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Abstract

Machine learning is continually being applied to a growing set of fields, including the social 

sciences, business, and medicine. Some fields present problems that are not easily addressed using 

standard machine learning approaches and, in particular, there is growing interest in differential 

prediction. In this type of task we are interested in producing a classifier that specifically 

characterizes a subgroup of interest by maximizing the difference in predictive performance for 

some outcome between subgroups in a population. We discuss adapting maximum margin 

classifiers for differential prediction. We first introduce multiple approaches that do not affect the 

key properties of maximum margin classifiers, but which also do not directly attempt to optimize a 

standard measure of differential prediction. We next propose a model that directly optimizes a 

standard measure in this field, the uplift measure. We evaluate our models on real data from two 

medical applications and show excellent results.
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1 Introduction

Recent years have seen increased interest in machine learning, with novel applications in a 

growing set of fields, such as social sciences, business, and medicine. Often, these 

applications reduce to familiar tasks, such as classification or regression. However, there are 

important problems that challenge the state-of-the-art.

One such task, differential prediction, is motivated by studies where one submits two 

different subgroups from some population to stimuli. The goal is then to gain insight on the 

different reactions by producing, or simply identifying, a classifier that demonstrates 

significantly better predictive performance on one subgroup (often called the target 

subgroup) over another (the control subgroup). Examples include:
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– Seminal work in sociology and psychology used regression to study the factors 

accounting for differences in the academic performance of students from different 

backgrounds [5, 15, 26].

– Uplift modeling is a popular technique in marketing studies. It measures the impact of 

a campaign by comparing the purchases made by a subgroup that was targeted by some 

marketing activity versus a control subgroup [16, 9, 20].

– Medical studies often evaluate the effect of a drug by comparing patients who have 

taken the drug against patients who have not [7, 4].

– Also within the medical domain, breast cancer is a major disease that often develops 

slower in older patients. Insight on the differences between older and younger patients 

is thus crucial in determining whether treatment is immediately necessary [19, 18].

Differential prediction has broad and important applications across a range of domains and, 

as specific motivating applications, we will consider two medical tasks. One is a task in 

which we want to specifically identify older patients with breast cancer who are good 

candidates for “watchful waiting” as opposed to treatment. The other is a task in which we 

want to specifically identify patients who are most susceptible to adverse effects of COX-2 

inhibitors, and thus not prescribe such drugs for these patients.

The adverse drug event task alone is of major worldwide significance, and the significance 

of the breast cancer task cannot be overstated. Finding a model that is predictive of an 

adverse event for people on a drug versus not could help in isolating the key causal 

relationship of the drug to the event, and using machine learning to uncover causal 

relationships from observational data is a big topic in current research. Similarly, finding a 

model that can identify patients with breast cancer that may not be threatening enough in 

their lifetime to require treatment could greatly reduce overtreatment and costs in healthcare 

as a whole.

Progress in differential prediction requires the ability to measure differences in classifier 

performance between two subgroups. The standard measure of differential prediction is the 

uplift curve [23, 22], which is defined as the difference between the lift curves for the two 

subgroups. Several classification and regression algorithms have been proposed and 

evaluated according to this measure [22, 23, 19, 10]. These models were designed to 

improve uplift, but do not directly optimize it. We show that indeed it is possible to directly 

optimize uplift and we propose and implement the SVMupl model, which does so. This 

model is constructed by showing that optimizing uplift can be reduced to optimizing a linear 

combination of a weighted combination of features, thus allowing us to apply Joachims' 

work on the optimization of multivariate measures [13]. We evaluate all models on our 

motivating applications and SVMupl shows the best performance in differential prediction in 

most cases.

The paper is organized as follows. Section 2 presents our motivating applications in greater 

detail. In Section 3 we introduce uplift modeling and the uplift measure that we will use to 

evaluate our models. We also present results on a synthetic dataset in this section to give 

further insight in the task. We discuss multiple possible approaches to differential prediction 
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that do not directly optimize uplift in Section 4. Section 5 discusses previous work on SVMs 

that optimize for multi-variate measures, and Section 6 presents how to extend this work to 

optimize uplift directly. We discuss methodology in Section 7 and evaluate all of the 

proposed models on our motivating applications in Section 8. Finally, Section 9 presents 

conclusions and future work.

