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Abstract

We introduce Score As You Lift (SAYL), a novel Statistical Relational Learning (SRL) algorithm, 

and apply it to an important task in the diagnosis of breast cancer. SAYL combines SRL with the 

marketing concept of uplift modeling, uses the area under the uplift curve to direct clause 

construction and final theory evaluation, integrates rule learning and probability assignment, and 

conditions the addition of each new theory rule to existing ones.

Breast cancer, the most common type of cancer among women, is categorized into two subtypes: 

an earlier in situ stage where cancer cells are still confined, and a subsequent invasive stage. 

Currently older women with in situ cancer are treated to prevent cancer progression, regardless of 

the fact that treatment may generate undesirable side-effects, and the woman may die of other 

causes. Younger women tend to have more aggressive cancers, while older women tend to have 

more indolent tumors. Therefore older women whose in situ tumors show significant dissimilarity 

with in situ cancer in younger women are less likely to progress, and can thus be considered for 

watchful waiting.

Motivated by this important problem, this work makes two main contributions. First, we present 

the first multi-relational uplift modeling system, and introduce, implement and evaluate a novel 

method to guide search in an SRL framework. Second, we compare our algorithm to previous 

approaches, and demonstrate that the system can indeed obtain differential rules of interest to an 

expert on real data, while significantly improving the data uplift.

1 Introduction

Breast cancer is the most common type of cancer among women, with a 12% incidence in a 

lifetime [2]. Breast cancer has two basic categories: an earlier in situ stage where cancer 

cells are still confined to where they developed, and a subsequent invasive stage where 

cancer cells infiltrate surrounding tissue. Since nearly all in situ cases can be cured [1], 

current practice is to treat in situ occurrences in order to avoid progression into invasive 

tumors [2]. Nevertheless, the time required for an in situ tumor to reach invasive stage may 

be sufficiently long for an older woman to die of other causes, raising the possibility that 

treatment may not have been necessary.
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Cancer occurrence and stage are determined through biopsy, a costly, invasive, and 

potentially painful procedure. Treatment is also costly and may generate undesirable side-

effects. Hence there is a need for pre-biopsy methods that can accurately identify patient 

subgroups that would benefit most from treatment, and especially, those who do not need 

treatment. For the latter, the risk of progression would be low enough to employ watchful 

waiting (mammographic evaluation at short term intervals) rather than biopsy [26].

Fortunately, the literature confirms that the pre-biopsy mammographic appearance as 

described by radiologists can predict breast cancer stage [28, 29]. Furthermore, based on 

age, different pre-biopsy mammographic features can be used to classify cancer stage [18]. 

A set of mammography features is differentially-predictive if it is significantly more 

predictive of cancer in one age group as compared to another. We may be able to use such 

differentially-predictive features to recommend watchful waiting for older in situ patients 

accurately enough to safely avoid additional tests and treatment.

In fact, younger women tend to have more aggressive cancers that rapidly proliferate, while 

older women tend to have more indolent cancers [8, 13]. We assume that younger in situ 

patients should always be treated, due to the longer potential time-span for cancer 

progression. We also assume that older in situ patients whose mammography features are 

similar to in situ in younger patients should also be treated, because the more aggressive 

nature of cancer in younger patients may be conditioned on those features. On the other 

hand, older in situ patients whose mammography features are significantly different from 

features observed in younger in situ patients are less likely to experience rapid proliferation, 

and can thus be recommended for watchful waiting.

The general task of identifying differentially predictive features occurs naturally in diverse 

fields. Psychologists initially assessed for differential prediction using linear regression, 

defining it as the case where a common regression equation results in systematic nonzero 

errors of prediction for given subgroups [6]. The absence of differential prediction over 

different groups of examinees was an indicator of the fairness of a cognitive or educational 

test [31].

Psychologists aim to decrease differential prediction on their tests. This is not the case in the 

closely related concept of uplift modeling, a modeling and classification method used in 

marketing to determine the incremental impact of an advertising campaign on a given 

population. Uplift modeling is effectively a differential prediction approach aimed at 

maximizing uplift [11, 16, 23]. Uplift is defined as the difference in a model or intervention 

M’s lift scores over the subject and control sets:

(1)

Given a fraction ρ such that 0 ≤ ρ ≤ 1, a model M’s lift is defined as the number of positive 

examples amongst the model’s ρ-highest ranking examples. Uplift thus captures the 

additional number of positive examples obtained due to the intervention. We generate an 

uplift curve by ranging ρ from 0 to 1 and plotting Uplif tM. The higher the uplift curve, the 

more profitable a marketing model/intervention is.
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The motivating problem at hand can readily be cast as an uplift modeling problem (see 

Table 1). Even though we are not actively altering the cancer stage as a marketing 

intervention would alter the subject population behavior, one may argue that time is altering 

the cancer stage. Our subject and control sets are respectively older and younger patients 

with confirmed breast cancer —where time, as an intervention, has altered the cancer stage

— and we want to predict in situ versus invasive cancer based on mammography features. 

