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the potential origins and consequences of sperm DNA damage, for 
which recent reviews are also available.22–26

As a source of information, PubMed articles published until 
submission of this review (November 10, 2014) were considered on 
the topics of “sperm chromatin,” “sperm chromatin packaging,” “sperm 
chromatin gene distribution,” “sperm histone retention,” “sperm histone 
modifications,” “protamine modifications,” “sperm chromatin protein 
composition,” and “chromatin alterations in infertile patients.” As a 
complement, we provide here for the first‑time experimental evidence 
for the detection of phosphorylations and acetylations in human 
protamine 1 using mass spectrometry (MS).

The first part of this review starts with a discussion about the 
current knowledge of the sequence‑specific sperm chromatin 
distribution, and is followed by a section on the abundant histones 
and protamines and the additional (less abundant) sperm chromatin 
proteins recently identified using MS. Finally, the review concludes 
with a section on the presence of genomic and proteomic alterations 
detected in the sperm chromatin of infertile patients, both in the gene 
distribution and in the presence of an altered abundance on sperm 
chromatin proteins.

The present review complements, expands, and updates other 
previously published reviews on this topic.3,4,8–12,17,18,21,27–36

INTRODUCTION
The main function of the sperm cell is to transmit to the embryo the 
paternal genetic message encoded in the DNA sequence together 
with the presence of appropriate epigenetic information.1–4 The most 
well‑studied mechanism of epigenetic inheritance is the reversible 
methylation of cytosine residues in cytosine‑guanine dinucleotides 
at imprinted genes, which is involved in gene expression regulation.5,6 
However, additional potential sperm epigenetic information is 
also constituted by the presence of histone modifications, presence 
of other chromatin‑associated proteins and their modifications, 
RNAs, a unique chromatin structure (Figure 1), and chromosome 
territories in the nucleus.7–15 As compared to somatic cells, not 
much is known so far about the potential role of these additional 
forms of epigenetic information in the sperm, despite that it is an 
emerging subject of increasing interest.3,10,16–19 Thus, the present 
review aims to cover these newer forms of epigenetic information, 
being focused on the chromatin structure, gene distribution and 
presence of chromatin proteins and their modifications in the sperm 
cell (Figure 1). Therefore, it does not aim to cover the topics of sperm 
DNA methylation and the presence of sperm RNAs, for which the 
reader is referred to other excellent reviews.5,7,20,21 Furthermore, the 
present review does not intend to cover related issues concerning 
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SEQUENCE‑SPECIFIC SPERM CHROMATIN DNA DISTRIBUTION
The structure and composition of the inert mammalian sperm 
chromatin have been extensively studied during the past three 
decades27,37–52  (Table  1). Classical sperm chromatin dissection 
experiments were based on two main approaches: (1) DNA digestion 
by endonucleases  (typically DNase I and micrococcal nuclease; 
MNase),39,40,42–46,48–52 and (2) disruption of histone‑DNA associations by 
0.65 M NaCl followed by the digestion of histone‑free DNA (typically 
by EcoRI and BamHI).37,38,41,43,51 Subsequent DNA analyses using 
probes, polymerase chain reaction, chromatin immunoprecipitation, 
microarrays or high‑throughput sequencing techniques have provided 
exciting results (Table 1).

A growing body of evidence suggests the existence of a 
sequence‑specific packaging by histones and protamines involved 
in potential epigenetic inheritance.9,12,17,27,37,42,53,54 The first studies 
in this field were focussed on the analysis of specific gene families 
or clusters, showing a potential involvement of DNA distribution 
in postfertilization events  (Table  1). Interestingly, members of 
β‑globin gene family active in embryonic yolk sac (ε‑ and γ‑ globin) 
contained histone‑associated regions, while no presence of β‑  and 
δ‑globin (inactive in embryonic yolk sac) was found.38 Furthermore, 
Wykes and Krawetz reported a nonrandom distribution of 
PRM1‑PRM2‑TNP2 loci, repetitive sequences and selected genes 
throughout the chromatin.41 This programmatic sperm DNA 
distribution has been confirmed recently by the genome‑wide sperm 
nucleosome profiles generated by other groups (Table 1). Particularly, 
an enrichment of human and mouse retained sperm nucleosomes at 
developmental loci was reported, which included imprinted genes, 
microRNAs, HOX genes, promoters of developmental transcriptional 
signaling factors, GC‑rich sequences, and transcription start sites of 
most housekeeping genes43,44,47,51 (Figure 1).

