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Abstract

Increased glucose metabolism and reprogramming toward
aerobic glycolysis are a hallmark of cancer cells, meeting their
metabolic needs for sustained cell proliferation. Metabolic repro-
gramming is usually considered as a downstream consequence of
tumor development and oncogene activation; growing evidence
indicates, however, that metabolism on its turn can support
oncogenic signaling to foster tumor malignancy. Here, we
explored how glucose metabolism regulates gene transcription
and found an unexpected link with YAP/TAZ, key transcription
factors regulating organ growth, tumor cell proliferation and
aggressiveness. When cells actively incorporate glucose and route
it through glycolysis, YAP/TAZ are fully active; when glucose
metabolism is blocked, or glycolysis is reduced, YAP/TAZ tran-
scriptional activity is decreased. Accordingly, glycolysis is required
to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are
required for the full deployment of glucose growth-promoting
activity. Mechanistically we found that phosphofructokinase
(PFK1), the enzyme regulating the first committed step of glycol-
ysis, binds the YAP/TAZ transcriptional cofactors TEADs and
promotes their functional and biochemical cooperation with YAP/
TAZ. Strikingly, this regulation is conserved in Drosophila, where
phosphofructokinase is required for tissue overgrowth promoted
by Yki, the fly homologue of YAP. Moreover, gene expression
regulated by glucose metabolism in breast cancer cells is strongly
associated in a large dataset of primary human mammary tumors
with YAP/TAZ activation and with the progression toward more
advanced and malignant stages. These findings suggest that
aerobic glycolysis endows cancer cells with particular metabolic
properties and at the same time sustains transcription factors
with potent pro-tumorigenic activities such as YAP/TAZ.
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Introduction

YAP and TAZ are important transcriptional coactivators regulating

proliferation, survival and self-renewal ability in a number of

cellular systems (Pan, 2010; Halder & Johnson, 2011; Tremblay &

Camargo, 2012; Piccolo et al, 2014). YAP/TAZ regulate transcription

mainly by interacting with the TEAD family of transcription factors,

and their activity is regulated by different inputs, including the

Hippo kinase cascade, Wnt signaling, RHO GTPases and mechanical

cues acting through the F-actin cytoskeleton (Halder et al, 2012; Yu

& Guan, 2013). This is fundamental for the growth and homeostasis

of tissues and organs, such that YAP/TAZ are recognized as

universal regulators of organ size from Drosophila to mammals.

Reflecting these key functions, unleashed YAP/TAZ activity is suffi-

cient to promote tumorigenesis, and YAP/TAZ are required for

cancer stem cell self-renewal and tumor-seeding ability in different

tumor types (Harvey et al, 2013; Johnson & Halder, 2013).

One hallmark of cancer cells is the shift of their glucose metabo-

lism from oxidative respiration to aerobic glycolysis; in these condi-

tions, cells display high glucose metabolism and mainly produce

ATP through glycolysis, even if this is far less efficient compared to

mitochondrial respiration (Levine & Puzio-Kuter, 2010; Hanahan &

Weinberg, 2011; Lunt & Vander Heiden, 2011). The rationale for

shifting to such a poorly efficient energy generation process is the

chronic and uncontrolled proliferation observed in tumors: cancer

cells need not only to produce energy, but also to increase their

biomass to sustain production of daughter cells. Aerobic glycolysis

would fulfill this duty by allowing the diversion of metabolic inter-

mediates toward various biosynthetic pathways and ultimately

favoring the synthesis of macromolecules and new organelles (Lunt
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& Vander Heiden, 2011; Schulze & Harris, 2012). Further extending

the link between aerobic glycolysis and proliferation, a similar

glycolytic metabolism is also observed in non-transformed rapidly

dividing cells such as embryonic tissues and stem cell compartments

(Ochocki & Simon, 2013; Shyh-Chang et al, 2013; Ito & Suda, 2014).

Much of the current literature considers glucose metabolism and

aerobic glycolysis as endpoints that occur as a consequence of trans-

formation. Indeed, several oncogenes such as Ras, cMyc and HIF1

(Hypoxia Induced Factor-1) regulate expression of glucose trans-

porters and glycolytic enzymes and ensure the balancing of glyco-

lysis with other metabolic pathways (Gordan et al, 2007; Kroemer &

Pouyssegur, 2008). Increasing evidence, however, indicates that

metabolic pathways also incorporate signaling mechanisms that

inform and coordinate other cellular functions, including nuclear

gene transcription and epigenetics. In this manner, metabolic path-

ways can even play causative roles in regulating cell behavior, in

addition to their core biochemical functions (Chaneton & Gottlieb,

2012; Dang, 2012; Hardie et al, 2012; Laplante & Sabatini, 2012; Luo

& Semenza, 2012; Wellen & Thompson, 2012; Chang et al, 2013).

Results

Glucose metabolism regulates YAP/TAZ activity

To explore new possible links between glucose metabolism and

gene transcription, we asked whether glucose metabolism could

regulate known signaling pathways relevant for embryonic develop-

ment, adult tissue homeostasis and disease. To this end, we

performed genome-wide microarray expression profiling to compare

cells growing in high glucose with cells treated for 24 h with

2-deoxy-glucose (2DG, 50 mM), a widely used competitive inhibitor

of glucose metabolism acting at the level of hexokinase (Tennant

et al, 2010), and obtained a list of genes regulated by glucose

metabolism. This dose of 2DG is commonly used in cell cultures to

block glucose metabolism and was sufficient to inhibit aerobic

glycolysis and to increase mitochondrial respiration in our cells, as

measured with an extracellular flux analyzer (see below), and to

inhibit cell growth.

We then performed a gene set enrichment analysis (GSEA),

searching for statistical associations between the genes regulated by

2DG (either up- or down-regulated) and those contained in a collec-

tion of gene signatures denoting activation of transcription factors

and signaling pathways (see Materials and Methods for details).

Since most of these signatures were derived from mammary cell

lines, we performed the experiments in MDA-MB-231 breast cancer

cells and MCF10A mammary epithelial cells. Several signatures

overlapped with genes regulated by 2DG treatment; in both cell

lines, the genes induced by YAP/TAZ were significantly enriched

among the genes inhibited by 2DG treatment, whereas the genes

repressed by YAP were enriched among the genes activated by 2DG

(Fig 1A and B; Supplementary Fig S1A).

Our GSEA analysis suggested a link between glucose and YAP/

TAZ, but did not inform us about what is upstream and what is

downstream. We initially investigated whether YAP/TAZ regulate

glucose metabolism by monitoring aerobic glycolysis and mitochon-

drial respiration levels in mammary epithelial cells expressing acti-

vated TAZ. Even if TAZ activation is per se sufficient to endow

▸Figure 1. Glucose metabolism regulates YAP/TAZ transcriptional activity.

A Over-representation analysis was performed with gene signatures highlighting activation of specific pathways using gene set enrichment analysis (GSEA) on
microarray data obtained from MCF10A or MDA-MB-231 mammary cells untreated or treated with 2-deoxy-glucose (2DG, 50 mM) to inhibit glucose metabolism. The
normalized enrichment score (NES) is the primary statistic for examining GSEA results; a positive NES (highlighted in red) indicates signatures expressed more in
control cells than upon 2DG treatment (i.e. signatures activated when glucose metabolism is active); a negative NES (highlighted in blue) indicates signatures
expressed more upon 2DG treatment. The false discovery rate (FDR) is the estimated probability that a gene set with a given NES represents a false positive; we
considered signatures to be significantly enriched at FDR < 0.05. Gene expression data have been obtained from n = 4 biological replicates for each condition. See
Supplementary Table S1 for a GSEA analysis including also Biocarta gene sets.

B 2DG treatment downregulates the overall levels of the ‘YAP/TAZ’ gene signature used in (A) as calculated from microarray data of cells untreated (white bars) or
treated with 2DG (black bars). See Materials and Methods for details on the statistical methods to quantify average signature expression. Data are shown as
mean � standard error of the mean (SEM). Of note, in this analysis, the basal levels of YAP/TAZ target genes were higher in the cell line displaying higher glycolysis/
respiration ratio, that is, in MDA-MB-231 cells (Supplementary Fig S1B).

C Luciferase assay in MDA-MB-231 breast cancer cells transfected with the synthetic YAP/TAZ reporter 8XGTIIC-lux. Starting on the day after DNA transfection, cells
were treated for 24 h with the indicated small-molecule inhibitors to block glucose metabolism (50 mM 2DG; 1 mM lonidamine, Loni) or with an inhibitor of the
mitochondrial respiratory chain (1 lM oligomycin, Oligo). Activity of the reporter is normalized to cotransfected CMV-lacZ and expressed relative to the cells treated
with vehicle only (Co.). See Supplementary Fig S1E–K for controls on the specificity of 2DG treatment and similar results obtained in Hs578T and HepG2 cells.
Representative results of a single experiment with n = 2 biological replicates; four independent experiments were consistent.

D Luciferase assay in MDA-MB-231 cells bearing a stably integrated TRE-8XGTIIC-lux reporter, whose transcription can be released following doxycycline treatment to
visualize early YAP/TAZ responses (see Supplementary Fig S1N for controls). Control cells (Co.) were left unstimulated (0) or supplemented with doxycycline (4, 6, 8
and 10 h of treatment) to release YAP/TAZ-dependent transcription. 2DG (100 mM) was added together with doxycycline to acutely block glucose metabolism. See
Supplementary Fig S1P–R for similar results obtained in MCF10A-MII cells. Representative results of a single experiment with n = 2 biological replicates; three
independent experiments were consistent.

E Luciferase assay was carried out as in (D), by removing glucose from the culture medium at the moment of doxycycline supplementation (�Glu). Cells were harvested
24 h after treatment. See Supplementary Fig S1O and R for similar results obtained in HepG2 and MCF10A-MII cells. Representative results of a single experiment
with n = 2 biological replicates; three independent experiments were consistent.

F YAP/TAZ are required for transcription of 2DG-regulated genes. qPCR for endogenous target genes in MDA-MB-231 cells treated with water (Co.) or with 2DG or
transfected with the indicated siRNAs: control (siCo.), YAP/TAZ mix #1 (siYT1), YAP/TAZ mix #2 (siYT2). Expression levels were calculated relative to GAPDH and are
given relative to Co. cells (arbitrarily set to 1). Genes were selected among the probes commonly regulated in microarray profiling (see Supplementary Table S3). Note
how both 2DG-induced and 2DG-inhibited genes were coherently regulated by YAP/TAZ knockdown. See Supplementary Fig S1S for other targets and controls, and
Supplementary Fig S1T for similar results in Hs578T cells. n = 4 biological replicates from two independent experiments. All differences had P-value < 0.01.

Data information: Unless indicated otherwise, error bars represent mean � SD. *P-value < 0.01 relative to control.
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these cells aggressive traits in vitro and in vivo (Cordenonsi et al,

2011), we did not observe notable changes in glycolysis or respira-

tion (Supplementary Fig S1C and D). Moreover, by surveying micro-

arrays obtained by activation or inhibition of YAP/TAZ in multiple

cellular systems (Ota & Sasaki, 2008; Zhao et al, 2008; Zhang et al,

2009; Mohseni et al, 2014 and see below), we failed to observe

consistent regulation of glucose transporters or glycolytic genes that

are instead typically induced by oncogenes (Gordan et al, 2007;

Kroemer & Pouyssegur, 2008). Thus, YAP/TAZ are not obvious

inducers of aerobic glycolysis.