By maximizing the in situ cases’ uplift, which is the difference between a model’s in situ lift 

on the older and younger patients, we are identifying the older in situ cases that are most 

different from younger in situ cases, and thus are the best candidates for watchful waiting. 

Exactly like a marketing campaign would want to target consumers who are the most prone 

to respond, we want to target the ones that differ the most from the control group.

In recent work, Nassif et al. inferred older-specific differentially-predictive in situ 

mammography rules [20]. They used Inductive Logic Programming (ILP) [14], but defined 

a differential-prediction-sensitive clause evaluation function that compares performance 

over age-subgroups during search-space exploration and rule construction. To assess the 

resulting theory (final set of rules), they constructed a TAN classifier [9] using the learned 

rules and assigned a probability to each example. They finally used the generated 

probabilities to construct the uplift curve to assess the validity of their model.

The ILP-based differential prediction model [20] had several shortcomings. First, this 

algorithm used a differential scoring function based on m-estimates during clause 

construction, and then evaluated the resulting theory using the area under the uplift curve. 

This may result in sub-optimal performance, since rules with a high differential m-estimate 

score may not generate high uplift curves. Second, it decoupled clause construction and 

probability estimation: after rules are learned, a TAN model is built to compute example 

probabilities. Coupling these two processes together may generate a different theory with a 

lower ILP-score, but with a more accurate probability assignment. Finally, rules were added 

to the theory independently of each other, resulting in redundancies. Having the addition of 

newer rules be conditioned on the prior theory rules is likely to improve the quality and 

coverage of the theory.

In this work, we present a novel relational uplift modeling Statistical Relational Learning 

(SRL) algorithm that addresses all the above shortcomings. Our method, Score As You Lift 

(SAYL), uses the area under the uplift curve score during clause construction and final 

theory evaluation, integrates rule learning and probability assignment, and conditions the 

addition of new theory rules to existing ones. This work makes two main contributions. 

First, we present the first multi-relational uplift modeling system, and introduce, implement 

and evaluate a novel method to guide search in an SRL framework. Second, we compare our 

algorithm to previous approaches, and demonstrate that the system can indeed obtain 

differential rules of interest to an expert on real data, while significantly improving the data 

uplift.
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2 Background: The SAYU Algorithm

Score As You Use (SAYU) [7] is a Statistical Relational Learner [10] that integrates search 

for relational rules and classification. It starts from the well known observation that a clause 

or rule r can be mapped to a binary attribute b, by having b(e) = 1 for an example e if the 

rule r explains e, and b(e) = 0 otherwise.

This makes it possible to construct classifiers by using rules as attributes, an approach 

known as propositionalization [32]. One limitation, though, is that often the propositional 

learner has to consider a very large number of possible rules. Moreover, these rules tend to 

be very correlated, making it particularly hard to select a subset of rules that can be used to 

construct a good classifier.

SAYU addresses this problem by evaluating the contribution of rules to a classifier as soon 

as the rule is generated. Thus, SAYU generates rules using a traditional ILP algorithm, such 

as Aleph [27], but instead of scoring the rules individually, as Aleph does, every rule SAYU 

generates is immediately used to construct a statistical classifier. If this new classifier 

improves performance over the current set of rules, the rule is added as an extra attribute.

Algorithm 1

SAYU

Rs ← {}; M0 ← InitClassifier(Rs)

while DoSearch() do

  e+ ← RandomSeed();

  ⊥e+ ← saturate(e);

  while c ← reduce(⊥e+) do

    M ← LearnClassifier(Rs ∪ {c});

    if Better(M, M0) then

     Rs ← Rs ∪ {c}; M0 ← M;

     break

    end if

  end while

end while

Algorithm 1 shows SAYU in more detail. SAYU maintains a current set of clauses, Rs, and 

a current reference classifier, M0. SAYU extends the Aleph [27] implementation of Progol’s 

MDIE algorithm [17]. Thus, it starts search by randomly selecting a positive example as 

seed, e+, generating the corresponding bottom clause, ⊥e+, and then generating clauses that 

subsume ⊥e+. For every new such clause c, it constructs a classifier M and compares M with 

the current M0. If better, it accepts c by adding it to Rs and making M the default classifier. 