Of relevance, we have recently contributed to the knowledge 
of sperm chromatin reporting the existence in human sperm 
histone‑associated chromatin of not only classical nucleosomes, but 
also of smaller MNase‑sensitive regions.51 Although an association 
with specific histone variants is still unexplored, these so‑called 
subnucleosomal particles were seen to be enriched in alternative and 
not overlapping developmental loci.51 These results allowed speculation 

that additional levels of sperm chromatin packaging might be involved 
in postfertilization gene regulation. A recent study using mouse sperm 
has also suggested the presence of two types of footprints obtained after 
MNase digestion, one corresponding to nucleosomes, and a shorter 
one  (<80  bp) associated with other DNA‑binding proteins such as 
transcription factors.50 Similarly, zebrafish  (which do not employ 
protamines for sperm DNA packaging) have a multivalent chromatin 
constituted by gene sets implicated in embryo development processes 
and associated with distinctive types of nucleosome packaging.55 All 
these data are therefore suggesting an exciting dynamic behavior of 
the sperm chromatin.

The role of sperm histone‑retention in male epigenetic inheritance 
becomes even more significant considering that regulatory loci are marked 
by specific histone methylation patterns.3,9,12,17,44,45,56 In fact, human 
and mice genes related to spermatogenesis and cellular homeostasis 
seem to be associated with activating modifications  (H3K4me2), 
while developmental gene promoters may be related not only with 
activating (H3K4me2 and H3K4me3) but also with repressive histone 
marks  (H3K27me3). Interestingly, this bivalent gene marking is 
showing an overlap with embryonic stem cells, suggesting a role in 
the establishment of embryonic totipotency.44,45

However, histone‑retention constitutes just 5% to 15% of 
sperm chromatin while the major part is indeed tightly packaged 
by protamines  (Figure  1). This higher level of compaction is 
required not only to avoid any transcriptional and translational 
activity, but also to reduce the accessibility of external and internal 
nucleases28,57,58  (Figure  1). In fact, although protamine‑packaging 
is not necessary for proper embryo development,59,60 it appears to 
be important for DNA integrity maintenance.61–65 Therefore, if the 
nucleo‑protamine structure is ensuring the transmission of intact male 
genome to the next generation, an important question remaining to 
be answered is why crucial male developmental loci are vulnerable by 
virtue of being associated with nucleosomes.

In this regard, contrasting results with those already mentioned 
regarding sequence‑specific sperm DNA distribution, have been 
reported by several groups during the past years (Table 1). Interestingly, 
by using similar strategies for chromatin dissection and sequence 
analysis in human, mouse and bovine sperm, it has been shown 
that nucleosomes might be moderately retained at unique DNA 
sequences and regulatory regions  (Table 1). In contrast, a majority 
of sperm histones seemed to be localized to the nuclear periphery, 
within distal intergenic regions and introns, and associated with 
centromere and telomere repeats and retrotransposons  (LINE and 
SINE; Figure 1).39,40,45,48–50,52 Obtaining such different results following 
the same strategies could be due to a technical issue. Carone et al. 
suggest in their study that promoter nucleosomes, although being 
less abundant in sperm, are more stable to MNase digestion. In this 
regard, an extensive nuclear digestion of chromatin would degrade 
more abundant nucleosomes in gene deserts and thus reveal only 
those associated with regulatory regions.$2 This hypothesis seems to 
be consistent with the identification of distal DNase I‑hypersensitive 
regions characterized by an enrichment at CTCF‑binding sites, 
depletion in H3K4me3 and presence of H3K9ac and H4K12ac in 
human and mouse spermatozoa43,46 (Table 1).

Whatever the case may be, the sperm nucleosome association 
with repetitive sequences would be also in agreement with a 
potential function of the sequence‑specific sperm chromatin DNA 
distribution in postfertilization processes. For instance, it is known 
that telomeres are involved in microtubule‑guided movement during 
male pronucleus development.40,66 Furthermore, retrotransposons 

Figure 1: Gene and protein composition of the human sperm chromatin. 
Hypothetical model of human sperm chromatin showing the histone-
associated DNA constitution (a) and protein contents (b). The model is 
drawn at a scale and inspired by the known nucleo-protamine toroidal 
structures124 and the high-throughput sequencing data obtained from the 
analysis of retained human sperm nucleosomes after micrococcal nuclease 
digestion.43–45,51,52