2 Medical Applications

To illustrate the value of differential prediction in our motivating applications we first 

discuss both in further detail.

Breast cancer is the most common cancer among women [2] and has two basic stages: an 

earlier in situ stage where cancer cells are still localized, and a subsequent invasive stage 

where cancer cells infiltrate surrounding tissue. Nearly all in situ cases can be cured [1], thus 

current practice is to treat in situ occurrences in order to avoid progression into invasive 

tumors [2]. Treatment, however, is costly and may produce undesirable side-effects. 

Moreover, an in situ tumor may never progress to invasive stage in the patient's lifetime, 

increasing the possibility that treatment may not have been necessary. In fact, younger 

women tend to have more aggressive cancers that rapidly proliferate, whereas older women 

tend to have more indolent cancers [8, 11]. Because of this, younger women with in situ 

cancer should be treated due to a greater potential time-span for progression. Likewise, it 

makes sense to treat older women who have in situ cancer that is similar in characteristics to 

in situ cancer in younger women since the more aggressive nature of cancer in younger 

patients may be related to those features. However, older women with in situ cancer that is 

significantly different from that of younger women may be less likely to experience rapid 

proliferation, making them good candidates for “watchful waiting” instead of treatment. For 

this particular problem, predicting in situ cancer that is specific to older patients is the 

appropriate task.

COX-2 inhibitors are a family of non-steroidal anti-inflammatory drugs (NSAIDs) used to 

treat inflammation and pain by directly targeting the COX-2 enzyme. This is a desirable 

property as it significantly reduces the occurrence of various adverse gastrointestinal effects 

common to other NSAIDs. As such, some early COX-2 inhibitors enjoyed rapid and 

widespread acceptance in the medical community. Unfortunately, clinical trial data later 

showed that the use of COX-2 inhibitors also came with a significant increase in the rate of 

myocardial infarction (MI), or “heart attack” [14]. As a result, physicians must be much 

more careful when prescribing these drugs. In particular, physicians want to avoid 

prescribing COX-2 inhibitors to patients who may be more susceptible to the adverse effects 

that they entail. For this problem, predicting MI that is specific to patients who have taken 

COX-2 inhibitors, versus those who did not, is the appropriate task to identify the at-risk 

patients.

3 Uplift Modeling

The fundamental property of differential prediction is the ability to quantify the difference 

between the classification of subgroups in a population, and much of the reference work in 

this area originates from the marketing domain. Therefore, we first give a brief overview of 
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differential prediction as it relates to marketing. In marketing, customers can be broken into 

four categories [21]:

Persuadables Customers who respond positively (e.g. buy a product) when targeted by 

marketing activity.

Sure Things Customers who respond positively regardless of being targeted.

Lost Causes Customers who do not respond (e.g. not buy a product) regardless of being 

targeted or not.

Sleeping Dogs Customers who do not respond as a result of being targeted.

Thus, targeting Persuadables increases the value produced by the marketing activity, 

targeting Sleeping Dogs decreases it, and targeting customers in either of the other groups 

has no effect, but is a waste of money. Ideally then, a marketing team would only target the 

Persuadables and avoid targeting Sleeping Dogs whenever possible. Unfortunately, the 

group to which a particular individual belongs is unknown and is not readily observable. An 

individual cannot be both targeted and not targeted to determine their response to marketing 

activity directly. Only the customer response and whether they were in the target or control 

group can be observed experimentally (see Table 1).

In this scenario, since we cannot observe customer groups beforehand, standard classifiers 

appear less than ideal. For example, training a standard classifier to predict response, 

ignoring that the target and control subgroups exist, is likely to result in a classifier that 

identifies Persuadables, Sure Things, and Sleeping Dogs as they represent the responders 

when the target and control subgroups are combined. Recall, however, that targeting Sure 

Things is a waste of money, and targeting Sleeping Dogs is harmful. Even training on just 

the target subgroup is likely to produce a classifier that identifies both Persuadables and 

Sure Things. The point of differential prediction in this domain is then to quantify the 

difference between the target and control subgroups. While it may be simple and intuitive to 

simply learn two separate models and subtract the output of the control model from the 

target model, recent work suggests that this is less effective than modeling the difference 

directly [22]. Thus, the goal is to produce a single classifier that maximizes predictive 

performance on the target subgroup over the control subgroup. The idea is that such a 

classifier characterizes properties that are specific to the target subgroup, thereby making it 

effective at identifying Persuadables. That is, such a classifier will produce a larger output 

for customers who are more likely to respond positively as a direct result of targeting, and a 

smaller output for those who are unaffected or are more likely to respond negatively. The 

classifier could then be used in subsequent marketing campaigns to select who should be 

targeted and who should not.