We then tested whether glucose metabolism regulates YAP/

TAZ. For this, we directly monitored their transcriptional activity

with the established YAP/TAZ luciferase reporter 8XGTIIC-lux

(Dupont et al, 2011) in MDA-MB-231 cells treated for 24 h with

2DG or with lonidamine [another widely used inhibitor of hexo-

kinase (Tennant et al, 2010)]; as shown in Fig 1C, these treatments

inhibited YAP/TAZ activity. The effect of 2DG was reversible

(Supplementary Fig S1E) and was not caused by aspecific competi-

tion for mannose (Kurtoglu et al, 2007) (Supplementary Fig S1F);

treatment of cells with oligomycin-A, at doses inhibiting mitochon-

drial respiration, did not inhibit YAP/TAZ activity (Fig 1C),

indicating a specific effect of glucose metabolism. Similar results

were obtained with the CTGF-lux reporter (Supplementary Fig

S1G), in another highly glycolytic breast cancer cell line, Hs578T

(Dong et al, 2013) (Supplementary Fig S1H), and in HepG2 cells

(Supplementary Fig S1I), characterized by high YAP/TAZ activity

(Azzolin et al, 2012; Yimlamai et al, 2014) and high glycolysis

(Marroquin et al, 2007). Moreover, a reporter driven by the CMV

promoter and a reporter for the Notch pathway were not inhibited,

ruling out general effects on transcription (Supplementary Fig S1J

and K). Thus, inhibition of glucose metabolism inhibits YAZ/TAZ

activity.

Glucose inhibition induces a fast adaptation of cellular metabo-

lism and then secondarily induces other cellular responses, includ-

ing growth arrest; thus, among the genes regulated by glucose,

some could be regulated as a direct consequence of glucose

inhibition, while others may be indirect targets of growth arrest. An

example of the second class are the E2F-regulated genes (Chen et al,

2009; Dick & Rubin, 2013) that were highly enriched in our GSEA

analysis (Fig 1A, E2F3 signature); indeed, we found by luciferase

assays that E2F activity is inhibited by 2DG and also by inducing

growth arrest through expression of established CDK inhibitors

(p21/CDKN1A, p16/CDKN2A, p27/CDKN1B) (Supplementary Fig

S1L). In contrast, CDK inhibitors do not inhibit YAP/TAZ activity

(Supplementary Fig S1M). Thus, growth arrest is not sufficient to

explain YAP/TAZ inhibition by 2DG. In line, by using a doxycy-

cline-inducible version of the 8XGTIIC-lux reporter enabling us to

visualize early YAP/TAZ transcriptional activity (Supplementary Fig

S1N), we found that 2DG treatment inhibited YAP/TAZ-induced

transcription at the earliest time points, indicating a rapid response

(Fig 1D). Importantly, also in cells cultured in absence of glucose,

we observed a reduced YAP/TAZ activity (Fig 1E). Similar results

were obtained in HepG2 cells (Supplementary Fig S1O) and in

MCF10A-MII (Supplementary Fig S1P–R). This observation is thus

compatible with a direct regulation of YAP/TAZ activity.

To validate further the link between glucose and YAP/TAZ, we

checked whether endogenous target genes inhibited by 2DG were

coherently regulated also upon knockdown of YAP/TAZ. To select

candidate co-regulated genes, we compared microarray profiling of

genes regulated by 2DG with microarrays of cells depleted of

YAP/TAZ by siRNA transfection (see Materials and Methods). As

shown in Supplementary Tables S2 and S3, we could identify

several probes that were similarly co-regulated (either up or

down) by glucose and by YAP/TAZ in both cell lines. Among the

strongest co-regulated microarray probes in MDA-MB-231 cells, we

successfully validated a series of transcriptional targets by qPCR,

concordantly repressed or activated by 2DG and YAP/TAZ knock-

down, including the established YAP/TAZ target HMMR (Wang

et al, 2014) (Fig 1F; Supplementary Fig S1S). Other YAP/TAZ

targets, such as CTGF or ANKRD1, were not regulated (Supplemen-

tary Fig S1S), likely due to compensating inputs. The same target

genes were also regulated by 2DG treatment and YAP/TAZ knock-

down in another breast cancer cell line, Hs578T (Supplementary

Fig S1T). Interestingly, Gene Ontology analysis indicates that the

genes coregulated by glucose and YAP/TAZ are particularly related

to cell cycle control and to DNA synthesis, repair and metabolism

(Supplementary Fig S1U), in keeping with the validation of TK1,

TYMS, RRM2 and CDC factors shown above. Collectively, these

results indicate that YAP/TAZ transcriptional activity is sustained

by glucose metabolism.

YAP/TAZ activity is regulated by glycolysis

Glucose fuels multiple metabolic pathways; we then sought to

understand which of these was more relevant to regulate YAP/TAZ.

Once entrapped in the cell in the form of glucose-6-phosphate (G6P)

by hexokinase, glucose can be either converted to fructose-6-

phosphate (F6P) by the enzyme glucose-6-phosphate isomerase

(GPI), or it is directed into the pentose phosphate pathway (see the

simplified scheme in Fig 2A). To test whether GPI was involved in

YAP/TAZ regulation, we depleted cells of endogenous GPI with two

independent siRNAs and found this was sufficient to recapitulate

the effects of 2DG treatment (Fig 2B; Supplementary Fig S2A).

Downstream of GPI, F6P can be used in glycolysis or in the

hexosamine biosynthetic pathway (HBP), the latter providing the

metabolic intermediates for protein glycosylation (Wellen &

Thompson, 2012). To address a potential involvement of the HBP,

we used two strategies: first, we blocked the activity of glucosamine-

fructose-6-phosphate transaminase (GFPT), the entry point enzyme

of HBP, by treating cells with 6-diazo-5-oxo-L-norleucine (DON) or

O-diazoacetyl-L-serine (AZS), at doses commonly used in cancer

cells (Wellen et al, 2010; Ostrowski & van Aalten, 2013; Onodera

et al, 2014), but these compounds did not affect YAP/TAZ activity

(Supplementary Fig S2B). Second, we tested whether protein

glycosylation was involved by supplementing N-acetyl glucosamine

(GlcNAc) in the culture medium, which can fuel glycosylation in

absence of glucose (Wellen et al, 2010; Ostrowski & van Aalten,

2013). Also in this case, GlcNAc was not sufficient to rescue YAP/

TAZ inhibition by 2DG (Supplementary Fig S2C). Altogether, this

made unlikely that the HBP and protein glycosylation are major

regulators of YAP/TAZ; this also suggested glycolysis as the key

metabolic pathway regulating YAP/TAZ.

To verify this hypothesis, we modulated the levels of glycolysis

by growing cells in the presence of galactose: in these conditions,

cells can transform galactose into glucose, but this occurs at a slow

rate, aerobic glycolysis is unfavorable, and cells shift their metabolism
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toward oxidative phosphorylation (Bustamante & Pedersen, 1977;

Rossignol, 2004; Marroquin et al, 2007; Chang et al, 2013). In line,

we observed a strong reduction of glycolysis and an increase in respi-

ration in MDA-MB-231 cells grown in galactose (Fig 2C; Supplemen-

tary Fig S2D–F). Strikingly, cells with reduced glycolysis displayed a

corresponding reduction of YAP/TAZ activity (Fig 2D); moreover, this

was restored when we added back glucose during the last part of the

experiment only (Fig 2D; Supplementary Fig S2G), in line with a

rapid response of YAP/TAZ to glucose shown before. A downregula-

tion of YAP/TAZ activity was also observed in UOK262 cells upon
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Figure 2. Glycolysis sustains YAP/TAZ activity.

A A simplified scheme indicating the main metabolic routes followed by glucose, the key intermediates and enzymes involved, and the inhibitors used in this study.
Only the pathways and enzymes discussed in the text are shown here for simplicity. G6P: glucose-6-phosphate; F6P: fructose-6-phosphate; F1,6P: fructose-1,6-
bisphosphate; F2,6P: fructose-2,6-bisphosphate; GlcNAc: N-acetyl glucosamine; HK: hexokinase; GPI: phosphoglucoisomerase; PFK1: 6-phosphofructo-1-kinase; PFKFB3:
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3. Lonidamine (Loni.) inhibits HK (Tennant et al, 2010); 2DG inhibits both HK and GPI (Wick et al, 1957;
Tennant et al, 2010); DON and AZS inhibit the enzyme mediating the first step of the hexosamine pathway (Wellen et al, 2010; Ostrowski & van Aalten, 2013;
Onodera et al, 2014). The green arrow indicates the agonistic effect of F2,6P on PFK1. Dashed arrows indicate downstream intermediates or metabolic pathways.

B Phosphoglucoisomerase (GPI) is required for YAP/TAZ activity. Luciferase assay in MDA-MB-231 cells transfected with the indicated siRNAs. See Supplementary Fig S2A
for validation of siRNA efficiency. Representative results of a single experiment with n = 2 biological replicates; three independent experiments were consistent.

C The plot indicates basal oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of TRE-8XGTIIC-lux MDA-MB-231 cells grown in glucose (red, Glu)
or 10 mM galactose (blue, Gal). As expected, galactose induces a metabolic shift from aerobic glycolysis to oxidative phosphorylation compared to glucose. See
Supplementary Fig S2D–F for detailed OCR and ECAR traces. Representative results of a single experiment with n = 5 biological replicates; two independent
experiments were consistent.

D Comparison of YAP/TAZ activity in MDA-MB-231 cells bearing a stably integrated TRE-8XGTIIC-lux reporter and grown in glucose (red, Glu), in galactose to induce a
shift toward oxidative respiration (blue, Gal), or shifted back to glucose during doxycycline treatment (blue bars with red stripes, Gal + Glu). Cells were treated with
doxycycline to release YAP/TAZ-dependent luciferase transcription for 8 or 24 h. Galactose-fed cells display reduced glycolysis and downregulate YAP/TAZ activity.
Glucose rapidly reactivates glycolysis (Supplementary Fig S2F) and YAP/TAZ activity (Gal + Glu). Representative results of a single experiment with n = 2 biological
replicates; three independent experiments were consistent.

E Luciferase assay in UOK262 kidney cancer cells, bearing mutation of the fumarate hydratase (FH) enzyme of the tricarboxylic acid cycle (TCA). FH-reconstituted cells
(gray bars) display a reduction of aerobic glycolysis and increased respiration (Yang et al, 2013). 2DG treatment (12 mM) of parental cells serves as a positive control
for inhibition of the glycolysis–YAP/TAZ axis in parental cells. Representative results of a single experiment with n = 2 biological replicates; two independent
experiments were consistent.

Data information: Throughout the figure, error bars represent mean � SD. *P-value < 0.01.
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reconstitution of the tricarboxylic acid (TCA) cycle enzyme fumarate

hydratase (FH), enabling these cells to resume oxidative phosphoryla-

tion and causing a parallel reduction of aerobic glycolysis levels

(Sudarshan et al, 2009; Yang et al, 2013) (Fig 2E). These results

collectively support the notion that glycolysis plays a role in regulat-

ing YAP/TAZ. This is also indicated by the observation that mito-

chondrial respiration per se does not regulate YAP/TAZ (Fig 1C) and

that supplementing pyruvate could not rescue 2DG effects (Supple-

mentary Fig S2H).