Asian Journal of Andrology 

Sperm chromatin analysis and epigenetic inheritance 

J Castillo et al

603

Table  1: DNA distribution analyses through sperm chromatin in healthy or normozoospermic men and in model species

Study Sample Chromatin dissection approach DNA analysis approach Main results

Human sperm

Gatewood et al. 
198737

Human 
(not specified)

0.65 M NaCl+BamHI digestion DNA probes and 
Southern hybridization

Existence of sequence‑specific nucleo‑histone 
and nucleo‑protamine components

Gardiner‑Garden et al. 
199838

Healthy donors 0.65 M NaCl+BamHI/DraI 
digestion

DNA probes and 
Southern hybridization

β‑globin gene family members active in 
embryonic yolk sac (ε‑ and γ‑globin) 
contains histone‑associated regions

Zalenskaya et al. 
200040

Healthy donors Micrococcal nuclease digestion 
(30 U mg−1 DNA)

DNA probes and 
Southern hybridization

Soluble chromatin fraction enriched in 
telomeric DNA

Wykes and Krawetz, 
200341

Healthy donors 0.65 M NaCl+BamHI/EcoRI or 
PvuII digestion

PCR amplification and 
Southern hybridization

Nonrandom distribution of PRM1‑PRM2‑TNP2 
locus, repetitive sequences and selected 
genes throughout sperm chromatin

Nazarov et al. 
200842

Healthy donors Endogenous nucleases and 
micrococcal nuclease 
(20 U mg−1 DNA) digestion

Two‑dimensional 
electrophoresis in agarose 
gels and atomic force 
microscopy

Existence of sequence‑specific nucleo‑histone 
and nucleo‑protamine components. Two 
distinct chromatin domains associated with 
histones

Arpanahi et al. 
200943

Normozoospermic men 
and mouse sperm

0.65 M NaCl+BamHI/EcoRI 
and micrococcal nuclease 
digestion (5 U/100×106 
sperm)

ChIP and microarray analysis Endonuclease‑sensitive DNA sequences 
associated with promoter sequences and 
sequences recognized by CTCF

Hammoud et al. 
200944

Healthy donors Micrococcal nuclease digestion 
(10–160 U)

ChIP or DNA gel 
purification combined 
with high‑throughput 
sequencing or array 
analysis. DNA methylation 
analysis

Retained sperm nucleosomes enriched 
at imprinted gene clusters, microRNAs 
clusters, HOX gene clusters and promoters 
of developmental transcriptional signalling 
factors. Histones modifications localize to 
particular developmental loci

Brykczynska et al. 
201045

Normozoospermic men 
and mouse sperm

Micrococcal nuclease digestion ChIP combined with 
microarray analysis 
or high‑throughput 
sequencing

H3K4me2 and H3K27me3 are retained in 
regulatory sequences and mark promoters 
of genes important in spermatogenesis 
and early embryo development. Modest 
enrichment of TSS in nucleosomes

Vavouri and Lehner, 
201147

Arpanahi et al. 200943;
Hammoud et al. 

200944;
Brykczynska et al. 

201045

‑ In silico analysis of data 
from Arpanahi et al. 
200944; Hammoud et al. 
200944; Brykczynska et al. 
201045

Nucleosome retention in genic and nongenic 
regions of the genome, GC‑rich sequences with 
high intrinsic nucleosome affinity and TSS of 
most housekeeping genes. Link of nucleosome 
retention and DNA‑methylation‑free regions in 
the early embryo

Samans et al. 
201452

Healthy donors and 
bovine sperm

Micrococcal nuclease digestion 
(20 U/10×106 sperm)

DNA purification and 
high‑throughput 
sequencing

Retained sperm nucleosomes 
enriched at centromere repeats and 
retrotransposons (LINE1 and SINE1). 
Nucleosomes‑associated genes relevant for 
preimplantation development

Castillo et al. 
201451

Normozoospermic men 0.65 M NaCl+BamHI/EcoRI 
and micrococcal nuclease 
digestion (0.07 U/100×106 
sperm)

DNA purification and 
high‑throughput 
sequencing

Retained sperm nucleosomes and 
subnucleosomal particles enriched at 
developmental genes, gene promoters and 
CpG promoters. Two sets of nuclear proteins 
differing in chromatin affinity

