the mRNA
(22). In viral genomes, the experimentally determined secondary
structure of the target site is strongly anticorrelated with shRNA
activity (23). However, we found no strong predictive power of
either the thermodynamic stability of the mRNA segment con-
taining the target site or of the accessibility of the target of the
seed sequence only as predicted by the unafold algorithm (24)
(Fig. 3B), or of secondary structure information we previously
determined experimentally (25). There was also no statistically
significant difference between the activity of shRNAs targeting
the coding sequence or the 3′ untranslated region of target
mRNAs (P > 0.2, Mann–Whitney test).
To integrate weighted information about sequence properties

(Table S1) into a predictive score, which we will refer to as
“sequence score,” we used stepwise forward logistic regression.
The resulting sequence score (Table S2) was an excellent pre-
dictor of shRNA activity for both enriched and depleted shRNAs
and only incorporated three sequence features, respectively (Fig.
3B). Taking into account additional features did not improve
the predictive power of the sequence score, because many of the
sequence features are correlated for shRNAs generated by the
Hannon laboratory shRNA retriever program (20).
This sequence score was derived based on the activity of a

limited set of shRNAs targeting hit genes and we wanted to
investigate whether it would also be a useful tool to select shRNAs
for increased shRNA library performance. To address this ques-
tion, we analyzed data from the ricin-resistance screen of the
22mer shRNA library targeting 1,079 genes with 50 shRNAs
each. We computationally created shRNA subsets and compared
P values for genes calculated based on shRNA subsets of varying
sizes. In Fig. 3C, results are shown for three representative genes
with distinct ricin-resistance phenotypes: TRAPPC11, a strong hit
gene encoding a trafficking factor, STX16, a weak hit gene en-
coding a syntaxin, and CRYAB, encoding a small heat shock pro-
tein, which was not a hit. When these shRNA subsets targeting
these genes were created randomly, discrimination between the
weak hit STX16 and the nonhit CRYAB required ∼15 or more
shRNAs. However, when subsets of shRNAs were created based
on the shRNAs with the highest sequence scores (calculated here
for a training set of shRNAs that did not include shRNAs tar-
geting STX16, TRAPPC11, and CRYAB), even ∼seven shRNAs
were enough to clearly distinguish STX16 from CRYAB.
The trend observed for the three example genes was generally

valid for all genes targeted by the library. P values calculated
based on the top-scoring 10 shRNAs per gene were highly cor-
related with P values calculated based on 45 shRNAs per gene,
and P values were consistently higher than those calculated from
random subsets of 10 shRNAs per gene (Fig. 3D). This pattern
was also observed for different shRNA subset sizes (Fig. S3B).

Design of Genome-Wide Human and Mouse shRNA Libraries. We
generated a set of lentiviral vectors for expression of shRNA
libraries (Fig. 4A and Dataset S3) that incorporated features
described above (minimal miR-30a context with the wild-type
CNNC motif, and HindIII site in loop). We also included sites
for the eight-cutter restriction enzyme SbfI flanking the shRNA
expression cassette, to enhance our previous sample preparation
strategy of size-based enrichment of genomic DNA before PCR
amplification (26). To provide flexibility for use in different ex-
perimental contexts, the vector set includes alternative options
for the choice of the promoter (EF1a vs. SFFV) and the fluo-
rescent marker (mCherry vs. tagBFP).
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Fig. 4. Next-generation library design. (A) We generated a set of lentiviral
expression vectors for use with the next-generation library to provide
compatibility with different target cell lines and applications. Promoters:
EF1a or SFFV. Fluorescent marker: mCherry or tagBFP. All vectors express the
shRNA from a minimal miR-30a context that preserves the WT CNNC motif,
and is embedded between SbfI sites for size fractionation and SPRI bead
purification. A HindIII restriction site was introduced in the region encoding
the hairpin loop. (B) Human and mouse protein-coding genes were grouped
into 12 biological categories, each of which is targeted by an shRNA sub-
library that together constitute genome-wide libraries. (C) Each gene is
targeted by 25 shRNAs on average. Each sublibrary also contains >1,000
negative-control shRNAs that follow the same design rules as targeted
shRNAs, but have no target in the human/mouse transcriptome.
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We then grouped all annotated human protein-coding genes
into 12 nonoverlapping functional groups (Fig. 4B and Dataset
S4), to be targeted by sublibraries of the genome-wide library,
and made corresponding groups for the mouse genome (Dataset
S5). We designed 25 shRNAs (on average) targeting each gene,
and included 1,000 or more negative-control shRNAs in each
sublibrary (Fig. 4C and Datasets S6 and S7). Negative control
shRNAs were designed based on the same rules as targeted
shRNAs, except that scrambled quasi-transcripts were gener-
ated, and shRNAs targeting those transcripts were selected and
verified not to target actual human or mouse transcripts (see
Materials and Methods for details). We previously showed that hit
genes can be robustly identified by comparing the phenotype
distribution of the 25 shRNAs targeting a given gene to the phe-
notype distribution of the negative-control shRNAs and calculat-
ing statistical significance using the Mann–Whitney u test (5).