There are many possible measures that could be used to quantify the difference in predictive 

performance between the target and control subgroups. In marketing, the uplift measure is 

often used to quantify this difference as well as to evaluate the performance of classifiers 

designed for differential prediction. Thus, this task is often referred to as uplift modeling.
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3.1 Uplift

In this work, we will consider two subgroups, which we will refer to as A and B, 

representing target and control subgroups respectively, and where subgroup A is the 

subgroup of most interest.

The lift curve [24] reports the total percentage examples that a classifier must label as 

positive (x-axis) in order to obtain a certain recall (y-axis), expressed as a count of true 

positives instead of a rate. As usual, we can compute the corresponding area under the lift 

curve (AUL). Note that the definition of the lift curve is very similar to that of an ROC 

curve.

Uplift is the difference in lift produced by a classifier between subgroups A and B, at a 

particular threshold percentage of all examples. We can compute the area under the uplift 

curve (AUU) by subtracting their respective AULs:

(1)

Notice that, because uplift is simply a difference in lift at a particular threshold, uplift curves 

always start at zero and end at the difference in the total number of positive examples 

between subgroups. Higher AUU indicates an overall stronger differentiation of subgroup A 

from B, and an uplift curve that is skewed more to the left suggests a more pronounced 

ranking of positives from subgroup A ahead of those from subgroup B.

3.2 Simulated Customer Experiments

To demonstrate that uplift modeling does help to produce classifiers that can specifically 

identify Persuadables, we generated a synthetic population of customers and simulated 

marketing activity to produce a dataset for which we knew the ground truth customer 

groups. We present results on this synthetic dataset, but save algorithmic details for later 

sections.

To generate a customer population, we first generated a random Bayesian network with 20 

nodes and 30 edges. We then randomly selected one node with four possible values to be the 

customer group feature. Next, we drew 10,000 samples from this network. This left us with 

a population of customers for which one feature defined the group they belonged to and the 

rest represented observable features.

We then subjected this population to a simulated marketing activity. We randomly selected 

roughly 50% of the entire population to be part of the target subgroup. Next, we produced a 

response for each customer based on their customer group and whether or not they were 

chosen to be targeted. For this demonstration, we determined each response based on the 

strongest stereotypical interpretation of each customer group. That is, Persuadables always 

responded when targeted and never responded when not. Sleeping Dogs never responded 

when targeted and always responded when not. Sure Things and Lost Causes always and 

never responded respectively.
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We removed the customer group feature from the training set and trained three different 

classifiers to demonstrate performance. First, we trained a standard SVM classifier on the 

entire dataset with a positive response as the positive class. Next, we trained a standard 

SVM on just the target subgroup. Finally, we trained an SVM designed to maximize uplift, 

about which we will go into greater detail later.

We evaluated the results using 10-fold cross-validation and used internal cross-validation to 

select parameters in the same way that we will show later on our medical datasets.

Figure 1 shows the uplift curves on the synthetic customer dataset. As expected, the SVM 

designed to maximize uplift produces the highest uplift curve, while the standard SVM 

trained on the entire dataset produces the lowest. Figure 2 shows ROC curves on the 

synthetic customer dataset when the Persuadable customers are considered to be the 

positive class. Recall that this feature was unobserved at training time, but identifying 

Persuadables is the real goal in the marketing domain. As hoped, the SVM that maximizes 

uplift has the highest ROC curve whereas the standard SVM trained on the entire dataset 

hovers around the diagonal.