Mouse sperm

Pittoggi et al. 
199939

Epididymal sperm Endonuclease digestion Southern blot, en‑labelling, 
cloning and sequencing, 
FISH

Hypersensitive chromatin domains retained 
nucleosomes and are enriched at retroposon 
DNA with a peripherical distribution

Saida et al. 
201146

Caudal sperm Micrococcal nuclease digestion 
(5 U/100×106 sperm)

Array analysis 
(CGH profiling) and FISH

Nuclease sensitive chromatin regions strongly 
enriched at chromosomal regions with 
an excess of promoters and sequences 
recognized by CTCF

Meyer‑Ficca et al. 
201349

Sperm WT and impaired 
PAR metabolism

Micrococcal nuclease digestion 
(0.25 U)

FISH Preferential localization of nucleosomes to 
the chromocenter, retained in repetitive 
sequences. Impaired PAR metabolism 
increase histone retention

Erkek et al. 
201348

Caudal sperm and round 
spermatids

Micrococcal nuclease digestion 
(15 U/2×106 sperm)

ChIP and high‑throughput 
sequencing

Retained sperm nucleosomes enriched at 
hypomethylated CpG‑rich sequences, 
histone H3.3 and H3K4me3

Carone et al. 
201450

Sperm and mouse ESCs Micrococcal nuclease 
digestion (1 U 10−8 sperm) 
of formaldehyde‑crosslinked 
sperm

ChIP and high‑throughput 
sequencing or paired‑end 
deep sequencing, FISH

Retained sperm nucleosomes enriched at 
gene‑poor genomic regions, with a small 
subset of histones retained over promoters 
of developmental regulators

could be conducting regulatory functions for host genes, by 
serving as a scaffold for the transcription factor binding repertoire 

in preimplantational processes.20,52 Interestingly, CTCF has been 
suggested to be a key mediator of epigenetic chromatin remodeling 

Contd...
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not only during male germ cell development, but also in embryonic 
genome activation.43,46,50

Taking all these results together, one could hypothesize a model of 
sperm chromatin structure with a selected subset of relevant regulatory 
loci packaged in dynamic nucleosomal structures, which together with 
repeated sequences would be closely involved in the regulation of early 
postfertilization processes (e.g., sperm chromatin remodeling in male 
pronucleus; Figure 1). These epigenetic signatures may be potentially 
important in preimplantational stages, in order to initiate key processes, 
and preserve the integrity of other male developmental genes required 
for later stages of embryogenesis.

A B U N D A N T  S P E R M  C H R O M AT I N ‑ A S S O C I AT E D 
PROTEINS – HISTONES AND PROTAMINES
Similarly to the sperm DNA distribution analyses, the study of the 
protein component of sperm chromatin is also providing information 
supporting the possibility of a potential sperm epigenetic inheritance.

Although the sperm nucleo‑histone domain constitutes a minor 
part of the total sperm chromatin (Figure 1), up to 46 different histones 
and histone variants have been detected so far as part of the human 
sperm nuclear proteome.17 Nucleosomes are dynamic, rather than static, 
structures, and this aspect may be especially relevant in the male germ line, 
where different testis‑specific histones variants (and their modifications) 
are expressed throughout mammalian spermatogenesis.67,68 The role of 
noncanonical histones during sperm differentiation is well‑documented 
and becomes essential for different stages, principally after meiosis. 
In particular, testicular H1 histone, histone H2A.Bdb, and histone 
H2B type  1‑A  (TH2B in mouse) are known to be involved in 
histone hyperacetylation and nucleosome destabilization prior the 
incorporation of transition proteins and protamines.69–72 However, 
histone roles should not be restricted to spermatogenic processes, as 
an analogous hyperacetylation‑based paternal chromatin remodeling 
occurs after fertilization. Therefore, it would be logical to think that the 
sperm‑derived histone variants that remain in the zygotic nucleus could 
be also participating at that stage.17,56,70,71

Hi s t on e  p a r t i c ip at i on  du r i n g  s p e r m at o g e n i c  a n d 
postfertilization processes becomes fundamental due to the ability 
to carry modifications  (mainly methylations, acetylations, and 
ubiquitinations), defining the so‑called histone code.4,11,12,17,35,73,74 
Besides the specific sperm histone‑methylation patterns, already 
pointed out in the above section, histone acetylations are also 
noteworthy. In fact, in addition to the acetylation wave that takes 
place prior to the nucleo‑histone‑to‑nucleo‑protamine transition 
in spermatids,75–80 histone H4K8ac, and H4K12ac have been also 
observed preceding full decondensation in the zygotic nucleus.81 
Also, interesting was the discovery of a new histone modification, 
crotonylation, which seems to mark postmeiotically activated genes 
on autosomes, as well as specific X/Y‑linked genes, enabling their 
postmeiotic activation despite the general repression of the haploid 
sex chromosomes in the sex body.82