SAYU can terminate search when all examples have been tried without adding new clauses. 

In practice, termination is often controlled by a time limit.

Quite often, most execution time will be spent learning classifiers. Therefore, it is important 

that the classifier can be learned in a reasonable time. Further, the classifier should cope well 
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with many related attributes. We use the TAN classifier, a Bayesian network that extends 

naive Bayes with at most one other edge per attribute [9]. TAN has quadratic learning time, 

which is acceptable for SAYU, and compensates well for highly dependent attributes.

Second, comparing two classifiers is not trivial. SAYU reserves a tuning set for this task: if 

the classifier M has a better score on both the initial training and tuning sets, the new rule is 

accepted. The scoring function depends on the problem at hand. Most often SAYU has been 

used in skewed domains, where the area under the precision-recall curve is regarded as a 

good measure [5], but the algorithm allows for any metric.

The original SAYU algorithm accepts a logical clause as soon as it improves the network. It 

may be the case that a later clause would be even better. Unfortunately, SAYU will switch 

seeds after selecting a clause, so the better clause may be ignored. One solution is to make 

SAYU less greedy by exploring the search space for each seed, up to some limit on the 

number of clauses, before accepting a clause. We call this version of SAYU exploration 

SAYU: we will refer to it as e-SAYU, and to the original algorithm as greedy SAYU, or g-

SAYU.

Algorithm 2

e-SAYU

Rs ← {}; M0 ← InitClassifier(Rs)

while DoSearch() do

  e+ ← RandomSeed();

  ⊥e+ ← saturate(e+);

  ce+ ← ⊤; Me+ ← M0;

  while c ← reduce(⊥e+) do

    M ← LearnClassifier(Rs ∪ {c});

    if Better(M, Me) then

     ce+ ← c; Me+ ← M;

    end if

  end while

  if ce+ ≠ ⊤ then

    Rs ← Rs ∪ {ce+}; M0 ← Me+;

  end if

end while

Algorithm 2 details e-SAYU. It differs from g-SAYU in that it keeps track, for each seed, of 

the current best classifier Me+ and best clause ce+. At the end, if a clause ce+ was found, we 

commit to that clause and update the classifier.

3 Background: Uplift Modeling

Next we discuss uplift in more detail and compare it to related measures.
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3.1 Uplift

Let P be the number of positive examples and N the number of negative examples in a given 

dataset D. Lift represents the number of true positives detected by model m amongst the top-

ranked fraction ρ. Varying ρ ∈ [0, 1] produces a lift curve. The area under the lift curve AUL 

for a given model and data becomes:

(2)

Uplift compares the difference between the model M over two groups, subjects s and 

controls c. It is obtained by:

(3)

Since uplift is a function of a single value for ρ, the area under the uplift curve is the 

difference between the areas under the lift curves of the two models, Δ(AUL).

It is interesting to note the correspondence of the uplift model to the differential prediction 

framework [20]. The subjects and controls groups are disjoint subsets, and thus form a 2-

strata dataset. LiftM is a differential predictive concept, since maximizing Uplift(Ms, Mc, ρ) 

requires LiftMs (S, ρ) ≫ LiftMc (C, ρ). Finally, Uplift is a differential-prediction-sensitive 

scoring function, since it is positively correlated with LiftMs (S, ρ) and negatively correlated 

with LiftMc (C, ρ).

3.2 Lift AUC and ROC AUC

In order to obtain more insight into this measure it is interesting to compare uplift and lift 

curves with receiver operating characteristic (ROC) curves. We define AUL as the area 

under the lift curve, and AUR as the area under the ROC curve. There is a strong connection 

between the lift curve and the ROC curve: Let  be the prior probability for the 

positive class or skew, then:

(4)

In uplift modeling we aim to optimize for uplift over two sets, that is we aim at obtaining 

new classifiers such that Δ(AUL*) > Δ(AUL), where Δ(AUL) = AULs − AULc, subscripts s 

and c referring to the subject and control groups, respectively. The equation Δ(AUL*) > 

Δ(AUL) can be expanded into:

(5)

Further expanding and simplifying we have:
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and finally

(6)

In a balanced dataset, we have  and Pc = Ps, so we have that . In fact, if 

the subject and control datasets have the same skew we can conclude that Δ(AUL*) > 

Δ(AUL) implies Δ(AUR*) > Δ(AUR).