3.3 Applying Uplift Modeling to Medical Tasks

In this work, we propose that the task addressed in the marketing domain can be mapped to 

our motivating medical tasks, suggesting that the uplift measure is a reasonable measure for 

evaluation of our models.

In the COX-2 inhibitor task, variability in response to the drug suggests that there will be 

some people at increased risk of MI as a result of taking the drug, some who are at increased 

risk of MI regardless of treatment, some who are at decreased risk regardless, and perhaps 

even some who are at decreased risk as a result of taking the drug. Just like in the marketing 

task, which group an individual belongs to cannot be directly observed. An individual 

cannot both take the drug and not take the drug to determine its effect. Only the MI outcome 

and whether or not the individual took the drug can be observed experimentally. We propose 

that training a classifier to identify individuals for which taking a COX-2 inhibitor increases 

their risk of MI is analogous to identifying Persuadables.

In the breast cancer task, the analogy is not as obvious, but we know that younger patients 

often have aggressive cancers while older patients have both aggressive and indolent 

cancers. Again, which type of cancer a patient has is not directly observable and it is 

unreasonable to not treat patients in an attempt to determine which have less aggressive 

varieties. We propose that training a classifier to identify less aggressive varieties of cancer 

(seen in older patients) is also analogous to identifying Persuadables.

4 Uplift-Agnostic Models

There are many different possible approaches to learning a classifier that is differentially 

predictive and we have reviewed how this task is approached and evaluated in the marketing 

domain. We first introduce a number of possibilities in this section that do not directly 

optimize the uplift measure at training time.
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4.1 Standard SVM

To better understand the problem, we start from the standard maximum margin classifier 

[25]. This classifier minimizes:

(2)

subject to ξi ≥ 1 − yi 〈xi, w〉, ξi ≥ 0, and where is (x, y) feature vector and label pair notation 

representing examples. The formulation tries to minimize the norm of the weight vector, w, 

and hence maximize the margin, while softly allowing a number of errors ξi whose cost 

depends on the parameter C.

For the sake of comparison, we evaluate the ability of a standard linear SVM model to 

produce uplift in our applications of interest. In this case we simply ignore the fact that the 

examples fall into two subgroups.

4.2 Subgroup-Only SVM

Another intuitive possible approach to achieving differential prediction, without modifying 

the original optimization, is to only train on the subgroup of most interest. In this way, the 

classifier should perform well on the subgroup used to train it, whereas it should not perform 

as well on the other subgroup. In our applications, that would mean only training on the data 

for the older subgroup of breast cancer patients, or the subgroup of MI patients who have 

been prescribed COX-2 inhibitors.

4.3 Flipped-Label SVM

Jaskowski and Jaroszewicz [10] propose a general method for adapting standard models to 

be differentially predictive. This is accomplished by flipping the classification labels in the 

secondary subgroup during training. In this way, the classifier is trained to correctly predict 

the positive class on the subgroup of interest, subgroup A, whereas it is trained to predict the 

negative class in the secondary subgroup, subgroup B. The resulting classifier should then, 

ideally, perform much better on subgroup A than subgroup B.

4.4 Two-Cost SVM

Another possibility is to simply treat the errors on the different subgroups differently. In the 

case of the SVM optimization, we would clearly like the cost to be different for the two 

subgroups. Specifically, we would like to maximize the cost difference between the two, but 

that problem is ill-defined, suggesting the following adaptation of the standard minimization 

problem:

(3)
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subject to ξi ≥ 1 – yi 〈xi, w〉, ξj ≥ 1 – yj 〈xj, w〉, ξi ≥ 0, ξj ≥ 0. As a first step, we assume CA ≥ 

0 and CB ≥ 0, so we continue penalizing errors on subgroup B. We call this method the two-

cost model, and although this problem is similar to addressing class weight, there is an 

important difference. When addressing class skew, the ratio between C+ and C− can be 

estimated from the class skew in the data. On the other hand, a natural ratio between CA and 

CB may not be known beforehand: if CA ≈ CB, there will be little differential classification, 

but if CA ≫ CB the errors may be captured by set B only, leading to over-fitting.