Exploring the mechanisms of YAP/TAZ regulation

To understand how glycolysis regulates YAP/TAZ, we initially

tested the involvement of known signaling pathways such as the

AMPK/mTOR energy-sensing network (Hardie et al, 2012; Laplante

& Sabatini, 2012), the Hippo kinase cascade (Pan, 2010; Halder &

Johnson, 2011) and the recently identified axislinking mevalonate

metabolism to YAP/TAZ regulation (Sorrentino et al, 2014; Wang

et al, 2014). Experimental evidence, however, failed to connect any

of these pathways to regulation of YAP/TAZ by glucose:

(1) In cells cultured in high glucose, that is, with low AMPK and

high mTOR activity, treatment with the dual mTORC1/2 inhibi-

tor AZD2014 (Zhang et al, 2011; Pike et al, 2013) did not affect

YAP/TAZ, while it efficiently induced dephosphorylation of the

established mTOR downstream target ribosomal protein S6

(Hardie et al, 2012; Laplante & Sabatini, 2012) (Supplementary

Fig S3A and B). This finding is in line with DeRan et al (2014)

and Fan et al (2013).

(2) Upon 2DG treatment, that is, in conditions where AMPK is

activated, blockade of AMPK activity was unable to rescue

YAP/TAZ inhibition, while it was sufficient to completely rescue

protein S6 phosphorylation (Fig 3A; Supplementary Fig S3C–E).

Thus, activation of AMPK is not sufficient to account for the

effects of glucose metabolism on YAP/TAZ activity (DeRan et al,

2014).

(3) Knockdown of LATS1/2 kinases with two previously validated

independent sets of siRNAs (Aragona et al, 2013; Sorrentino

et al, 2014) was not sufficient to rescue 2DG treatment, while it

was sufficient to completely rescue inhibition caused by NF2/

Merlin overexpression (Fig 3B). This also indirectly ruled out an

Figure 3. Phosphofructokinase regulates YAP/TAZ transcriptional activity and interacts with TEADs.

A Luciferase assay in MDA-MB-231 cells treated for 24 h with 2DG (black bars) and/or with compound-C (30 lM), an established inhibitor of AMPK. The same dose of
compound-C is sufficient to prevent AMPK activation by 2DG (see Supplementary Fig S3C), but not YAP/TAZ inhibition. Representative results of a single experiment
with n = 2 biological replicates; three independent experiments were consistent. See Supplementary Fig S3D and E for similar results with AMPKa1/2 silencing.

B Luciferase assay in cells transfected with control (siCo.) or with an established LATS1/2 siRNA mix (siLATS1/2) (Aragona et al, 2013) and then either treated with 2DG
(black bars) or transfected with NF2 expression plasmid to specifically activate the Hippo pathway (green bars). Depletion of LATS1/2 blocked the inhibitory effect of
overexpressed NF2, but not of 2DG. Similar results were obtained with an independent mix of LATS1/2 siRNA (data not shown). Representative results of a single
experiment with n = 2 biological replicates; two independent experiments were consistent.

C Inhibition of glycolysis could potentially deplete cells of acetyl-CoA, the main precursor for mevalonate, and mevalonate is required for YAP/TAZ activity by regulating
RHO GTPases (Sorrentino et al, 2014; Wang et al, 2014). Cells were transfected with the 8XGTIIC-lux YAP/TAZ reporter and treated with 2DG (black bars) or with
cerivastatin (3 lM, red bars), an inhibitor of the mevalonate pathway at the level of HMG-CoA reductase. Adding back mevalonate in the culture medium
(+ mevalonate, 1 mM) rescues YAP/TAZ inhibition from cerivastatin, but not from 2DG. Representative results of a single experiment with n = 2 biological replicates;
two independent experiments were consistent.

D Proteomic analysis of YAP-binding partners reveals interaction with phosphofructokinase (PFK1). Flag-tagged YAP-5SA stably expressed in MCF10A and MDA-MB-231
cells was immunoprecipitated, and associated proteins identified using mass spectrometry. Left panel: silver staining of the purified proteins in representative control
(Co.) or YAP immunopurifications. Molecular weight markers are indicated. The asterisk indicates the band corresponding to YAP. Right scheme: The thickness of the
lines connecting YAP to its partners is proportional to the number of peptides isolated for each partner. Black proteins (known YAP partners) and PFK1 (in red) were
isolated in both cell lines; gray proteins are known regulators of YAP that were only purified from MCF10A cells. See Supplementary Table S4 for a complete list of the
identified peptides.

E Luciferase assay in MDA-MB-231 cells transfected with control (siCo.) or two independent PFK1 siRNAs (siPFK1 #1, #2). Representative results of a single experiment
with n = 2 biological replicates; four independent experiments were consistent. See Supplementary Fig S3H for validation of PFK1 siRNAs and Supplementary Fig S3I
for similar results on CTGF-lux.

F In vitro pull-down assay with purified FLAG-PFK1 and recombinant GST-YAP. GST-YAP was incubated with (first lane) or without (second lane) FLAG-PFK1; as positive
control, GST-YAP was incubated with purified FLAG-TEAD1 (right-most lane). Proteins were then subjected to anti-FLAG immunoprecipitation, and purified complexes
were probed for coprecipitation of GST-YAP (anti-YAP immunoblot).

G In vitro pull-down assay with purified FLAG-PFK1 and recombinant GST-TEAD4. GST-TEAD4 was incubated with (first lane) or without (second lane) FLAG-PFK1.
Proteins were then subjected to anti-FLAG immunoprecipitation, and purified complexes were probed for coprecipitation of GST-TEAD4 (anti-TEAD4 immunoblot).

H MDA-MB-231 cell lysates were immunoprecipitated with anti-TEAD1 antibody, and the precipitating proteins were probed for TEAD1 or PFK1. Immunoprecipitation
with an unrelated IgG serves as negative control. Of note, this interaction is in line with the requirement of TEAD1 and TEAD4 for YAP/TAZ activity in our cellular
systems (Supplementary Fig S3L and M).

I Lysates from HEK293 cells transfected with the indicated proteins were subjected to anti-FLAG-PFK1 immunoprecipitation, and purified complexes were probed for
coprecipitation of MYC-TEAD4. Mutation of a key amino acid required for interaction between TEAD4 and YAP/TAZ (Y429H) did not interfere with PFK1 interaction.

J Mutation of the fructose-2,6-P allosteric site of PFK1 negatively regulates its interaction with TEAD4. HEK293 cells were transfected with MYC-TEAD4 and increasing
doses of wild-type (WT) or mutated (F2,6P-mut) FLAG-PFK1 plasmids; cell extracts were immunoprecipitated with anti-FLAG, and the coprecipitating MYC-TEAD4
protein was detected by Western blotting. Immunoprecipitation in the absence of FLAG-PFK1 (lane 1) serves as a negative control. Quantifications of the TEAD4/PFK1
ratio are provided, relative to lane 2.

K Luciferase assay in HEK293 cells transfected with 8XGTIIC-lux reporter (black bars) or with the reporter deleted of the TEAD-binding sites (delta8XGT), and with
increasing doses of PFKFB3 expression plasmid. PFKFB3 converts fructose-6-P into fructose-2,6-P, a potent allosteric activator of PFK1 (Sola-Penna et al, 2010).
Representative results of a single experiment with n = 2 biological replicates; three independent experiments were consistent. See Supplementary Fig S3P for controls
of the delta8XGT reporter.

Data information: Throughout the figure, error bars represent mean � SD. *P-value < 0.01.
Source data are available online for this figure.
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involvement of the AMPK-related salt-inducible kinases that

regulate Yorkie/YAP through Sav and LATS (Wehr et al, 2012).

(4) Acetyl-CoA, a main derivative of glycolysis, is a precursor for

mevalonate metabolism, which in turn is required for RHO

GTPase geranylation, hence potentially impacting YAP/TAZ

activity (Sorrentino et al, 2014; Wang et al, 2014). We tested

whether providing mevalonate to cells could rescue 2DG inhibi-

tion, but this was not the case (Fig 3C). As a control, mevalonate

was instead sufficient to rescue inhibition caused by cerivastatin

(Sorrentino et al, 2014; Wang et al, 2014), a small-molecule

inhibitor of mevalonate production (Fig 3C). In line, 2DG

induced a much milder YAP phosphorylation and almost no

nuclear exclusion when compared to cerivastatin treatment

(Supplementary Fig S3F and G).

To gain insights into other possible mechanisms by which

glucose regulates YAP/TAZ, we then turned our attention to

YAP-binding proteins: For this, we performed immunopurification

of FLAG-YAP-5SA from MCF10A or MDA-MB-231 cells and identi-

fied candidate interacting proteins by mass spectrometry. As shown

in Fig 3D and Supplementary Table S4, we isolated several known

interactors of YAP, including nuclear complexes (Ribeiro et al,

2010; Varelas et al, 2010; Yi et al, 2011; Couzens et al, 2013). We

then turned our attention to novel interacting proteins, with particu-

lar attention to enzymes involved in glucose metabolism; indeed, it

has been previously shown that some metabolic enzymes, such as

PKM2, can fulfill non-metabolic functions by interacting with

transcription factors (Chaneton & Gottlieb, 2012; Luo & Semenza,

2012). Our attention was immediately retained by the isolation, in

both cell lines, of the phosphofructokinase enzyme isoform P

(PFK1), key enzyme of glycolysis.

Phosphofructokinase (PFK1) mediates the first committed step of

glycolysis, by phosphorylating F6P into fructose-1,6-bisphosphate

(F1,6P). PFK1 is a central enzyme for the regulation of glycolysis, as

it is subjected to a variety of regulations, including allosteric activa-

tion by fructose-2,6-bisphosphate (F2,6P) produced by PFK2

enzymes (Sola-Penna et al, 2010). Recent reports indicate that

cancer cells take control over glycolysis by multiple mechanisms

acting, directly or indirectly, on PFK1 activity (Lunt & Vander

Heiden, 2011; Mor et al, 2011; Yi et al, 2012). Moreover, PFK1 and

PFK2 expression is elevated in advanced breast tumors (Atsumi

et al, 2002; Onodera et al, 2014), making PFK1 an interesting candi-

date to link glucose metabolism and YAP/TAZ activity. To explore

the functional relevance of this biochemical observation, we

designed independent siRNA duplexes to target endogenous PFK1

expression and challenged YAP/TAZ activity (Supplementary Fig

S3H). Remarkably, knockdown of PFK1 with two independent

siRNAs caused inhibition of YAP/TAZ activity in MDA-MB-231 cells

(Fig 3E; Supplementary Fig S3I). Also in this case, LATS1/2 siRNAs,

mevalonate or pyruvate could not rescue inhibition of YAP/TAZ

activity upon PFK1 knockdown (not shown). Thus, PFK1 is required

to sustain YAP/TAZ activity and recapitulates the effects of 2DG

shown above.

We then sought to validate PFK1 interaction with YAP. In proteo-

mic experiments, several proteins, such as NF2 (Yin et al, 2013),

are indirectly binding to YAP. To test for direct interaction, we

performed co-immunoprecipitation between immobilized FLAG-

PFK1 and bacterially expressed YAP, but we could hardly detect any

binding (Fig 3F); as a control FLAG-TEAD1 readily coprecipitated

YAP (Fig 3F). Since glucose metabolism and PFK1 intersect YAP/

TAZ activity downstream of Hippo and mevalonate/RHO (see

above), possibly acting on YAP/TAZ transcriptional complexes, we

asked whether PFK1 might interact with TEADs: Surprisingly, as

shown in Fig 3G, we could indeed coprecipitate recombinant TEAD4

with FLAG-PFK1. In line, we detected an interaction between PFK1

and TEADs with transfected and endogenous proteins (Fig 3H and I).