Similar to histones, it is also worth‑considering in detail the 
protamine amino‑acid sequences, as protamines are considered critical 
in the maintenance of sperm chromatin status. Protamines are the 
most abundant proteins in the mammalian sperm nucleus (Figure 1) 
and their distinctive physicochemical characteristics (such as extreme 
basicity and high proportion of arginines and cysteines; Figure  2) 
confer elevated protein stability,27,28,57,58 at least in Eutherian mammals. 
For this reason, the identification of potential posttranslational 
modification  (PTM) sites in the sequence of protamine 1  (P1) or 
protamine 2 (P2) is an intriguing field of study which could increase 
our knowledge of the sperm chromatin epigenetic landscape.

Reported PTM include the detect ion of  human P1 
mono‑  and di‑phosphorylated sites  (N‑terminal region) and P2 
mono‑phosphorylated sites (middle region), which seem to be implicated 
in sperm chromatin remodeling during spermatogenesis.27,83–85 
The different location of phosphorylated serines between human 
protamines was suggested to indicate distinct roles for P1 and P2 
during sperm maturation.85 Protamines also experience further 
processing during epididymal maturation, when disulfide bonds and 
zinc bridges are formed between cysteine residues to stabilize the 
toroidal structure.25,28,58,86,87

An additional important contribution to our knowledge of 
protamine PTMs has recently been forthcoming in a study of murine 
protamine sequences using a novel proteomic workflow based in MS.73 
Thus, Brunner et al. were able to detect phosphorylation sites using 
MS in mouse P1 and P2 corresponding to those previously reported 
in human sperm using conventional procedures. In addition, although 
P2 family members were not analyzed separately, P2 residues carrying 
acetylations and methylations were also identified.73 It is interesting 
to highlight that while acetylations and methylations were detected 
in the same sequence, acetylations and phosphorylations seemed to 
be exclusive, suggesting nonrandom protamine processing in mouse 
spermatozoa.73

Consistent with the above observations in mice, we report here for 
the first time the analysis of the intact (not digested) human protamine 1 
amino acid sequence through MS (Figure 2). Following a similar strategy 
to that used in mouse sperm, we were able to detect in human P1 
mono‑, di‑ and tri‑phosphorylations by MS (Figure 2). In addition, 
P1 seemed to carry combinations of different PTMs, which included 
di‑acetylations with mono‑methylation and, in contrast to mouse P1, 
di‑phosphorylations with mono‑acetylation  (Figure 1). Concerning 
human P2 family, the potential presence of PTMs  (methylations 
and acetylations) was only detected in the component P3  (data not 
shown). Despite this evidence for the presence of phosphorylations 
and acetylations in mouse (Brunner et al. 2014) and human (Figure 2) 
protamines, we believe that the existence of a protamine code with 
a similar function to the histone code  (where PTMs are involved 
in gene expression) is unlikely. The main reasons are the presence 
of the semicrystalline chromatin status conferred by the nucleo-
protamine toroidal packaging and the fact that the sperm chromatin is 

Table  1: Contd...

Study Sample Chromatin dissection approach DNA analysis approach Main results

Zebrafish sperm

Wu et al. 
201155

Sperm ‑ ChIP and sequential ChIP 
and microarray analysis

Although all the genome is packaged by 
nucleosomes, gene sets with a particular 
function in embryo development are 
packaged by distinctive types of chromatin

PCR: polymerase chain reaction; FISH: fluorescence in  situ hybridization; CGH: comparative genomic hybridization; PRM1: protamine 1; PRM2: protamine 2; ChIP: chromatin 
immunoprecipitation; TNP2: transition protein 2; TSS: transcription start site; PAR: poly  (ADP‑ribose); WT: wild‑type; ESCs: embryonic stem cells; CpG: cytosine‑guanine dinucleotides; 
LINE1: long interspersed elements‑1; SINE1: short interspersed element‑1
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transcriptionally silent.17,27,28,57,58,88–90 Instead, there is substantial evidence 
for the involvement of protamine phosphorylation in the deposition 
of recently synthesized protamines to DNA.27,83–85,91 What remains 
still unknown is whether other modifications, such as acetylations of 
protamines, could also have a role during spermatogenesis. The possibility 
is thus open to study a potential involvement of protamine PTMs in the 
mature chromatin structure and in chromatin structural transitions 
taking place after fertilization (such as the chromatin destabilization in 
the male pronucleus prior maternal histones incorporation), and how 
this could be related to gene expression in the early embryo.