Pilot Screen for Genes Controlling Sensitivity to a Cholera-Diphtheria
Toxin. To benchmark the performance of our next-generation
library, we conducted a pilot screen for genes controlling the
sensitivity of K562 cells to a cholera-diphtheria fusion toxin
(CTx-DTA) (27) (Fig. 5A and Dataset S8). For this screen, we
used the sublibrary targeting 2,933 human genes associated with

proteostasis. We had previously carried out a genome-wide screen
for CTx-DTA sensitivity in K562 cells using our recently devel-
oped CRISPRi library, which targets each human transcript with
∼10 small guide RNAs (sgRNAs) (1). Knockdown of a sizeable
number of genes control sensitivity to CTx-DTA by either con-
ferring partial resistance (i.e., cells in which these genes are
knocked down enrich in the treated population) or sensitization
(i.e., cells in which these genes are knocked down drop out).
To directly compare hit genes identified by these two or-

thogonal technologies, we calculated P values for each gene.
Because P values calculated by the Mann–Whitney u test are
dependent on the sample sizes of the compared groups, we
computationally down-sampled data from the shRNA screen to
10 shRNAs per gene (randomly chosen, average of three random
draws) for the P value calculation. Comparison of the P values
and the direction of the effect (CTx-DTA sensitization vs. de-
sensitization) revealed a substantial overlap in the top hit genes
called by CRISPRi and RNAi results (Fig. 5B and Fig. S4A).
Calling hit genes at a 5% FDR [using the approach by Storey and
Tibshirani (21)], the overlap in hit genes was highly significant
(P < 10−19, Fisher’s exact test) and signed log10 P values of genes
called as hits by both approaches showed good correlation (R =
0.91). Furthermore, the order-of-magnitude of P values were
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knockdown conferred resistance.
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very similar between the two methods, indicating that their hit
detection performance was equivalent on a per sgRNA/per
shRNA basis. However, a limited number of genes were identi-
fied as strong hits by shRNA but not by CRISPRi, or vice versa.
As detailed in the Discussion section, this finding is likely to
reflect method-specific technical reasons that can lead to false-
negative results.
To evaluate the enhanced sensitivity for hit detection achieved