This interaction occurred in the nucleus, as we found a proportion

of the PFK1 protein in this compartment by immunofluorescence

(Supplementary Fig S3N) and we could detect nuclear PFK1/TEAD1

complexes by proximity ligation assay (PLA) (Supplementary Fig

S3O), a technique enabling in situ detection of endogenous protein–

protein complexes (Jarvius et al, 2007). To explore whether the

binding of TEADs to PFK1 requires the presence of YAP, we

compared wild-type and Y429H-mutant TEAD4 [the latter unable to

bind YAP/TAZ (Lai et al, 2011)]; as shown in Fig 3I, both proteins

interacted similarly with PFK1. To explore whether the binding of

TEADs to PFK1 is influenced by PFK1 activity, we compared

wild-type PFK1 and a PFK1 isoform bearing point mutations of

key amino acid residues of the allosteric site for fructose-2,6-

bisphosphate (F2,6P), a potent activator of PFK1 (Ferreras et al,

2009; Banaszak et al, 2011; Mor et al, 2011), and found a reduced

binding of the mutated PFK1 isoform (Fig 3J). F2,6P production is

regulated by PFK2 enzymes (see scheme in Fig 2A); among these,

PFKFB3 is the isoform displaying the highest F6P to F2,6P kinase

activity and which potently promotes PFK1 activity (Herrero-

Mendez et al, 2009; Yalcin et al, 2009; De Bock et al, 2013); in line

with our biochemical findings, PFKFB3 dose-dependently enhanced

YAP/TAZ transcriptional activity in HEK293 cells (Fig 3K), which

typically display low levels of YAP/TAZ activity (Azzolin et al,

2012). Altogether, these results indicate that it is the enzymatically

active pool of PFK1 that binds TEADs and fosters YAP/TAZ activity.

Glucose metabolism regulates the interaction between TEADs
and YAP/TAZ

Data gathered so far indicates that glucose favors YAP/TAZ activity

and suggests that PFK1 mediates these effects by interacting with

TEADs. We then asked whether glucose metabolism could regulate

binding of YAP/TAZ to TEADs. For this, we immunoprecipitated

endogenous YAP from extracts of MDA-MB-231 cells, treated with

vehicle or with 2DG, and monitored by immunoblot the amount

of coprecipitating TEAD1. Strikingly, as shown in Fig 4A, 2DG

treatment reduced the interaction between YAP and TEAD1,

without leading to quantitative YAP or TEAD1 nuclear exclusion

(Supplementary Figs S3G and S4A). We obtained similar results by

immunoprecipitating YAP and TAZ with a different antibody

(Supplementary Fig S4B), or from extracts of MCF10A, HepG2 and

UOK262 cells (Supplementary Fig S4C–E). Moreover, we also

observed inhibition of YAP/TEAD1 complex upon glucose with-

drawal, which was restored after adding back glucose (Fig 4B;

Supplementary Fig S4F). Finally, using chromatin immunoprecipita-

tion (ChIP), we found that 2DG treatment reduced the occupancy of

YAP at promoters of several genes with known or predicted TEAD-

binding sites, including HMMR, TK1, CTGF and ANKRD1 (Zhao

et al, 2008; Benhaddou et al, 2012; Wang et al, 2014) (Fig 4C;

Supplementary Fig S4G–I). Importantly, this indicates that glucose

metabolism directly intersects YAP/TAZ activity.
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This glucose-induced YAP/TEAD1 interaction was dependent on

endogenous PFK1, as detected by co-immunoprecipitation (Fig 4D)

or in situ detection of endogenous protein–protein complexes by

PLA (Fig 4E; Supplementary Fig S4J). Thus, PFK1 stabilizes YAP/

TAZ interaction with TEADs. Along this idea, we then surmised that

if glucose metabolism regulates the ability of YAP/TAZ to interact

with TEADs, then a TEAD isoform unable to bind YAP/TAZ should

be insensitive to modulation of glucose metabolism. To test this

hypothesis, we used GAL4–TEAD1 fusion proteins and compared

wild-type TEAD1 with Y406A-mutant TEAD1, unable to interact

with YAP/TAZ (Li et al, 2010): in these conditions, it is possible to

uncouple the basal transcriptional effects of TEAD1 (observed in the

Y406A mutant) from YAP/TAZ-induced transcription (observed

only with WT TEAD1). As shown in Fig 4F, 2DG inhibited transcrip-

tion driven by WT TEAD1, but was unable to inhibit the basal

activity of the Y406A mutant in MDA-MB-231 cells. Moreover,

overexpressing PFKFB3 in HEK293 selectively enhanced transcription

driven by WT TEAD1 (Fig 4G). Taken together, these data support

the notion that glycolysis regulates the interaction between YAP/TAZ

and TEADs.

Interplay of glycolysis, PFK1 and YAP/TAZ for cancer cell growth

Aerobic glycolysis is considered an important hallmark of cancer

cells and contributes to cancer cell survival and aggressiveness.

Given the known pro-growth and pro-tumorigenic functions of

YAP/TAZ, we then sought to determine whether inhibition of

glycolysis could oppose these YAP/TAZ-dependent activities. First,

we challenged the ability of activated S89A-mutant TAZ to promote

self-renewal of MCF10A-MII mammary cells in a mammosphere-

forming assay (Cordenonsi et al, 2011; Sorrentino et al, 2014). Inhi-

bition of glycolysis by 2DG treatment, or by transfection of PFK1

and GPI siRNA, potently blocked the effects of TAZ (Fig 5A; Supple-

mentary Fig S5A–C). Second, we challenged the ability of YAP to

sustain anchorage-independent growth in soft agar, another hall-

mark of YAP activation (Zhao et al, 2012). Knockdown of PFK1 by

siRNA transfection decreased the clonogenic potential of MDA-MB-

231 cells, recapitulating inhibition of YAP/TAZ (Fig 5B); moreover,

blockade of glucose metabolism with 2DG inhibited the growth of

colonies experimentally induced by expression of activated YAP-

5SA (Fig 5C). Third, we challenged cell proliferation induced by

cytoskeletal inputs and YAP/TAZ: in dense MCF10A monolayers,

cell shape and F-actin remodeling are key for inhibition of YAP/TAZ

activity, and thus for contact inhibition of growth; inducing a

‘wound’ in the monolayer causes the cells close to the edge of the

wound to stretch, reactivate endogenous YAP/TAZ and proliferate

(Zhao et al, 2007; Aragona et al, 2013). As shown in Fig 5D,

proliferation of the cells abutting the ‘wound’ was inhibited by

treating cells with 2DG, indicating that glucose metabolism is

required to sustain YAP/TAZ-induced proliferation.

We then asked whether glycolysis could regulate YAP/TAZ

in vivo, by using Drosophila as an established model system in which

activation of the YAP/TAZ homologue Yki induces hyperplastic

growth (Halder & Johnson, 2011; Harvey et al, 2013). Specifically,

we induced clones of cells with mutation of the lethal (2) giant

larvae (lgl) tumor suppressor and overexpression of Yki, which

cause the Yki-dependent overgrowth of mutant cells in the wing

pouch, eventually developing into tumors (Grzeschik et al, 2010;

Menendez et al, 2010; Khan et al, 2013). As shown in Fig 5E,

silencing of phosphofructokinase by RNAi quantitatively counter-

acted the growth of these clones. Importantly, this was accompanied

by inhibited expression of DIAP1 and Myc, two established Yki/

TEAD target genes in Drosophila (Harvey et al, 2003; Pantalacci

et al, 2003; Udan et al, 2003; Huang et al, 2005; Wu et al, 2008;

Figure 4. Glucose metabolism regulates the interaction between YAP/TAZ and TEADs.

A Extracts of MDA-MB-231 cells treated for 24 h with vehicle (�) or with 2DG (+) were subjected to anti-YAP immunoprecipitation; coprecipitating proteins were then
analyzed by Western blotting to detect TEAD1 interaction. Immunoprecipitation with an unrelated IgG serves as a negative control. Similar results were obtained in
other cell lines, or in MDA-MB-231 cells by using a different anti-YAP/TAZ antibody (Supplementary Fig S4B–E).

B Coimmunoprecipitations from extracts of MCF10A cells released from contact inhibition by seeding them at low confluence for 36 h with glucose (+, lane 2), without
glucose (�, lane 3), or cultured without glucose and then refed of glucose (+, lane 4). Immunoprecipitation with an unrelated IgG (lane 1) serves as a negative control.
Similar results were obtained in HepG2 (Supplementary Fig S4F).

C Chromatin immunoprecipitation of MCF10A cells untreated (Co.) or treated with 100 mM 2DG for 24 h. Fragmented chromatin from each experimental condition
was immunoprecipitated with control IgG or anti-YAP antibodies and subjected to qPCR to detect the TEAD-binding regions present in the CTGF, ANKRD1, HMMR and
TK1 promoters. Amplification of Hemoglobin beta (HBB) serves as a negative control. See Supplementary Fig S4G for similar results in MDA-MB-231 cells. CTGF, ANKRD1
and RHAMM are known targets of YAP/TAZ; TK1 was included in the analysis because it is jointly regulated by glucose and YAP/TAZ (see Fig 1F), and its proximal
promoter contains two TEAD-binding sites that respond to YAP/TAZ activity (see Supplementary Fig S4H) and to glycolysis coherently (Supplementary Fig S4I). Values
in control samples with control IgG were arbitrarily set to 1, and the other values are relative to this (see Materials and Methods). Data are shown as the mean � SD
of two independent experiments.

D Immunoprecipitation of YAP and TEAD1 is reinforced upon glucose supplementation (+), and this requires endogenous PFK1 levels (compare siCo. with siP siRNA
transfected extracts).

E In situ interaction of YAP and TEAD1 is regulated by PFK1 by proximity ligation assay (PLA). Depletion of YAP/TAZ (siYT) or PFK1 with two independent siRNAs (siPFK1
#1, #2) reduced the number of nuclear YAP/TEAD1 dots relative to cells transfected with control siRNA (siCo.), suggesting PFK1 is required to stabilize YAP/TEAD1
interaction. See Supplementary Fig S4J for representative pictures of the PLA stainings.

F Luciferase assay in MDA-MB-231 cells transfected with UAS-lux reporter and expression plasmids encoding for in-frame fusions of the GAL4 DNA-binding domain
with TEAD1, wild-type (WT) or unable to interact with YAP (Y406A mutant). WT TEAD1 can recruit YAP/TAZ and efficiently promote transcription, while Y406A TEAD1
can only sustain basal transcription (Li et al, 2010). Treatment with 2DG (black bars) inhibited transcription induced by WT TEAD1 but not of the Y406A mutant, in
keeping with the observation that 2DG regulates YAP/TEAD1 interaction. Latrunculin A treatment (Lat.A) serves as a positive control for inhibition of YAP/TAZ.
Representative results of a single experiment with n = 2 biological replicates; two independent experiments were consistent.

G Luciferase assay in HEK293 cells transfected as in (F). Cotransfection of PFKFB3, an activator of PFK1 activity, fosters the activity of TEAD1 only when it is able to
interact with YAP. Representative results of a single experiment with n = 2 biological replicates; two independent experiments were consistent.

Data information: Throughout the figure, error bars represent mean � SD. *P-value < 0.01.
Source data are available online for this figure.
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Neto-Silva et al, 2010; Ziosi et al, 2010) (Fig 5F; Supplementary Fig

S5E–G). This indicates that phosphofructokinase regulates and is

instrumental for Yki activity during tumorigenesis of fly larval

tissues.