In the mammography dataset, the skews are Ps = 132,  and 

 Thus equation 6 becomes:

(7)

Therefore we cannot guarantee that Δ(AUL*) > Δ(AUL) implies Δ(AUR*) > Δ(AUR) on this 

data, as we can increase uplift with rules that have similar accuracy but cover more cases in 

the older cohort, and there are more cases to cover in the older cohort. On the other hand, 

breast cancer is more prevalent in older women [1], so uplift is measuring the true impact of 

the model.

In general, we can conclude that the two tests are related, but that uplift is sensitive to 

variations of dataset size and skew. In other words, uplift is more sensitive to variations in 

coverage when the two groups have different size. In our motivating domain, this is 

particularly important in that it allows capturing information related to the larger prevalence 

of breast cancer in older populations.

4 SAYL: Integrating SAYU and Uplift Modeling

SAYL is a Statistical Relational Learner based on SAYU that integrates search for relational 

rules and uplift modeling. Similar to SAYU, every valid rule generated is used for classifier 

construction via propositionalization, but instead of constructing a single classifier, SAYL 

constructs two classifiers; one for each of the subject and control groups. Both classifiers use 

the same set of attributes, but are trained only on examples from their respective groups. If a 

rule improves the area under the uplift curve (uplift AUC) by threshold θ, the rule is added 

to the attribute set. Otherwise, SAYL continues the search.
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Algorithm 3

SAYL

Rs ← {}; M0
s, M0

c
 ← InitClassifiers(Rs)

while DoSearch() do

  es
+

 ← RandomSeed();

  ⊥
es

+  ← saturate(e);

  while c ← reduce(⊥
es

+ ) do

    Ms, Mc ← LearnClassifiers(Rs ∪ {c});

    if Better(Ms, Mc, M0
s, M0

c
) then

     Rs ← Rs ∪ {c}; M0
s, M0

c
 Ms, Mc;

     break

    end if

  end while

end while

The SAYL algorithm is shown as Algorithm 3. Like SAYU, SAYL maintains separate 

training and tuning example sets, accepting rules only when the classifiers produce a better 

score on both sets. This requirement is often extended with a specified threshold of 

improvement θ, or a minimal rule coverage requirement minpos. Additionally, SAYL also 

has a greedy (g-SAYL) and exploratory (e-SAYL) versions that operate in the same fashion 

as they do for SAYU.

The key difference between SAYL and SAYU, then, is that SAYL maintains a distinction 

between the groups of interest by using two separate classifiers. This is what allows SAYL 

to demonstrate differential performance as opposed to standard metrics, such as the area 

under a precision-recall curve. To compute uplift AUC, SAYL simply computes the area 

under the lift curve for each of the groups using the two classifiers and returns the 

difference.

SAYL and SAYU also differ in selecting a seed example to saturate. Instead of selecting 

from the entire set of positive examples, SAYL only selects seed examples from the positive 

examples in the subject group. This is not necessary, but makes intuitive sense as clauses 

produced from examples in the subject set are more likely to produce greater lift on the 

subject set in the first place.

5 Experimental Results

Our motivating application is to detect differential older-specific in situ breast cancer by 

maximizing the area under the uplift curve (uplift AUC). We apply SAYL to the breast 

cancer data used in Nassif et al. [20]. The data consists of two cohorts: patients younger than 
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50 years form the younger cohort, while patients aged 65 and above form the older cohort. 

The older cohort has 132 in situ and 401 invasive cases, while the younger one has 110 in 

situ and 264 invasive.

The data is organized in 20 extensional relations that describe the mammogram, and 35 

intensional relations that connect a mammogram with related mammograms, discovered at 

the same or in prior visits. Some of the extensional features have been mined from free text 

[19]. The background knowledge also maintains information on prior surgeries. The data is 

fully described in [18].

We use 10-fold cross-validation, making sure all records pertaining to the same patient are 

in the same fold. We run SAYL with a time limit of one hour per fold. We run folds in 

parallel. On top of the ILP memory requirements, SAYL requires an extra 0.5 gigabyte of 

memory for the Java Virtual Machine. For each cross-validated run, we use 4 training, 5 

tuning and 1 testing folds. For each fold, we used the best combination of parameters 

according to a 9-fold internal cross-validation using 4 training, 4 tuning and 1 testing folds. 