by the high complexity of the next-generation library, we com-
pared the gene P values calculated on the basis of the full set of
∼25 shRNAs per gene to the P values calculated from the down-
sampled dataset (Fig. 5C). P values obtained with the full-size
library were consistently more statistically significant. We com-
monly classify genes as hits based on the FDR approach. Using
the subsampled library (10 shRNAs per gene), 69 genes passed
the threshold of 5% FDR. Using the full library (∼25 shRNAs
per gene), 252 genes passed the 5% FDR threshold. Importantly,
the increased significance of P values was for hit genes obtained
with 25 shRNAs per gene was specific and did not lead to a
spurious change in P values for all genes: when we created “quasi-
genes” by either combining randomly selected sets of either 10 or
25 negative-control shRNA phenotypes and calculated the cor-
responding P values, the distribution of quasi-gene P values was
essentially indistinguishable for 10 or 25 shRNAs per gene (Fig.
5D). With both 10 and 25 shRNAs per gene, the number of quasi-
genes passing the theoretical 5% FDR was less than 0.5% (Fig.
5D), suggesting that the actual FDR in our hit gene set is much
lower than 5%. Thus, our approach is not only highly sensitive, but
also highly specific.
Inspection of the shRNA phenotypes for individual hit genes

suggests that the vast majority of the 25 shRNAs targeting each
gene had on-target activity, whereas strong off-target effects
were not pervasive (Fig. 5 E and F). Individual shRNAs selected
based on their performance in the primary screen robustly
reproduced their protective or sensitizing effect in validation
experiments (Fig. 5G). Across all hit genes, the distribution of
relative phenotype strengths for individual shRNAs were very
similar to that obtained with sgRNAs of our CRISPRi library (Fig.
S4B); there was no statistically significant difference (P > 0.38,
Mann–Whitney test). However, the phenotype distribution for
negative-control shRNAs was broader than that for negative-
control sgRNAs (Fig. S4C), supporting our previous finding
that CRISPRi has inherently less off-target effects than RNAi.
The complexity of our shRNA library and our data analysis
framework allowed us to identify hit genes robustly even in the
presence of off-target effects.

Discussion
Based on a series of empirical tests of shRNA library design
features, we constructed next-generation shRNA libraries for
pooled loss-of-function screens in human and mouse cells. The
enhanced phenotypes achieved with the new design enables
primary screens with great sensitivity (Fig. 5 B and C). A po-
tential caveat of the enhanced on-target knockdown is that off-
target effects may also be increased. Despite this caveat, we find
that our next-generation libraries achieve high specificity in the
detection of hit genes (Fig. 5D), suggesting that the high com-
plexity of the libraries, in combination with our analysis frame-
work, results in robust results even in the presence of off-targets.
The large set of negative-control shRNAs in our libraries enables
us to estimate the prevalence of off-target effects, and thus to
compare shRNA expression formats (Fig. 1B) and shRNA design
algorithms (28) with respect to their specificity. Future efforts
should be directed at developing a sequence score that simulta-
neously increases on-target activity and reduces off-target effects.
An alternative strategy is the development of pooled libraries in
which a matched “C911” control (29) is included for each shRNA
to unmask off-target effects driven by seed sequence matches.

The large size of our ultracomplex shRNA libraries and the
resulting scale of the pooled screen can be prohibitive for some
cell types. Division of the genome-wide library into 12 sub-
libraries will enable focused screens in such systems. In addition,
the rising availability and affordability of complex oligo pool syn-
thesis makes custom sublibraries based on our next-generation
libraries an attractive option for specific research projects. Fur-
thermore, our results suggest that libraries targeting each gene with
10 shRNAs would perform comparably to our current CRISPRi
library (Fig. 5B). Ideally, such condensed libraries should be con-
structed by selecting 10 shRNAs per gene based on further rounds
of machine learning to optimize over the performance of our
current sequence score or the Sherwood algorithm in predicting
top-performing shRNAs within our current library (Fig. S5).
Recently developed CRISPR-based approaches have great

potential to become the technology of choice for loss-of-function
genetic screens in mammalian cells (1–4). CRISPR cutting
screens can generate complete knockout alleles, and our recently
developed CRISPRi-based screening approach can generate an
allelic series to investigate gene dosage effects for both essential
and nonessential genes (1). An important advantage of CRISPRi
over RNAi is the dramatically reduced incidence of off-target
effects (1). Furthermore, CRISPRi can effectively target nuclear
noncoding RNAs (1).
Because CRISPRi relies on targeting sgRNAs to a narrow