To further extend the functional connections between glucose

metabolism and YAP/TAZ, we tested whether proliferation

promoted by glucose would depend, at least to some extent, on

YAP/TAZ. In control MDA-MB-231 cells, glucose deprivation for
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48 h induces growth arrest, and supplementing back glucose in the

medium restarts proliferation; upon YAP/TAZ silencing, however,

glucose-induced proliferation is greatly impaired .(Fig 5G), although

not completely as expected from the general (and YAP/TAZ inde-

pendent) functions of glucose. We also compared parental

UOK262 cells (glycolytic) with FH-reconstituted UOK262 cells

[that rely more on mitochondrial respiration (Yang et al, 2013;

Sudarshan et al, 2009)] for their sensitivity to inhibition of

glucose metabolism and to inhibition of YAP/TAZ. As expected,

in clonogenic assays, parental UOK262 cells are more sensitive to

2DG (Fig 5H). Strikingly, parental cells were also more sensitive

to inhibition of YAP/TAZ activity by verteporfin (VP), a small

molecule that specifically impairs the binding of YAP/TAZ to

TEADs (Liu-Chittenden et al, 2012) (Fig 5I). In other words, this

suggests that cells relying on high levels of aerobic glycolysis for

growth display a corresponding high requirement for YAP/TAZ

activity.

Collectively, our findings indicate that glycolysis is required for

the full deployment of YAP/TAZ tumorigenic activities and that

YAP/TAZ mediate a segment of the proliferative effects of glucose

metabolism, reflecting regulation of YAP/TAZ transcription down-

stream of glucose in human cells and fly tissues. These results are

also in line with the finding that glycolysis regulates YAP/TEAD

complex formation, because TEAD binding is required for most

YAP/Yki tumorigenic activities, and in particular for the biological

assays used above (Ota & Sasaki, 2008; Wu et al, 2008; Zhao et al,

2008; Zhang et al, 2009).

A transcriptional signature associated to aerobic glycolysis
correlates with elevated YAP/TAZ activity and is predictive of
poor prognosis in primary tumors

YAP/TAZ activation and a shift toward a glycolytic metabolism are

commonly observed during tumor progression. This is true in partic-

ular for breast cancers, where YAP/TAZ activity is associated with

high-grade (G3) tumors and with the cancer stem cell (CSC) content

of the tumors, reflecting YAP/TAZ requirement for CSC self-renewal

and cancer aggressiveness (Cordenonsi et al, 2011; Chen et al,

2012). Moreover, mammary tumor-initiating cells and undifferenti-

ated basal-like breast cancers display a shift toward aerobic glycoly-

sis, which in turn is required for their self-renewal ability (Dong

et al, 2013; Feng et al, 2014). We thus sought to test whether YAP/

TAZ activation associates with glucose metabolism in human

mammary tumors.

Figure 5. Interplay of glycolysis, PFK1 and YAP/TAZ in cancer cell growth.

A Mammosphere assay with MCF10A-MII cells. Retroviral expression of an activated form of TAZ (S89A mutant) increases the efficiency of primary mammosphere
formation compared to parental cells (empty-vector transduced cells). Treatment of TAZ-expressing cells with 2DG (15 mM), or depletion of PFK1 (siP) or GPI (siG),
impairs the mammosphere-promoting ability of TAZ. See Supplementary Fig S5A–C for secondary mammospheres and representative pictures. Representative
results of a single experiment with n = 4 biological replicates; two independent experiments were consistent.

B Depletion of PFK1 (siP) impairs the colony-forming ability of MDA-MB-231 cells in soft agar, recapitulating the requirement for YAP/TAZ (siYT). Representative
results of a single experiment with n = 2 biological replicates; two independent experiments were consistent.

C Expression of an activated form of YAP (5SA) strongly promotes the growth of MDA-MB-231 colonies in soft agar, and this is inhibited by 2DG treatment (3 mM).
Each box signifies the upper and lower quartiles of data (colony size), while the whiskers extend to the minimum and maximum data points. On the right:
representative pictures of colonies growing from 5SA-YAP-expressing cells, treated with vehicle or with 2DG. Representative results of a single experiment with
n = 2 biological replicates; four independent experiments were consistent.

D MCF10A cells were seeded at high density for 48 h, leading to YAP/TAZ inhibition and growth arrest (High); scratching the monolayer locally enables cell
spreading and activates YAP/TAZ, thus inducing cell proliferation (Wound) (Zhao et al, 2007; Aragona et al, 2013). Overnight treatment of cells with 2DG
(15 mM) inhibited such YAP/TAZ-induced proliferation. The graph reports the quantification of proliferating cells in the indicated areas, without or with 2DG
treatment. To count cells abutting the wound, we arbitrarily set a 100-lm distance from the wound. See Supplementary Fig S5D for representative pictures of
a wounded area. Representative results of a single experiment with n = 2 biological replicates (> 700 cells/replicate); three independent experiments were
consistent.

E Clonal expansion induced by overexpression of the YAP homologue Yki in the Drosophila wing imaginal disk is restricted by phosphofructokinase (Pfk) RNAi. Panels
on the left show pictures of wing imaginal disks bearing clones of cells (marked by GFP) with mutation of the lethal giant larvae tumor suppressor gene (lgl�) and
overexpression of Yki (ykiover), induced by the MARCM technique (Lee & Luo, 2001). The dotted line indicates the outline of the disks. In this genetic setup, the
survival of clones within the wing pouch, that is, in the distal region of the wing disk, is strictly dependent on Yki activation (Grzeschik et al, 2010; Menendez et al,
2010; Khan et al, 2013). Upon downregulation of phosphofructokinase, the growth of lgl�; ykiover clones was inhibited, as shown by quantification of clone area
(****P < 0.0001, unpaired t-test). n = 34 disks for each genotype. Scale bars 80 lm.

F Pfk silencing downregulates the Yki target gene DIAP1 in lgl�; ykiover clones. Panels show whole-mount immunostainings for DIAP1 protein levels, a hallmark of Yki
transcriptional activity (Huang et al, 2005), on wing imaginal disks of the indicated phenotypes, as in (E). GFP identifies mutant cells, growing within an otherwise
wild-type tissue. DIAP1 is autonomously upregulated in lgl�; ykiover clones, while it appears downregulated upon Pfk RNAi. This is consistent with a role for Pfk in
regulating Yki transcriptional activity. See Supplementary Fig S5E for lower magnifications of the same wing disks. See Supplementary Fig S5F and G for similar
results obtained with dMyc, another target of Yki (Neto-Silva et al, 2010; Ziosi et al, 2010). Scale bars, 20 lm.

G MDA-MB-231 cells were growth-inhibited by glucose withdrawal for 48 h (�Glu), and then proliferation was induced by supplementing glucose in the medium for
24 h (+Glu). Culture medium was without glutamine to specifically measure glucose-dependent growth. Quantification of proliferation, as measured by BrdU
incorporation, indicates that cells depleted of YAP/TAZ (siYT #1) are unable to efficiently restart proliferation in response to glucose compared to cells transfected
with control siRNA (siCo.). Similar results were obtained with an independent YAP/TAZ siRNA mix (not shown). Representative results of a single experiment with
n = 2 biological replicates (> 1,000 cells/replicate); three independent experiments were consistent.

H, I Clonogenic assay with UOK262 cells. Parental cells (black bars) are highly glycolytic, while their FH-reconstituted counterpart (gray bars) has reduced glycolysis as
they can efficiently perform mitochondrial respiration (Yang et al, 2013). Cells were seeded at clonogenic density and grown in the presence of titrated doses of 2DG
(0.25, 0.5, 1 mM) to inhibit glucose metabolism (H) or in the presence of VP (0.3, 1, 3 lM) to inhibit the cooperation between YAP/TAZ and TEADs (Liu-Chittenden
et al, 2012) (I). Graphs show the quantification of colonies after 10 days, relative to untreated cells. UOK262 cells are more sensitive than UOK262-FH to 2DG;
UOK262 cells are also more sensitive to small-molecule inhibition of YAP/TAZ, in keeping with higher YAP/TAZ activity (shown above). Representative results of a
single experiment with n = 3 biological replicates; two independent experiments were consistent.

Data information: Throughout the figure, error bars represent mean � SD. *P-value < 0.01.

▸
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We first derived a gene expression signature experimentally

associated with high glucose metabolism in cells of mammary

origin (glucose signature) by selecting the genes that were downreg-

ulated by 2DG treatment both in MCF10A and in MDA-MB-231

microarrays (see Materials and Methods and Supplementary Table

S5). We then analyzed a large metadataset collecting gene expres-

sion and associated clinical data of more than 3,600 primary

mammary tumors (Cordenonsi et al, 2011; Montagner et al, 2012)

and evaluated how the levels of glucose signature were associated

with YAP/TAZ activity. Strikingly, we found that the glucose

signature is positively and strongly correlated with expression of

previously established gene signatures denoting YAP/YAZ activity

(Fig 6A; Supplementary Fig S6A); moreover, tumors classified

according to high (versus low) glucose signature also display higher

activity of YAP/TAZ (Fig 6B; Supplementary Fig S6B).

Prompted by this observation, we tested whether the glucose

signature correlates with cancer features previously associated to

YAP/TAZ activity, such as tumor grade and the content of CSC

(Cordenonsi et al, 2011; Chen et al, 2012). As shown in Fig 6C–E,

we indeed found that glucose signature expression levels associated

to higher expression of mammary stem cell signatures (Liu et al,

2007; Pece et al, 2010), and it was significantly elevated in G3

versus G1 grade tumors (P < 0.0001). Remarkably, by univariate

Kaplan–Meier survival analysis, we also found that tumors
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Figure 6. YAP/TAZ activity is enhanced in primary human breast cancers displaying high levels of a gene signature associated to glycolysis.

A Scatter plot (gray dots) and linear regression (red line, slope 0.532) of standardized expression values indicate a positive correlation between a gene signature
experimentally associated with active glucose metabolism (glucose signature) and a gene signature denoting YAP/TAZ activity, in a metadataset collecting
n = 3,661 primary human breast cancers (see Materials and Methods). The glucose signature is composed of the genes downregulated upon 2DG treatment, that is,
requiring active glucose metabolism for their transcription, both in MCF10A and in MDA-MB-231 cells (see Supplementary Table S5). Pearson q quantifies the linear
dependence between the levels of the two signatures. The coefficient of determination is r2 = 0.731, P-value < 0.0001.

B Primary human breast cancers of the metadataset were stratified according to high or low glucose signature score, and then, the levels of the YAP/TAZ signature
score were determined in the two groups (see Materials and Methods for details on the statistical methods to quantify scores). YAP/TAZ activity is significantly
higher in tumors with high levels of the glucose signature, as visualized by box-plot. The bottom and top of the box are the first and third quartiles, and the band
inside the box is the median; whiskers represent 1st and 99th percentiles; values lower and greater are shown as circles (P < 0.0001, n = 3,661).

C, D Primary human breast cancers of the metadataset were classified according to high or low glucose signature score, and then, the levels of the Staminal or stem
tumorigenic signature scores, associated to normal and cancer mammary stem cells, were determined in the two groups. Gene expression associated to mammary
stem cells is significantly higher in tumors with high levels of the glucose signature, as visualized by box-plot (P < 0.0001, n = 3,661).