These novel protamine PTMs reported here  (Figure  2) were 
obtained following a protamine purification procedure using sperm 

samples from normozoospermic men as previously described in 
our lab92 coupled to MS analysis of the nondigested protein extracts. 
The small size of the protamines (Figure 2) allows the detection of 
the intact amino acid sequence using an elegant high‑throughput 
technique known as top‑down proteomics.73,93 Following this 
strategy, spectra showing peaks with mass/charge values  (m/z) 
were obtained and used to determine the mass of every protein 
component of the extract (Figure 2). Because “z” was set as 1, each 
MS peak provided a unique “m” (Daltons), which was subsequently 
compared with that corresponding to human P1, or mature and 
immature individual human P2 family members. Incorporations of 
“m” to protamines  (corresponding to PTMs) were evaluated using 
information from the Unimod database  (http://www.unimod.org/
modifications_list.php?), setting 200  ppm as the maximum error 
acceptable to consider valid an m match.

The gold‑standard strategies to detect and quantify protamines 
have been so far based on protein separation using acid‑urea 
polyacrylamide gel electrophoresis and visualization by Coomassie 
blue gel staining,21,61,65,92,94–98 the use of specific antibodies for Western 
blot detection,97,99,100 and determination of the protamine amino‑acid 
sequences using EDMAN cycle protein sequencing.83,85 However, these 
strategies were quite time‑consuming implying a relative limitation. 
Thus, emerging approaches to identify protamines based in MS 
strategies73 (Figure 2) seem to have the potential to be more efficient 
and accurate, in addition to allowing a higher‑throughput analysis 
of patients and model systems. All these reported data are therefore 
supporting the prospective use of top‑down proteomics for protamine 
PTMs patterns analyses in fertile men, the identification of alterations 
in infertile patients, and the potential identification of prognostic 
markers in assisted reproduction.

LOW ABUNDANCE SPERM CHROMATIN‑ASSOCIATED 
PROTEINS
The MS‑based study of the male gamete has also largely demonstrated 
that the sperm chromatin protein composition is more complex that 
initially considered.17,101,102 In fact, besides histones and protamines, 
a large number of zinc finger‑  and bromodomain‑containing 
proteins, transcription factors, histone modifiers, and other 
DNA‑related proteins have been identified as part of the human sperm 
nucleus17,51,101,103–107 (Figure 1). Interestingly, similar trends were also 
found in other mammalian species which suggests a conservation of 
the rich sperm chromatin protein profile.17

Thus, it should be accepted that the sperm nucleus contains a subset 
of sperm nuclear proteins mainly involved in chromatin organization and 
gene expression which are delivered to the oocyte upon fertilization.11,17 
This fact consequently leads to speculation concerning the purpose of 
keeping these proteins in the transcriptionally inert male gamete. In this 
regard, sperm chromatin proteins could be considered at three levels: (1) 
spermatogenesis residual with no function at all in the mature sperm 
cell or in the zygote, (2) proteins with a structural or functional role 
in the mature sperm chromatin, and (3) proteins implicated in future 
events such as male pronucleus chromatin remodeling or transcriptional 
regulation of histone‑bound paternal genes after fertilization.17,30,51,104,107,108 
Of relevance, for many proteins, these three facets would not be 
necessarily mutually exclusive. For example, this could be the case for the 
well‑studied bromodomain testis‑specific protein, the histone‑chaperone 
protein SET, transcription factors involved in differentiation and 
developmental processes, PHD Finger proteins, effectors of the 
histone code, or some proteins involved in the regulation of the DNA 
methylation, replication, repair and transcription.17,51,69,109–111