window around the transcription start site (1), a potential source
of false-negative results of CRISPRi screens is the misannotation
of transcription start sites, or the use of more than one tran-
scription start site for a given gene. These reasons may account
for the small number of genes that we found as hits by RNAi, but
not CRISPRi (Fig. 5B). Future versions of our CRISPRi library
will aim to overcome this issue by incorporating more experi-
mental data to define likely transcription start sites. Results from
our next-generation RNAi library will provide test cases of genes
that were false negatives in our first-generation CRISPRi library,
and help to benchmark the improved performance of our next
CRISPRi library.
Discrepancies between hit genes called by CRISPRi and

RNAi are not necessarily an indication of technical shortcomings
of either method, but can also guide new biological discoveries.
This ability is because of an important difference in the mode of
action of CRISPRi and RNAi; whereas CRISPRi targets entire
transcription units, including alternative splice isoforms and
embedded noncoding RNAs, RNAi targets mature transcripts
and thus differentiates between different products processed
from the same primary transcript. Parallel CRISPRi and RNAi
screens can reveal novel transcript functions in cases where
CRISPRi and RNAi phenotypes for reagents designed to target
the same gene product differ. A possible example is the gene
NFYC, encoding the gamma subunit of nuclear transcription
factor Y, which was not a hit gene in the RNAi screen; however,
it was a strong hit by CRISPRi. Inspection of the NFYC tran-
script reveals that it harbors the miRNAs miR-30e and miR-
30c-1, raising the possibility that the CRISPRi repression of this
transcript may result in a phenotype because of knockdown of
the miRNAs, rather than the protein-coding mRNA. Further
experimental work is needed to test this hypothesis. In summary,
RNAi and CRISPRi can yield complementary insights and, in
combination, uncover unexpected and novel biology.

Materials and Methods
Pooled Screening. Pooled screens for ricin resistance and CTx-DTA resistance
in K562 cells were carried out as previously described (1, 8). Sample prepa-
ration for deep sequencing was carried out as previously described (26),
except that different primers were used for amplification and sequencing.
Sequences of primers used with the next-generation shRNA libraries are
provided in Table S3.
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shRNA Libraries. Sequences of all elements of the pooled library used to
evaluate shRNA expression formats are provided in Dataset S1. Sequences of
all shRNA targets of the next-generation human and mouse RNAi libraries
are provided as Datasets S6 and S7, respectively. shRNA names contain the
Entrez Gene ID of the targeted gene (0 for negative-control shRNAs), fol-
lowed by the sublibrary code as defined in Table S4, and a sequential
number. Sequences of the next-generation backbone vectors are provided
as Dataset S3. Inserts into this backbone between the XhoI and EcoRI sites
have the format as in the following example: For the target site 5′- GGGA-
GATGTACTGTATTATATA-3′, the insert sequence is 5′-CTCGAGAAGAAGGTA-
TATTGCTGTTGACAGTGAGCGAGGAGATGTACTGTATTATATATAGTGAAGCTTCAG-
ATGTATATATAATACAGTACATCTCCCTGCCTACTGCCTCGGACTTCAAGGGGTCAGT-
CAGAATTC-3′. Details of the cloning strategy used to generate these vectors
and the libraries are provided upon request.

Data Analysis and Machine Learning. Pooled screens were analyzed using our
previously established framework (5) and software gimap.ucsf.edu (26).
Results for all genes for the pilot CTx-DTA screen are provided as Dataset S8.

Further details on the analysis of the pooled screen of different expression
formats, machine learning of the sequence score and design of the next-
generation libraries are provided in SI Materials and Methods.

Datasets. Datasets S1–S8 are available for download at kampmannlab.ucsf.
edu/next-generation-shrna-libraries-datasets.
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