E Genes regulated by glucose metabolism (glucose signature) are elevated in G3 as compared to G1 grade mammary tumors of the metadataset (P < 0.0001; G1
versus G3 unpaired t-test). A similar behavior is observed by using the YAP/TAZ signature (Cordenonsi et al, 2011). See Materials and Methods for details on the
statistical methods to quantify average signature expression. Data are shown as mean � standard error of the mean (SEM).

F Kaplan–Meier analysis representing the probability of metastasis-free survival in breast cancer patients from the metadataset stratified according to high or low
glucose signature score. The log-rank test P-value reflects the significance of the association between high levels of the glucose signature score and shorter
survival. A similar behavior is observed by using the YAP/TAZ signature (Cordenonsi et al, 2011).

G Genes regulated by glucose metabolism but not by YAP/TAZ (glucose NOT YT signature, see Supplementary Table S5) are not expressed at higher levels in G3 grade
mammary tumors of the metadataset. See Materials and Methods for details on the statistical methods to quantify average signature expression. Data are shown
as mean � standard error of the mean (SEM).

H Kaplan–Meier analysis representing the probability of metastasis-free survival in breast cancer patients from the metadataset stratified according to high or low
glucose NOT YT signature score, which show no differences.
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expressing high levels of the glucose signature (‘High’) displayed a

significant higher probability to develop recurrence when compared

to the ‘Low’ group (Fig 6F). Of note, the higher expression of the

glucose signature in G3 tumors, and its ability to stratify patients,

was completely lost when we selected from the glucose signature

only the genes that were regulated by 2DG but not by YAP/TAZ

siRNA (Fig 6G and H; Supplementary Table S5). Collectively, the

data indicate that during mammary tumor progression, metabolic

reprogramming toward aerobic glycolysis is accompanied by

elevated YAP/TAZ activity.

Discussion

Cell metabolism and signaling pathways are powerful regulators of

cell proliferation and tumorigenesis; how these separate inputs

coordinate each other to induce coherent biological responses

remains partially understood. Here, we propose that glycolysis,

besides its core biochemical role, also contributes to regulate

the activity of YAP/TAZ and, in doing so, fuels the proliferative

and tumorigenic functions of these powerful oncogenic factors.

Blocking glucose metabolism, or shifting cellular metabolism away

from glycolysis, impairs YAP/TAZ transcriptional activity and their

ability to promote cell proliferation, cancer cell self-renewal and

clonogenic abilities in vitro, and tissue overgrowth in Drosophila.

In line with this, growth/survival promoted by glucose incorpo-

rates YAP/TAZ activity as downstream effectors. Mechanistically,

we found that phosphofructokinase (PFK1), mediating the first

committed step of glycolysis, interacts with the transcription

factors TEADs to stabilize their interaction with YAP/TAZ. In

doing so, glucose metabolism regulates the recruitment of YAP at

target promoters, providing a rationale for the regulation of YAP/

TAZ transcriptional activity.

Recently, DeRan and colleagues reported an effect of energy

stress on YAP/TAZ activity: AMPK-activating drugs such as phen-

formin and AICAR induce Angiomotin (AMOT) phosphorylation,

activation of the LATS1/2 kinases and inhibition of YAP/TAZ

(DeRan et al, 2014). Although inhibition of glucose metabolism

clearly induces activation of AMPK, our data indicate that the

AMPK-AMOT-LATS1/2 axis is not sufficient to explain regulation of

YAP/TAZ by glucose and glycolysis. Thus, it is likely that multiple

parallel mechanisms cooperate to coordinate glucose metabolism

with YAP/TAZ activity.

The finding that glucose metabolism intersects YAP/TAZ signal-

ing at the level of TEAD factors underscores the idea that TEADs are

central players for the regulation of YAP/TAZ. Indeed, recent find-

ings indicate that disruption of YAP–TEADs interaction may be a

promising therapeutic strategy against YAP-driven human cancers

(Liu-Chittenden et al, 2012; Jiao et al, 2014). Both in Drosophila

and in mammalian systems, TEADs normally interact with tran-

scriptional inhibitors, such as the TGI and VGLL4 Tondu-domain-

containing proteins, and YAP/TAZ replace these factors to activate

gene transcription (Koontz et al, 2013; Jiao et al, 2014); in future, it

will be interesting to understand how these cofactor exchanges are

reciprocally regulated and whether these occur while TEAD factors

are on or off DNA.

This study also highlights some peculiarities of YAP/TAZ. Classi-

cal oncogenes such as Ras, Myc and HIFs actively induce metabolic

reprogramming toward aerobic glycolysis (Gordan et al, 2007;

Kroemer & Pouyssegur, 2008; Schulze & Harris, 2012), while YAP/

TAZ are instead regulated downstream to changes in glucose and

mevalonate metabolism. Since YAP/TAZ are also regulated by cues

embedded in the cell microenvironment (Hippo kinase cascade,

ECM mechanics, cell-cell adhesion structures, GPCR and Wnt signal-

ing), it is tempting to speculate that this mechanism might represent

a way by which cell metabolism and tissue-level information are

integrated into a common output. YAP/TAZ also appear different

from another transcription factor regulated by glucose, ChREBP/

MondoA: ChREBP mainly regulates expression of metabolic

enzymes and thus serves as a feedback transcriptional mechanism

to adjust enzyme levels to nutrient availability and to coordinate

lipid and glucose metabolism (Dang, 2012; Havula & Hietakangas,

2012); YAP/TAZ instead incorporate clues from glucose metabolism

into cancer cell growth and self-renewal. Supporting this view, by

bioinformatics analyses, we found a striking enrichment of YAP/

TAZ target genes in primary mammary tumors displaying expres-

sion of glucose-regulated genes, and this correlated with a higher

grade and aggressiveness of the tumors. Interestingly, this also

correlated with gene expression associated to the cancer stem cell

(CSC) content of the tumors, fitting well with the CSC-promoting

ability of YAP/TAZ (Cordenonsi et al, 2011; Chen et al, 2012) and

with the finding that breast tumor-initiating cells display a shift

toward glycolysis, which in turn is required for their self-renewal

ability (Dong et al, 2013; Feng et al, 2014).

In sum, metabolic reprogramming would fulfill the double duty

of providing an optimal metabolism to support cell growth and at

the same time sustain, through YAP/TAZ, the genetic program that

promotes proliferation and tumor malignancy.

Materials and Methods

Reagents

2-deoxy-D-glucose, lonidamine, cerivastatin, DL-mevalonic acid

5-phosphate, DON, AZS, GlcNAc, D-mannose, D-galactose, D-Lucif-

erin, latrunculin A and verteporfin were from Sigma. CPRG was

from Roche. Coelenterazine was from LifeTechnologies.

8XGTIIC-luciferase plasmid is Addgene 34615. The Renilla lucif-

erase version was derived by subcloning of the promoter region into

promoterless pRLuc. CTGF-luciferase was created by amplifying the

genomic region corresponding to �225 bp from the TSS of the

human CTGF promoter, containing three TEAD-binding elements

and the TATA box, into pGL3b. TK1-luciferase was created by

amplifying the genomic region corresponding to �552 bp from the

ATG of the human TK1 locus; the two predicted TEAD-binding

elements start at �200 and �453. Doxycycline-inducible reporter

systems were obtained by subcloning the tet-responsive element

from FudeltaGW plasmid upstream of the promoter-luciferase

elements into a puromycin-resistant retroviral backbone. rtTA was

subcloned from Addgene 19780 into pBABE-hygro. NF2/Merlin

plasmid is Addgene 19699. WT and Y429H MYC-TEAD4 plasmids

are Addgene 24638 and 33041. WT and F2,6P mutant FLAG-PFK1

isoform P plasmid was subcloned from Addgene 23869. Mutation of

the F2,6P allosteric site of PFK1 was carried out based on Banaszak

et al (2011) and Ferreras et al (2009) and entails the following
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mutations: R481A, R576A, R665A, H671A, R744A (reference

sequence is NP_002618). PFKFB3 was subcloned from Addgene

23668. Plasmids encoding GAL4 fusions of WT or Y406A TEAD1 are

Addgene 33108 and 33034. GST-YAP and GST-TEAD4 plasmids

were obtained by standard subcloning. CMV-lacZ, RBPJ-luciferase,

6XE2F-luciferase and UAS-luciferase have been previously described

(Lukas et al, 1997; Dupont et al, 2009; Inui et al, 2011). All plas-

mids were sequence verified prior to use.

siRNA oligos were standard dsRNA oligos with overhanging

dTdT from LifeTechnologies (hereafter, targeted sense sequence of

the mRNA): GPI (Qiagen) 1 guuuggaauugacccucaa; GPI 2 gcuugau

ggcagugcucaa; PFK1 1 ggagaaccgugcccggaaa; PFK1 (Qiagen) 2 cgggc

aaccugaacaccua. YAP/TAZ siRNA was as in Dupont et al (2011).

LATS1/2 siRNA mixes were as in Aragona et al (2013). AMPKa1/2

siRNA (Qiagen) were as in DeRan et al (2014): A1 1 cacgauauucugu

acacaa; A1 2 gggaucaguuagcaacuau; A2 1 gaagucagagcaaaccgua; A2

2 ggaagguagugaaugcaua. TEAD1 ugaaugugcaaugaagcggcg; TEAD2

ccuggugaauuucuugcacaa; TEAD3 uaccuugcucucaaucuggag; TEAD4

uuuccugcacacacgucucuu. Control siRNAs were Qiagen AllStars

Negative Control siRNA or a 1:1:1 mix of Scramble, GFP and Luc*

siRNAs, which were used back-to-back, with results comparable to

non-transfected cells.

Cell culture and transfections

MCF10A (ATCC), MCF10A-MII (a gift from Dr. Santner) and

MCF10A-MII-TAZ-S89A cells and their empty-vector controls

(Cordenonsi et al, 2011) were cultured in DMEM/F12 supplemented

of 5% horse serum, 2 mM glutamine, insulin, cholera toxin, hydro-

cortisone and EGF (Debnath et al, 2003); MDA-MB-231 (STR veri-

fied) in DMEM/F12 with 10% FBS and 2 mM glutamine; Hs578T

(ATCC) in DMEM with 10% FBS, 2 mM glutamine and insulin;

HEK293 (ATCC) in DMEM with 10% FBS and 2 mM glutamine;

HepG2 (ATCC) in MEM with 10% FBS, 2 mM glutamine and

NEAA; and UOK262 (a gift from Dr. Linehan and the UOB Tumor

Cell Line Repository at NIH Bethesda) in DMEM with 10% FBS,

2 mM glutamine and 1 mM pyruvate. To grow cells in galactose,

DMEM/F12 medium without glucose (BioWest) was supplemented

with 10 mM galactose, 10% dyalized FBS and 2 mM glutamine.

All cells were routinely tested for mycoplasma contaminations

with commercial PCR kits (Sigma). siRNA transfections were

done with Lipofectamine RNAi MAX (Invitrogen). Plasmid DNA

transfections were done with Transit-LT1 (MirusBio). Retroviral

infections were carried out following standard procedures and

protocols.

Mammosphere assay was carried out by plating 1,000 cells for

each 24 well, and by plating 4 wells replicates for each sample;

primary mammospheres were counted after 6 days. Differences in

cell viability at plating were excluded based on TUNEL assays (not

shown). Mammospheres were dissociated in trypsin and an equal

number of single cells replated to grow secondary mammospheres.