Figure 2: Analysis of the intact human sperm protamine sequences by MS. 
After following the indicated workflow and LC-MS/MS analysis, the registers 
obtained demonstrate the presence of the intact unmodified Protamine 1 
mass and masses of the protamine 1 containing different combinations 
of phosphorylation and acetylation. Methods: human sperm cells from 
normozoospermic sperm donors were collected and processed as described92 
following World Health Organization guidelines125 and in accordance with the 
ethical and internal review board guidelines. Seminal plasma was discarded 
and sperm were treated with acid and reducing agents,92 in order to obtain 
a protein extract constituted mostly by a mixture of purified protamine 1 
(P1) and protamine 2 (P2) (top). The correct protamine purification was 
confirmed through acid-urea polyacrylamide gel electrophoresis, as previously 
described,61 prior to the analysis by LC-MS/MS. Spectra corresponding to the 
liquid chromatography elution time 4–6 min obtained after MS analysis of 
nondigested proteins (top-down proteomics) is shown in the middle of the 
image. Mass peaks corresponding to nonmodified P1, mono-phosphorylated 
P1, di-phosphorylated and mono-acetylated P1, and tri-phosphorylated P1 
were observed (note that each peak is showing a mass/charge (m/z) value 
corresponding to a specific “m,” since “z” is set as 1). A maximum error 
of 200 ppm between theoretical and experimental masses was considered 
to give a match as valid. At the bottom of the figure, the human P1 amino-
acid sequence is indicated together with its theoretical “m.” Potential 
phosphorylation and acetylation sites are highlighted with an asterisk. DTT: 
dithiothreitol; MS: mass spectrometry; LC-MS/MS: liquid chromatography 
followed by tandem mass spectrometry.
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Also interesting is the fact that sperm nuclear proteins can 
be differentiated according to their chromatin affinity into two 
subsets with different functional profiles51  (Figure  1). To this 
extent, high‑affinity proteins might be mainly involved in structural 
roles, which could be related with the nucleo‑protamine structural 
organization and function. In contrast, the low‑affinity subset of 
proteins could conceivably be involved in a higher variety of roles, 
including protein metabolism, DNA packaging, DNA/RNA binding, 
and transcription, among others. Of relevance, all those proteins with 
potential regulatory roles in the sperm nucleus appear to be weakly 
attached to the chromatin.51 These data suggest that in addition to 
the sequence‑specific distribution of the genes, the spermatozoon 
is organized such that many different layers of potential epigenetic 
information are distributed through the chromatin landscape for 
delivery to the oocyte at fertilization and the subsequent regulation 
of early embryogenesis.

In order to unravel the sperm chromatin epigenetic potential, it is 
also necessary to take into account the role of the nuclear matrix and 
the proteins associated with this structure. Similarly to the somatic cells, 
sperm chromatin is organized into nuclease sensitive DNA segments 
attached to the nuclear matrix at 50  kb intervals  (Figure  1).8,112 
The nuclear matrix itself is thought to incorporate Topoisomerase 
II‑B  (TOP2B). TOP2B is a matrix‑associated protein reported to 
have a role in spermiogenesis, reducing nucleosome supercoiling by 
double‑strand DNA breaks and promoting chromatin remodeling.113 
The paternal matrix associated regions  (MARs), including DNA 
and protein composition, seem to be inherited by the fertilized 
embryo and are thought to be essential for paternal pronuclear DNA 
replication.8,34,59,60 In fact, proper initiation pronuclear formation and 
DNA synthesis in fertilized mouse oocytes has been demonstrated 
using spermatozoa exhibiting a high degree of DNA degradation, 
as long as in situ DNA loop attachments to the nuclear matrix were 
preserved.59 Therefore, as it happens in somatic cells, the sperm 
replication machinery is also assembled into the nuclear matrix, which 
is serving as a scaffold.34 Several lines of evidence suggest that the same 
MAR sites could also be representing points of DNA cleavage, with a 
potential role in DNA integrity maintenance, in which TOP2B might 
also be involved.22,34,114

GENOMIC AND PROTEOMIC ALTERATIONS IN SPERM 
CHROMATIN OF INFERTILE PATIENTS
As has been discussed in the previous sections, sperm chromatin is 
characterized by specific genomic and proteomic features, involved 
in the correct formation of the male gamete as well as the embryo. 
Therefore, an important question that still remains to be considered 
is whether alterations in sperm epigenetic signature can lead to male 
infertility.