5 Multivariate Performance Measures

Our goal is to find the parameters w that are optimal for a specific measure of uplift 

performance, such as AUU. Similar to AUC [13, 28, 17], AUL depends on the rankings 

between pairs of examples. We next, we focus on the SVMperf approach [13]. This approach 

hypothesizes that we want to find the h that minimizes the area of a generic loss function Δ 

over an unseen set of examples S′:

(4)

Note that we use a (x, y) feature vector and label pair notation to represent examples 

throughout. Also, in practice we cannot use equation (4), we can only use the training data:

(5)

Let tuples ȳ = (y1,…,yn) and ȳ′ be assignments over the n examples,  is the set of all 

possible assignments. Ψ(x, y) is a measure-specific combination of features of inputs and 

outputs in our problem, such that one wants to maximize wTΨ:

(6)

Then the problem reduces to:

(7)

given the constraints:

(8)

which is a quadratic optimization problem and can be solved by a cutting plane solver [12], 

even if it involves many constraints (one per element in \ȳ).

Kuusisto et al. Page 8

Mach Learn Knowl Discov Databases. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The formulation applies to the AUC by defining it as , where N is the number 

of negative examples, P is the number of positive examples, and BadPairs is the number of 

pairs (i, j) such that yi = 1, yj = −1, and . Joachims thus addresses the optimization 

problem in terms of pairs , where  is 1 if , and −1 otherwise. The loss is the 

number of swapped pairs:

(9)

The combination of features Ψ should be symmetric to the loss, giving:

(10)

The optimization algorithm [12] finds the most violated constraint in equation (8). This 

corresponds to finding the  that minimize wT[Ψ(x̄, ȳ) – Ψ(x̄, ȳ′)] – ΔAUC(ȳ′, ȳ), or, given 

that Ψ(x̄, ȳ) is fixed, that maximize:

Expanding this sum resumes into independently finding the  such that:

(11)

Joachims' algorithm then sorts the  and , and generates labels from this 

total order.

6 Maximizing Uplift

Recall from Section 3.1 the similarity between lift and ROC. The two are actually closely 

related. As shown in Tufféry [24], and assuming that we are given the skew , the 

AUL is related to the AUC by:

(12)

Expanding equation (1) with equation (12):

Kuusisto et al. Page 9

Mach Learn Knowl Discov Databases. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(13)

PA, PB, πA, and πB are properties of the two subgroups, and thus independent of the 

classifier. Removing constant terms we see that maximizing uplift is equivalent to:

(14)

Defining  we have:

(15)

Therefore, maximizing AUU is equivalent to maximizing a weighted difference between 

two AUCs.

Equation (15) suggests that we can use the AUC formulation to optimize AUU. First, we 

make it a double maximization problem by switching labels in subgroup B:

(16)

The new formulation reverses positives with negatives making it a sum of separate sets.

At this point, we can encode our problem using Joachims' formulation of the AUC. In this 

case, we have two AUCs. One, as before, is obtained from the yij where the i, j pairs range 

over A. The second corresponds to pairs ykl where the k, l pairs range over B. On switching 

the labels, we must consider ylk where k ranges over the positives in B, and l over the 

negatives in B.

After switching labels, we can expand equation (9) to obtain our new loss ΔAUU as the 

weighted sum of two losses:

(17)

From equation (10) we construct a corresponding weighted sum as the new Ψ:

(18)
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The two sets are separate, so optimizing the yij does not change from equation (11), as their 

maximization does not depend on the ylk. Optimizing the ylk follows similar reasoning to the 

yij and gives:

(19)

Thus, we now have two independent rankings: one between the labels for the examples in A, 

and the other between the labels for the examples in B. We can sort them together or 

separately, but we simply have to label the sets independently to obtain the ȳ* of the most 

violated constraint. Note that the computation of the ȳ* in this setting is independent of λ, 

but λ still affects the solutions found by the cutting-plane solver through Δ and Ψ.

7 Experiments

We implemented our SVMUpl method using the SVMperf codebase, version 3.001. We 

implemented the two-cost model using the LIBSVM codebase [3], version 3.172. All other 

uplift-agnostic approaches were run using LIBSVM, but required no changes to the code.