We try both e-SAYL and g-SAYL search modes, vary the minimum number minpos of 

positive examples that a rule is required to cover between 7 and 13 (respectively 5% and 

10% of older in situ examples), and set the threshold θ to add a clause to the theory if its 

addition improves the uplift AUC to 1%, 5% and 10%. We concatenate the results of each 

testing set to generate the final uplift curve.

Table 2 compares SAYL with the Differential Prediction Search (DPS) and Model Filtering 

(MF) ILP methods [20], both of which had minpos = 13 (10% of older in situ). A baseline 

random classifier achieves an uplift AUC of 11. We use the Mann-Whitney test at the 95% 

confidence level to compare two sets of experiments. We show the p-value of the 10-fold 

uplift AUC paired Mann-Whitney of each method as compared to DPS, DPS being the state-

of-the-art in relational differential prediction. We also plot the uplift curves in Figure 1.

SAYL 10-fold cross-validation chose g-SAYL in 9 folds and e-SAYL in 1, while minpos 

was 13 (10% of older in situ) in 5 folds, and 7 (5%) in the remaining 5 folds. θ was selected 

to be 1% in 4 folds, 5% in 3 folds, and 10% in the remaining 3 folds. Table 3 shows how 

sensitive SAYL is to those different parameters.

6 Discussion

6.1 Model Performance

SAYL significantly outperforms DPS (Table 2, Figure 1), while ILP-based runs have the 

highest older and younger lift AUC (Tables 2, 3). This is because ILP methods use different 

metrics during clause construction and theory evaluation, and decouple clause construction 

from probability estimation. SAYL builds models that are slightly less predictive of in situ 

vs. invasive over the younger subset, as measured by the slightly lower older lift AUC, but 

on the other hand it effectively maximizes uplift. In fact, increasing lift on one subset will 

most often increase lift on the other subset, since both sets share similar properties. SAYL 

avoids this pitfall by selecting rules that generate a high differential lift, ignoring rules with 
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good subject lift that are equally good on the controls. These results confirm the limitations 

of a pure ILP approach, demonstrating significantly higher uplift using SAYL.

e-SAYL explores a larger search space for a given seed before selecting a rule to add to the 

theory. This results in smaller theories than greedy g-SAYL. Increasing θ, the uplift AUC 

improvement threshold for adding a rule to the theory, also results in smaller theories, as 

expected. Ranging minpos between 7 and 13 doesn’t seem to have a sizable effect on rule 

number.

g-SAYL’s performance remains constant across all parameters, its uplift AUC varying 

between 58.06 and 65.48. At the same time, its theory size ranges from 3.6 to 18.3. This 

indicates that the number of rules is not correlated with uplift AUC. Another indication 

comes from e-SAYL, whose theory size changes little (1.1 – 3.0), while its performance 

tends to increase with increasing minpos and θ. Its uplift AUC jumps from the lowest score 

of 25.50, where it is significantly worse than g-SAYL, to nearly the highest score of 65.36. 

In fact, g-SAYL outperforms e-SAYL on all runs except minpos = 13 and θ = 10%.

e-SAYL is more prone to over fitting, since it explores a larger search space and is thus 

more likely to find rules tailored to the training set with a poor generalization. By increasing 

minpos and θ, we are restricting potential candidate rules to the more robust ones, which 

decreases the chances of converging to a local minima and overfitting. This explains why e-

SAYL had the worst performances with lowest minpos and θ values, and why it achieved the 

second highest score of all runs at the highest minpos and θ values. These limited results 

seem to suggest using e-SAYL with minpos and θ equal to 10%.

6.2 Model Interpretation

SAYL returns two TAN Bayes-net models, one for the older and one for the younger, with 

first-order logic rules as the nodes. Each model includes the classifier node, presented top-

most, and the same rules. All rules depend directly on the classifier and have at least one 

other parent. Although both models have the same rules as nodes, TAN learns the structure 

of each model on its corresponding data subset separately, resulting in different networks. 

SAYL identifies the features that best differentiate amongst subject and control positive 

examples, while TAN uses these features to create the best classifier over each set.