For soft agar assay, we plated 10,000 MDA-MB-231 cells in triplicate

in 35-mm dishes in growth medium containing 0.3% low melting

agarose, over a 0.6% agarose layer without cells; colonies were

grown for 2 weeks (5SA-YAP-expressing cells and their controls) or

for 3 weeks (cells transfected with siRNA). Wound assay was

performed by plating 1.5 × 106 MCF10A cells in 24 wells containing

fibronectin-coated 13-mm glass slides; after 24 h, the cell monolayer

was scratched with a sterile P1000 tip, washed and grown overnight.

2DG was added after washing. For clonogenic assay, we plated 800

UOK262 cells in a 35-mm petri dish, in triplicate; after 10 days,

colonies were stained with crystal violet, photographed and counted

with ImageJ software by quantifying the total stained area.

ECAR and OCR measurements

The XF24 extracellular flux analyzer (Seahorse Bioscience) was used

to detect real-time changes in cellular respiration and glycolysis

rates. Cells were cultured in standard XF24 plates, by seeding

120,000 (MDA-MB-231) or 90,000 (MCF10A-MII) cells/well 24 h

before performing the measures; for experiments with siRNA, cells

were transfected, reseeded after 24 h and measured after further

24 h. Analysis of the extracellular acidification rate (ECAR) reflects

lactate secretion and serves as indirect measure of glycolysis rate;

oxygen consumption (OCR) reflects cellular respiration and is

directly determined. All measurements were performed following

manufacturer’s instructions and protocols with at least four biologi-

cal replicates for each condition and normalized to total protein

content as determined by Bradford assays.

Real-time PCR

Total RNA was extracted using RNeasy Mini Kit (Qiagen), and

contaminant DNA was removed by RNase-Free DNase Set

(Qiagen). cDNA synthesis was carried out with dT-primed M-MLV

Reverse Transcriptase (LifeTechnologies). Real-time qPCR analyses

were carried out with triplicate samplings of each sample cDNA

on a Rotor-Gene Q (Qiagen) thermal cycler with FastStart SYBR

Green Master Mix (Roche) and analyzed with Rotor-Gene Analysis

6.1 software. Expression levels are calculated relative to GAPDH.

See Supplementary Table S6 for the sequences of primers.

Luciferase assays

For transient transfections, cells were typically plated in 24-well

format and luciferase reporter plasmids were transfected with CMV-

lacZ to normalize for transfection efficiency based on CPRG (Merck)

colorimetric assay, together with plasmids encoding for the indi-

cated proteins; DNA content was kept uniform by using pKS Blue-

script. Cells were harvested in Luc lysis buffer (25 mM Tris pH 7.8,

2.5 mM EDTA, 10% glycerol, 1% NP-40). Luciferase activity was

determined in a Tecan plate luminometer with freshly reconstituted

assay reagent (0.5 mM D-Luciferin, 20 mM tricine, 1 mM

(MgCO3)4Mg(OH)2, 2.7 mM MgSO4, 0.1 mM EDTA, 33 mM DTT,

0.27 mM CoA, 0.53 mM ATP). For stable cell lines, cells were plated

in 12-well format and treated as indicated before harvesting;

normalization was based on total protein content, as measured by

Bradford assays. Each sample was transfected at least in two biolog-

ical duplicates in each experiment to determine the experimental

variability; each experiment was repeated independently with

consistent results.

Microarrays and glucose signatures

For microarrays of genes regulated by glucose uptake, cells were

plated in 60-mm plates, treated with 2DG and harvested after 24 h.
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For YAP/TAZ-regulated genes, cells were plated in 60-mm plates,

transfected with siRNA and harvested 48 h after transfection. For

each experimental condition, we prepared four biological repli-

cates that were processed in parallel. Total RNA was extracted

using RNeasy Mini Kit (Qiagen), and contaminant DNA was

removed by RNase-Free DNase Set (Qiagen). RNA quality and

purity were assessed on the Agilent Bioanalyzer 2100 (Agilent

Technologies); RNA concentration was determined using the

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies).

As control of effective gene modulation and of the whole proce-

dure, we monitored the expression levels of established markers

(TXNIP for 2DG, CTGF and ANKRD1 for YAP/TAZ) by qPCR prior

to microarray hybridization. Labeling and hybridization were

performed according to Affymetrix One Cycle Target Labeling

protocol on HG-U133 Plus 2.0 arrays (Affymetrix). Microarray data

are available at Gene Expression Omnibus under accession

GSE59232.

All data analyses were performed in R (version 3.0.2) using

Bioconductor libraries (BioC 2.13) and R statistical packages. Probe

level signals were converted to expression values using robust

multi-array average procedure RMA (Irizarry et al, 2003) of Biocon-

ductor affy package. Differentially expressed genes were identified

using Significance Analysis of Microarray algorithm coded in the

samr R package (Tusher et al, 2001). In SAM, we estimated the

percentage of false-positive predictions (i.e., false discovery rate,

FDR) with 100 permutations.

To identify genes associated with high glucose uptake in cells of

mammary origin (glucose signature), we compared the expression

levels of MCF10A and MDA-MB-231 cells grown in high glucose or

in the presence of 2-deoxy-glucose (2DG) and selected those probe

sets with a fold change ≤ �3 in both MCF10A and MDA-MB-231

comparisons. This selection resulted in 298 probe sets downregulated

by the presence of 2DG in the culture medium (Supplementary

Table S5). We then refined this selection eliminating from the

glucose signature the genes that were also regulated upon knock-

down of YAP/TAZ, that is removing 2DG-regulated genes with an

FDR ≥ 0.1% in the comparisons between YAP/TAZ-depleted

MCF10A and MDA-MB-231 cells and their controls (Supplementary

Table S5).

To functionally annotate genes coregulated by glucose and YAP/

TAZ, we consider the Biological Process Gene Ontology (GO) cate-

gories of the Database for Annotation, Visualization and Integrated

Discovery (DAVID http://david.abcc.ncifcrf.gov/home.jsp). GO

terms were considered significant at a confidence level of 95%.

Drosophila assays

All the strains were obtained from the Bloomington Stock Center

and grown under standard conditions. For flippase activation, non-

overcrowded cultures of 48 � 6 h after egg-laying individuals

grown at 25°C on standard medium were transferred to a water bath

at 37°C for 20 min. After additional 72 h at 25°C, larvae were

dissected for analyses. Genotypes analyzed were yw,hs-Flp,tub-Gal4,

UAS-GFP/w; tub-Gal80,FRT40A/l(2)gl4,FRT40A; UAS-yki/+ and yw,

hs-Flp,tub-Gal4,UAS-GFP/w; tub-Gal80,FRT40A/l(2)gl4,FRT40A; and

UAS-yki/UAS-PfkRNAi.

For immunostainings, larvae were dissected in PBS1X and

carcasses were fixed, washed and immunostained following

standard methods. Primary antibodies were rabbit aPKC (Santa Cruz

Biotechnology, 1:200), mouse DIAP1 (B. Hay, 1:200) and mouse

dMyc (P. Bellosta, 1:5). Secondary antibodies were anti-mouse

Alexa Fluor 555 (Life Technologies) and anti-rabbit DyLight CY5

(Jackson Immunoresearch). Wing disks were isolated and mounted

in Vectashield (Vectorlabs), and images were acquired by a Leica

TCS SP2 confocal microscope. All figures show single, 1-lm-thick

tissue sections.

Clone areas (in pixel2) were measured using ImageJ free software

(NIH) on images captured with 90i wide fluorescence microscope

(Nikon). Areas of clones grown as multilayers are likely to be under-

estimated. Disks were scored for clones included in the wing pouch

region for a total of 34 disks, and the average clone area was

normalized to the wing pouch size.

Antibodies and microscopy

Antibodies were FLAG-M2 HRP or agarose conjugate (Sigma), YAP/

TAZ (sc101199), YAP for IP (Abcam 52771), TAZ for IP (Sigma

HPA039557), phospho S127 YAP (CST4911), PFK1 (Abcam 119796,

sc130227 or CST5412), TEAD1 (BD 610922), TEAD1 for IP (Abcam

133533), TEAD4 (sc101184), MYC (sc789), total S6 (CST2217),

phospho S6 (CST5364), AMPK (CST2532) and GAPDH (Millipore

MAB374).

For immunofluorescence, cells were fixed for 10 min in 4%

PFA, washed in PBS and either stored dried at �80°C or directly

permeabilized and processed for immunostaining as described in

Dupont et al (2011). Proximity ligation assays were performed as

indicated by the provider’s protocol (OLink Bioscience), after an

overnight incubation with primary antibodies following our

standard protocol. For PLA, antibodies were YAP (CST4912) and

TEAD1 BD, and PFK1 sc. pictures were taken at the confocal

microscope by selecting the maximal nuclear section. Images were

acquired with a Leica SP5 confocal microscope equipped with

CCD camera using Volocity software (Perkin Elmer). For BrdU,

cells were fixed and processed according to manufacturer’s

instructions (BrdU cell proliferation kit, Merck) and images

acquired with a Leica DM5000B microscope.

Immunoprecipitations

For immunoprecipitations, cells were lysed in HPO buffer (50 mM

Hepes pH 7.5, 100 mM NaCl, 50 mM KCl, 2 mM MgCl2, 1% Triton

X-100, 0.5% NP-40, 5% glycerol) with proteases (Merck) and

phosphatase (Sigma) inhibitors, and homogenized by sonication

(Diagenode Bioruptor). Extracts of equal total protein content and

concentration were then subjected to immunoprecipitation with

primary antibodies previously bound to protein A-conjugated sepha-

rose (GE Healthcare) in 2% BSA. Control IgG for pull-downs with

anti-YAP and anti-TEAD1 rabbit antibodies was anti-HA rabbit poly-

clonal (sc805). After 2.5 h of incubation on a rotator at 4°C, beads

were washed three times in the same buffer and the purified

proteins were boiled in Laemmli final sample buffer for Western

blotting with species-specific secondary HRP-conjugated antibodies

(ExactaCruz).

For studies with recombinant proteins, GST-YAP and GST-

TEAD4 were produced and purified from bacteria with standard

protocols; FLAG-PFK1 and FLAG-TEAD1 were purified from
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HEK293-transfected lysates by anti-FLAG-M2 immunoprecipitation,

followed by elution with 3xFLAG peptide (Sigma). All proteins were

dyalized in BC100. Proteins were mixed in HPO buffer with 5% BSA

and incubated for 2 h at 4°C, followed by another 30 min together

with anti-FLAG-M2 agarose-conjugated beads. Beads were washed

three times in the same buffer, and the purified proteins were boiled

in Laemmli final sample buffer for Western blotting.

For mass spectrometry of YAP-interacting proteins, 50% conflu-

ent cultures (150-mm dishes) of MCF10A or MDA-MB-231 cells

stably expressing FLAG-YAP-5SA were harvested in 1 ml HPO

buffer and homogenized by sonication. Controls were parental cells.

Freshly prepared extracts from two sibling plates were joined and

subjected to immunoprecipitation with agarose-conjugated FLAG

M2 antibody for 2.5 h at 4°C on a rotator. After three washes in the

same buffer, immunopurified proteins were eluted by adding

3xFLAG peptide (Sigma) for 30 min at 4°C, in order to reduce aspe-

cific purification of proteins on agarose beads. Eluted proteins were

run in a 4–12% MOPS-SDS gel (LifeTechnologies) to separate them

from the elution peptides, fixed and stained with colloidal Coomas-

sie. The gel was sent to EMBL Proteomic Facility for in-gel tryptic

digestion and mass spectrometry. Proteins purified with similar

frequency from control and FLAG-YAP-expressing lysates were

considered non-specific background; all other proteins were consid-

ered for further analysis.