Recall that our motivating applications are to produce a differential older-specific classifier 

for in situ breast cancer, and produce a differential COX-2 specific classifier for myocardial 

infarction (MI). We apply all of the proposed approaches to the breast cancer data used in 

Nassif et al. [19] and the MI data used in Davis et al. [6]. Their composition is shown in 

Table 2.

The breast cancer data consists of two cohorts: patients younger than 50 years old form the 

younger cohort, while patients aged 65 and above form the older cohort. The older cohort 

has 132 in situ and 401 invasive cases, while the younger one has 110 in situ and 264 

invasive.

The MI data consists of patients separated into two equally-sized subgroups: patients who 

have been prescribed COX-2 inhibitors and those who have not. The group prescribed 

COX-2 inhibitors has 184 patients who had MI, and 1776 who did not. The subgroup not 

prescribed COX-2 inhibitors has the same number of patients for each outcome.

We use 10-fold cross-validation for evaluation. Final results were produced by 

concatenating the output test results for each fold. Cost parameters were selected for each 

fold using 9-fold internal cross-validation. For all approaches, the cost parameter was 

selected from {10.0, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001}. For the two-cost model, CA and 

CB were selected from all combinations of values from the set such that CA > CB. We plot 

the final uplift curves for each approach along with the uplift for a baseline random classifier 

in Figures 3 and 4.

1http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm
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Tables 3 and 4 compare SVMUpl with every other approach proposed as well as a fixed 

baseline random classifier. We use the Mann-Whitney test at the 95% confidence level to 

compare approaches based on per-fold AUU. We show the per-fold mean, standard 

deviation, and p-value of the 10-fold AUU paired Mann-Whitney of each method as 

compared to SVMUpl (* indicates significance).

8 Evaluation

The results on the breast cancer dataset in Table 3 show that SVMUpl produces significantly 

greater uplift than all proposed approaches, except for the two-cost model. This exception 

may be a result of the higher variance of the model on this particular dataset. The results on 

the MI dataset in Table 4 show that SVMUpl produces the greatest uplift in all cases.

Figure 3 shows SVMUpl with an uplift curve that dominates the rest of the approaches until 

around the 0.7 threshold on the breast cancer dataset. Most other approaches produce curves 

that sit around or below the baseline.

Figure 4 tells a similar story, with SVMUpl dominating all other methods across the entire 

space on the MI dataset. In this dataset, however, only the standard SVM approach 

consistently performs below the baseline, whereas all other methods appear to produce at 

least modest uplift.

9 Conclusions and Future Work

We introduced a support vector model directed toward differential prediction. The SVMUpl 

approach optimizes uplift by relying on the relationship between AUL and AUC, and on the 

linearity of the multivariate function used in prior work to optimize AUC. The results 

suggest that SVMUpl does indeed achieve better uplift in unseen data than the other 

approaches.

Differential prediction has many important applications, particularly in the human sciences 

and medicine, raising the need for future work. For example, in some applications, it may be 

important to ensure some minimal performance over subgroup B, even at the cost of uplift. It 

may also be important to be able to interpret the learned model and understand what features 

improve uplift most. SVMs do not lend themselves as easily to this task as some models, but 

feature coefficients could be used to identify which are the most or least important. Finally, 

there is some very recent additional work on SVMs for uplift modeling [27] that does not 

directly optimize uplift, the main focus of this paper, but it will be important to compare 

results as such new methods are developed.
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Fig. 1. 
Uplift curves (higher is better) for three different classifiers on the simulated customer 

dataset.

Kuusisto et al. Page 15

Mach Learn Knowl Discov Databases. Author manuscript; available in PMC 2015 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
ROC curves (higher is better) for three different classifiers on the simulated customer 

dataset when the Persuadable customer group is treated as the positive class.
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Fig. 3. 
Uplift curves (higher is better) for all approaches on the breast cancer dataset.
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Fig. 4. 
Uplift curves (higher is better) for all approaches on the MI dataset. Note that the baseline 

uplift lies on the x-axis due to the equal number of patients with MI in each subgroup.
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Table 1

Customer groups and their expected responses based on targeting. Only the shaded region can be observed 

experimentally.

Target Control

Response No Response Response No Response

Persuadables, Sure Things Sleeping Dogs, Lost Causes Sleeping Dogs, Sure Things Persuadables, Lost Causes
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