Several studies have demonstrated alterations in sperm 
DNA methylation patterns,115–117 RNA content,20,118 and histone 
retention54,119,120 in infertile/subfertile patients. Alterations in histone 
retention could affect sperm function at two levels. First, the altered 
histone retention would directly imply an alteration in protamine 
content and in the tightly regulated P1/P2 ratio, which is indicative 
of poor semen quality, increased DNA damage and decreased 
fertility.9,21,28,31,57,58,61,62,64,65,90,92,95,97,99,100,121  Second, it would lead to 
rearrangements in chromatin organization of developmental loci and 
genes, which may have an impact on normal embryo development. 
In fact, the histone‑specific sequence packaging found in healthy 
men (Figure 1) has been shown to be lost in patients with subfertility, 
resulting in random sperm DNA chromatin distribution.119 In this 

study, Hammoud et al. analyzed MNase‑sensitive sperm chromatin 
regions from three patients with poor embryogenesis after in  vitro 
fertilization  (IVF) and four men with altered protamination. After 
genome‑wide analysis based on high‑throughput sequencing, five of 
the seven infertile men showed nonprogrammatic retention of histones. 
Histone modifications were also evaluated, showing a reduction of 
developmental promoters enriched with H3K4me3 and H3K27me3 
in most infertile men, although the localization of modified histones 
was unaltered.119

Our group has also recently demonstrated the presence of 
altered histone content in infertile patients using a high‑throughput 
quantitative proteomic approach based on protein isobaric labelling 
of proteins.120 The significance of sperm nuclear proteomic profiles 
was recently highlighted when cells from normozoospermic men that 
were able to perform IVF but whose female partners did not achieve a 
pregnancy, were compared with those from men with similar semen 
parameters but with successful pregnancy outcomes (excluding female 
factor). Interestingly, altered levels of proteins specifically involved in 
chromatin assembly and metabolism were detected in the so‑called 
“no pregnancy group.” In particular, six histones variants  (H2A 
type 1‑A, H2A type 1‑C, H2A type 2‑C, H2B type 1A, H3 and H4) 
and a protein involved in protamine 1 phosphorylation (SRSF protein 
kinase 1; SRPK1) were identified deregulated with abnormally high 
abundance.120 These results were thus consistent with the hypothesis 
that an alteration in the sperm chromatin proteome may result in 
epigenetic errors contributing to failed embryo development.

Additional complementary data have also been obtained in mouse 
models with impaired poly (ADP‑ribose) (PAR) metabolism, which is 
involved in the nucleo‑histone‑to‑nucleo‑protamine transition during 
spermiogenesis.49,122 Affected PAR mice sperm was shown to carry 
compromised chromatin with abnormally increased histone retention, 
although being still associated with repetitive sequences.49,122

Of relevance, Ihara’s study went a step further and analyzed for the 
first time the genome of embryos generated with chromatin affected (by 
altered PAR metabolism) spermatozoa. Interestingly, it was shown 
that a statistically significant portion of the differentially expressed 
genes in mouse embryos corresponded to paternal gene loci showing 
altered histone retention caused by PAR impairment.122 Despite this 
and in contrast to the data obtained in human spermatozoa, fertility 
was not compromised in this model, as embryos developed to term.122

Infertility can be considered a multifactorial disease in which 
alterations in the epigenetic constitution of the sperm chromatin 
could be involved. The application of genomic and proteomic 
high‑throughput strategies is thus helping to unravel the potential 
contribution of sperm chromatin organization to male infertility. 
Therefore, all these data have the potential in the future to be useful 
in the identification of putative biomarkers for the diagnosis and 
prognosis of idiopathic male infertility.107,123

CONCLUSION
About 92% of the human sperm chromatin is formed by highly 
compact toroidal nucleo‑protamine complexes while the remaining 
8% is organized with histones. Of importance, there is a nonrandom 
distribution of the genes, gene sequences, and repetitive elements 
that has the potential to be involved in the sperm chromatin 
reorganization in the oocyte and perhaps in the selective activation of 
key paternal genes in the early embryo. In addition to the protamines 
and histones, the sperm chromatin also contains many additional 
chromatin‑associated proteins with the potential to provide different 
layers of epigenetic information or serve in the reorganization of the 
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paternal chromatin after fertilization. Alterations in the distribution 
of histones and the additional sperm chromatin‑associated proteins 
are also being detected in infertile patients. Altogether the information 
so far available indicates that sperm chromatin is much more 
complex than it was previously thought and that it contributes in the 
transmission of information to the zygote that may be crucial for the 
paternal pronuclear chromatin remodeling and embryo development.
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