Chromatin immunoprecipitation

Cells were plated in duplicate, using two 150-mm dishes for each

replicate. After the indicated treatments, cells were crosslinked by

adding to the culture medium 1/10 of fresh formaldehyde solution

(11% formaldehyde 0.1 M NaCl, 1 mM EDTA, 0.5 mM EGTA,

50 mM HEPES pH 7.5) for 10 min at RT, followed by quenching

with 125 mM glycine for 5 min. After washing in PBS, cells were

harvested in PBS with protease inhibitors and pelleted for 5 min

at 1,500 rcf at 4°C. Cells were resuspended in cold LB1 (10 mM

NaCl; 1 mM EDTA; 50 mM; HEPES pH 7.5; 10% glycerol; 0.5%

NP-40; 0.25% Triton X-100) and incubated for 20 min, pelleted

and resuspended in LB2 (10 mM Tris pH 8.0; 200 mM NaCl;

1 mM EDTA; 0.5 mM EGTA) and incubated for 10 min; and

pelleted and resuspended in sonication buffer (10 mM Tris pH 8.0;

1 mM EDTA; 100 mM NaCl; 0.5 mM EGTA; 0.1% sodium

deoxycholate; 0.5% N-lauroylsarcosine). Sonication was carried

out with a Branson Sonfier 450 to obtain sheared chromatin of

200–600 bp fragments. Effective sonication and quantification of

the DNA to equalize samples was carried out on 1% of each

sample after decrosslinking; this sample was also used as input

control for qPCR. The same total amount of sheared chromatin

per sample (in the range of 120 lg) was supplemented with 1%

Triton X-100 and subjected to immunoprecipitation o.n. at 4°C

with anti-YAP (Abcam) or with control rabbit IgG. Protein A

dynabeads (LifeTechnologies) were added for 2 h after extensive

blocking in 0.5% BSA. We performed the following washes

(5 min each): low salt (0.1% SDS, 2 mM EDTA, 1% Triton

X-100, 20 mM Tris pH 8, 150 mM NaCl), high salt (500 mM

NaCl), low salt, high salt, TE + 50 mM NaCl. Immunoprecipitated

material was eluted from the beads by incubating 20 min at 65°C

in TE + 1% SDS. Supernatant was decrosslinked o.n. at 65°C,

diluted 1:2 in TE, treated 1 h at 37°C with RNase A (0.2 mg/ml)

and followed by 1 h at 55°C with Proteinase K. After phenol–

chloroform extraction and ethanol precipitation, DNA was resus-

pended in water for qPCR analysis. The amount of DNA present

in each immunoprecipitate was quantified as the fraction of its

input. See Supplementary Table S6 for the sequences of primers.

Over-representation GSEA analysis

Over-representation analysis was performed using Gene Set Enrich-

ment Analysis and gene sets derived from previously published gene

signatures. In particular, we investigated whether the expression

levels of MCF10A and MDA-MB-231 cells grown in high glucose or

in the presence of 2-deoxy-glucose (2DG) were associated with

elevated expression of Staminal (Pece et al, 2010), stem_tumori-

genic (Liu et al, 2007), Myc (Bild et al, 2006), YAP/TAZ (Zhang

et al, 2009) and YAP (Dupont et al, 2011), induced by YAP (Zhao

et al, 2008) and repressed by YAP (Zhao et al, 2008), Notch A

[Notch signature in (Mazzone et al, 2010)], Notch B [NICD signa-

ture in (Mazzone et al, 2010)], RAS (Bild et al, 2006), ERBB2

(Mackay et al, 2003), beta-catenin (Bild et al, 2006), Wnt (DiMeo

et al, 2009), TGF-beta A (Padua et al, 2008), TGF-beta B (Adorno

et al, 2009), TGF-beta C (Montagner et al, 2012), NF-kB (Park et al,

2007), STAT3 (Alvarez et al, 2005), Src (Bild et al, 2006), E2F3

(Bild et al, 2006), mutant-p53 (Miller et al, 2005), wt-p53 (Miller

et al, 2005), TCF4 (van de Wetering et al, 2002), HIF (Montagner

et al, 2012) and Sharp1 (Montagner et al, 2012). The complete gene

signatures are provided in Supplementary Table S7. GSEA software

(http://www.broadinstitute.org/gsea/index.jsp) was applied on

log2 expression data of MCF10A and MDA-MB-231 cells grown in

high glucose or in the presence of 2DG. Gene sets were considered

significantly enriched at FDR < 5% when using Signal2Noise as

metric and 1,000 permutations of gene sets.

Average signature expression and signature scores

Average signature expression has been calculated as the standard-

ized average expression of all signature genes in sample subgroups

(e.g. 2DG treated/controls; histological grade). Signature scores

have been obtained summarizing the standardized expression

levels of signature genes into a combined score with zero mean

(Adorno et al, 2009). The values shown in graphs are thus

adimensional.

Collection and processing of breast cancer gene expression data

We started from a collection of 4,640 samples from 27 major data-

sets comprising microarray data of breast cancer samples annotated

with histological tumor grade and clinical outcome (Supplementary

Table S8). All data were measured on Affymetrix arrays and have

been downloaded from NCBI Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) and EMBL-EBI ArrayExpress

(http://www.ebi.ac.uk/ arrayexpress/).

Prior to analysis, we re-organized all datasets eliminating dupli-

cate samples and re-naming any original set after the medical center

where patients were recruited. Briefly, the datasets have been modi-

fied as follows:

Stockholm dataset has been used as is and re-named as

KI_Stockholm (Karolinska Institutet, Stockholm);
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EMC-286 and EMC-58 were merged to create EMC-344 (Erasmus

Medical Center);

MSK has been used as is and re-named as MSKCC (Memorial

Sloan-Kettering Cancer Center);

Uppsala-Miller, Ivshina-Miller and Loi datasets (GSE3494, GSE4922

and GSE6532) have been split into KI_Uppsala comprising all 258

unique patients of the Uppsala University Hospital, OXF compris-

ing 178 samples collected at the John Radcliffe Hospital in Oxford

and formerly part of GSE6532, and GUY composed of the 87

samples (from the Guys Hospital in London and formerly part of

GSE6532) and of 77 samples from the former Tamoxifen study;

Sotiriou dataset has been eliminated since samples of this series are

all included in GSE6532;

Tamoxifen dataset has been added to GUY cohort since all patients

were recruited at the Guys Hospital in London;

Desmedt dataset has been used as is and re-named as TRANSBIG

(after the consortium of cancer centers where samples have been

collected);

Schmidt datasets have been used as is and re-named as Mainz

(Johannes Gutenberg University in Mainz);

Veridex has been used as is;

Chin (E-TABM-158) and Zhou (GSE7378) were merged to create

UCSF since all patients were recruited at the University of Califor-

nia, San Francisco (173 samples). Moreover, a comparison of the

hybridization dates on the CEL files of E-TABM-154 and GSE7378

and of the patients’ clinical information revealed that 17 samples

were deposited twice for a total of 166 unique samples out of 173

samples;

Top trial (GSE16446) was re-named as IJB_TOP (Institut Jules

Bordet/Trial of Principle);

GSE19615 was re-named as US_NCI since all patients were recruited

at US National Cancer Institute;

IPC (GSE21653) was re-named as CRCM since all patients were

recruited at Centre de Cancérologie de Marseille;

KFSYSCC (GSE20685) was re-named as KOOF since all patients were

recruited at Koo Foundation SYS Cancer Center;

GSE31519 was re-named as Goethe since all patients were recruited

at Goethe University, Frankfurt;

GSE22093 was re-named as MDACC_IGR (M.D. Anderson Cancer

Center/Institut Goustave Russy) and comprises 103 samples, 36 of

which included in GSE20271;

Hatzis (GSE25066) includes samples derived from 4 cancer centers,

that is, I-SPY-1 (Investigation of Serial Studies to Predict Your

Therapeutic Response With Imaging and Molecular Analysis),

LBJ_INEN_GEICAM (Lyndon B. Johnson Hospital, Instituto Nacional

de Enfermedades Neoplásicas and Grupo Español de Investigación

en Cáncer de Mama), USO-02103 (US Oncology) and MDACC

(M. D. Anderson Cancer Center, Houston). Moreover, a compari-

son of the hybridization dates on the CEL files of GSE25066 and

GSE20271 and GSE20194 and also of the patients’ clinical infor-

mation revealed that, despite being deposited twice, some

samples are identical. As such, these four datasets have been split

into the following:

I-SPY-1 comprising 83 samples;

LBJ_INEN_GEICAM comprising 58 samples; and

MDACC_GSE25066 comprising 313 samples;

GSE23988 was re-named USO-02103, and it is composed of 54

samples included in USO-02103 cohort of GSE25066 and 61 from

GSE23988. Twenty samples were removed, because they were

deposited twice;

GSE20271 was re-named MDACC_GSE20271 and comprises 100

samples, since 78 were already included in MDACC_GSE25066;

GSE20194 is largely included in MDACC_GSE25066 (187 out of 230

samples; other four samples are included in GSE20271); the

remaining 39 samples were included in the cohort named MDACC

MAQC-II;

GSE32646, GSE18728 and GSE19697 were re-named as Osaka, UW

and St. Louis, respectively, since all patients were recruited at the

Osaka University, University of Washington (Seattle) and Washing-

ton University School of Medicine (St. Louis), respectively.

This re-organization resulted in a compendium (metadataset)

comprising 3,661 unique samples from 25 independent cohorts

(Supplementary Table S9). The type and content of clinical and

pathological annotations of the metadataset samples have been

derived from the original cohorts.

Since raw data (.CEL files) were available for all samples, the

integration, normalization and summarization of gene expression

signals has been obtained applying the procedure described in Rusti-

ghi et al (2014). Briefly, expression values were generated from

intensity signals using a custom CDF obtained merging HG-U133A,

HG-U133AAofAV2 and HG-U133 Plus2 original CDFs and transform-

ing the original CEL files accordingly. Intensity values for a total of

21,986 probe sets have been background-adjusted, normalized using

quantile normalization, and gene expression levels calculated using

median polish summarization (multi-array average procedure,

RMA). Clinical information among the various datasets has been

standardized as described in Cordenonsi et al (2011).

Kaplan–Meier survival analysis

To identify two groups of tumors with either high or low glucose

signature, we used the classifier described in Adorno et al (2009),

that is a classification rule based on the glucose signature

score. Tumors were classified as glucose signature ‘Low’ if the

combined score was negative and as glucose signature ‘High’ if the

combined score was positive. This classification was applied to

expression values of the metadataset. To evaluate the prognostic

value of the glucose signature, we estimated, using the Kaplan–

Meier method, the probabilities that patients would remain free of

metastatic. To confirm these findings, the Kaplan–Meier curves

were compared using the log-rank (Mantel–Cox) test. P-values were

calculated according to the standard normal asymptotic distribution.

Survival analysis was performed in GraphPad Prism.

Statistical analysis

Statistical analyses were performed using Prism software (GraphPad

software). Mean values and standard deviations (SD) are shown in

graphs that were generated from several repeats of biological experi-

ments, unless otherwise indicated. Immunoprecipitation experi-

ments were performed with n = 2 biological replicates for each

sample and repeated at least two times independently with compa-

rable results.

Supplementary information for this article is available online:

http://emboj.embopress.org
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