To generate the final model and inspect the resulting rules, we run SAYL with 5 folds for 

training and 5 for tuning. As an example, Figures 2 and 3 respectively show the older and 

younger cases TAN models of g-SAYL with minpos = 13 and θ = 5%. The older cohort 

graph shows that the increase in the combined BI-RADS score is a key differential attribute. 

The BI-RADS score is a number that summarizes the examining radiologist’s opinion and 

findings concerning the mammogram [3]. We then can see two sub-graphs: the left-hand 

side sub-graph focuses on the patient’s history (prior biopsy, surgery and family history), 

whereas the right-hand side sub-graph focuses on the examined breast (BI-RADS score, 

mass size). In contrast, the younger cohort graph is very different: the graph has a shorter 

depth, and the combined BI-RADS increase node is linked to different nodes…
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As the number of rules increases, it becomes harder for humans to interpret the cohort 

models, let alone their uplift interaction. In ILP-based differential prediction methods [20], 

theory rules are independent and each rule is an older in situ differential rule. In SAYL, 

theory rules are dependent on each other, whereas a rule can be modulating another rule in 

the TAN graph. This is advantageous because such modulated rule combinations can not be 

expressed in ILP-theory, and therefore might not be learnable. On the other hand, SAYL 

individual rules are not required to be older in situ specific. A SAYL rule can predict 

invasive, or be younger specific, as long as the resulting model is uplifting older in situ. 

Which decreases clinical rule interpretability.

The average number of rules returned by SAYL is lower than ILP-based methods (Table 2), 

SAYL effectively removes redundant rules by conditioning the addition of a new rule on 

previous ones. We also note that SAYL, like SAYU, tends to like short rules [7]. DPS found 

five themes amongst its older in situ rules with a significantly better precision and recall: 

calcification, prior in situ biopsy, BI-RADS score increase, screening visit, and low breast 

density [20].

For SAYL runs returning small theories, the resulting rules tend to be differential and fall 

within these 5 themes. For example, g-SAYL with minpos = 13 and θ = 10% returns 3 rules:

1. Current study combined BI-RADS increased up to 3 points over previous 

mammogram.

Had previous in situ biopsy at same location.

Breast BI-RADS score = 4.

These rules cover two of the 5 DPS themes, namely prior in situ biopsy and BI-RADS score 

increase.

As the number of SAYL returned rules increases, rule interactions become more complex, 

individual rules tend not to remain older in situ differential, and rules are no longer confined 

to the above themes. In the Figures 2 and 3 example, we recover the prior in situ biopsy and 

BI-RADS score increase themes, but we also have non-thematic rules like “no family 

history of cancer, and no prior surgery”. In the two runs returning the largest theories, g-

SAYL with θ = 1% and minpos = 7 and 13, we recover 4 of the themes, only missing 

calcification. Note that, as the graph size increases, medical interpretation of the rules 

becomes more difficult, as well as identifying novel differential themes, since rules are 

conditioned on each other.

Although the SAYL rules may not be differential when viewed individually, the SAYL final 

model is differential, significantly outperforming DPS in uplift AUC. DPS, on the other 

hand, is optimized for mining differential rules, but performs poorly as a differential 

classifier. SAYL returns a TAN Bayes net whose nodes are logical rules, a model that is 

human interpretable and that offers insight into the underlying differential process. Greedy 

g-SAYL’s performance depended little on the parameters, while exploratory e-SAYL’s 

performance increased when requiring more robust rules.

Nassif et al. Page 11

Mach Learn Knowl Discov Databases. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7 Related Work

Differential prediction was first used in psychology to assess the fairness of cognitive and 

educational tests, where it is defined as the case where consistent nonzero errors of 

prediction are made for members of a given subgroup [6]. In this context, differential 

prediction is usually detected by either fitting a common regression equation and checking 

for systematic prediction discrepancies for given subgroups, or by building regression 

models for each subgroup and testing for differences between the resulting models [15, 31]. 

If the predictive models differ in terms of slope or intercept, it implies that bias exists 

because systematic errors of prediction would be made on the basis of group membership. 

An example is assessing how college admission test scores predict first year cumulative 

grades for males and females. For each gender group, we fit a regression model. We then 

compare the slope, intercept and/or standard errors for both models. If they differ, the test 

exhibits differential prediction and may be considered unfair.

In contrast to most studies of differential prediction in psychology, marketing’s uplift 

modeling assumes an active agent. Uplift modeling is used to understand the best targets for 

an advertising campaign. Seminal work includes Radcliffe and Surry’s true response 

modeling [23], Lo’s true lift model [16], and Hansotia and Rukstales’ incremental value 

modeling [11]. As an example, Hansotia and Rukstales construct a regression and a decision 

tree, or CHART, model to identify customers for whom direct marketing has sufficiently 

large impact. The splitting criterion is obtained by computing the difference between the 

estimated probability increase for the attribute on the subject set and the estimated 

probability increase on the control set.

In some applications, especially medical decision support systems, gaining insight into the 

underlying classification logic can be as important as system performance. Insight into the 

classification logic in medical problems can be an important method to discover disease 

patterns that may not be known or easily otherwise gleaned from the data. Recent 

developments include tree-based approaches to uplift modeling [24, 25], although ease-of-

interpretation was not an objective in their motivating applications. Wanting to maximize 

rule interpretability, Nassif et al. [20] opted for ILP-based rule learning instead of 

decisiontrees because the latter is a special case of the former [4].

To the best of our knowledge, the first application of uplift modeling in medical domains is 

due to Jaśkowski and Jaroszewicz [12], who adapt standard classifiers by using a simple 

class variable transformation. Their transformation avoids using two models by assuming 

that both sets have the same size and combining the examples into a single set. They also 

propose an approach where two classifiers are learned separately but they help each other by 

labeling extra examples. Instead, SAYL directly optimizes an uplift measure.

Finally, we observe that the task of discriminating between two dataset strata is closely 

related to the problem of Relational Subgroup Discovery (RSD), that is, “given a population 

of individuals with some properties, find subgroups that are statistically interesting” [32]. In 

the context of multi-relational learning systems, RSD applies a first propositionalization step 

and then applies a weighted covering algorithm to search for rules that can be considered to 
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define a sub-group in the data. Although the weighting function is defined to focus on 

unexplored data by decreasing the weight of covered examples, RSD does not explicitly aim 

at discovering the differences between given partitions.

8 Future Work

A key contribution of this work is constructing a relational classifier that maximizes uplift. 

SAYL effectively identifies older in situ patients with mammography features that are 

significantly different from those observed in the younger in situ cases. But one may argue 

that, for a model to be clinically relevant, we should take into account all mammography 

features when staging an uplift comparison. We can start the SAYL TAN model with the 

initial set of attributes, and then learn additional rules, composed of relational features or a 

combinations of attributes, to maximize uplift [21]. This could potentially increase the 

achievable lift on both the subject and control groups, making the uplift task harder.

Given the demonstrated theoretical similarity between lift and ROC curves (Section 3.2), 

and the fact that ROC curves are more widely used especially in the medical literature, it is 

interesting to compare our approach with a SAYL version that optimizes for ROC AUC.

Finally, we are in the process of applying SAYL to different problems. For example, 

working on uncovering adverse drug effects, SAYL can be used to construct a model 

identifying patient subgroups that have a differential prediction before and after drug 

administration [22].

9 Conclusion

In this work, we present Score As You Lift (SAYL), a novel Statistical Relational Learning 

algorithm and the first multi-relational uplift modeling system. Our algorithm maximizes the 

area under the uplift curve, uses this measure during clause construction and final theory 

evaluation, integrates rule learning and probability assignment, and conditions the addition 

of new theory rules to existing ones. SAYL significantly outperforms previous approaches 

on a mammography application (p = 0.002 with similar parameters), while still producing 

human interpretable models. We plan on further investigating the clinical relevance of our 

model, and to apply SAYL to additional differential problems.
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Fig. 1. 
Uplift curves for the ILP-based methods (Differential Prediction Search (DPS) and Model 

Filtering (MF), both with minpos = 13 [20]), a baseline random classifier, and SAYL with 

cross-validated paramters. Uplift curves start at 0 and end at 22, the difference between 

older (132) and younger (110) total in situ cases. The higher the curve, the better the uplift.
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Fig. 2. 
TAN model constructed by SAYL over the older cases: the topmost node is the classifier 

node, and the other nodes represent rules inserted as attributes to the classifier. Edges 

represent the main dependencies inferred by the model.
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Fig. 3. 
TAN model constructed by SAYL over the younger cases. Notice that is has the same nodes 

but with a different structure than its older counterpart.
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Table 1

Casting mammography problem in uplift modeling terms

Intervention Subject Group Control Group Positive Class Negative Class

Time Older cohort Younger cohort In Situ Invasive
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