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Abstract
Advances in next-generation sequencing (NGS) technologies have greatly improved our ability to detect genomic
variants for biomedical research. In particular, NGS technologies have been recently applied with great success
to the discovery of mutations associated with the growth of various tumours and in rare Mendelian diseases. The
advance in NGS technologies has also created significant challenges in bioinformatics. One of the major challenges
is quality control of the sequencing data. In this review, we discuss the proper quality control procedures and param-
eters for Illumina technology^based human DNA re-sequencing at three different stages of sequencing: raw data,
alignment and variant calling. Monitoring quality control metrics at each of the three stages of NGS data provides
unique and independent evaluations of data quality from differing perspectives. Properly conducting quality control
protocols at all three stages and correctly interpreting the quality control results are crucial to ensure a successful
and meaningful study.
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BACKGROUND
High-throughput sequencing is the most effective

way to screen for non-specific germ line variants,

somatic mutations and structural variants. Some of

the most popular sequencing paradigms in DNA

sequencing are whole-genome sequencing, exome

sequencing and target panel sequencing. While

vastly informative, sequencing data poses significant

bioinformatics challenges in various areas such as data

storage, computation time and variant detection

accuracy. One of the major challenges associated

with sequencing data that is sometimes easily over-

looked is monitoring quality control metrics over all

stages of the data processing pipeline. Quality control

for DNA sequencing data can be separated into three

stages: raw data, alignment and variant calling.

A common misconception of DNA sequencing

quality control is that quality control is only

needed at one or two of these stages. There is usually

a focus on quality control at the raw data stage rather

than the alignment and the variant calling. However,

quality control is essential to all three stages: At the

raw data stage, quality control serves as a quick

screening for excluding data with serious quality

issues and flagging data with questionable quality.

Quality control at the alignment stage focuses on

the alignment quality, which is crucial for successful

variant detection. Quality control on variant calling

is the last chance to identify samples with quality

issues that are not detected at earlier stages and to

further reduce false-positive variants.

In this article we will discuss quality control stra-

tegies at each of the three stages, focusing on human

DNA re-sequencing data. Although DNA re-

sequencing technologies have been used on other

species such as viruses, bacteria and plants, because

of the lack of precise annotation and exome extrac-

tion kits, some of the strategies described in this art-

icle may be difficult to apply to these species. Also,

because Illumina’s sequencing platform has
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dominated the sequencing market for the past few

years with no signs of diminishing, we will focus our

review on the Illumina sequencing platform; the

general concepts discussed here, however, are applic-

able across a range of sequencing platforms, with

appropriate modifications where necessary.

QUALITYCONTROLOF THERAW
DATA
Raw data quality control should be the initial step of

data analysis for any successful study. There are sev-

eral tools that are publically available for conducting

quality control on raw FASTQ files. One of the

pioneers in raw sequencing data quality control was

the FASTX-Toolkit, which is a collection of Linux

command line tools for processing FASTQ files. This

tool is capable of checking base quality and nucleo-

tide distribution. A more advanced tool dealing with

raw data quality control is the FastQC package

developed by the Babraham Institute bioinformatics

group. FastQC offers some additional quality control

parameters that are not included in the FASTX-

Toolkit, including the average base quality score

per read, the GC content distribution and identifica-

tion of the most duplicated reads. More importantly,

FastQC can use aligned BAM [1] files instead of

FASTQ files to assess the quality control of raw

data. Other similar raw data quality control tools

are next-generation sequencing (NGS) Quality

Control (QC) Toolkit [2], RRINSEQ [3] and

QC-Chain [4]. FastQ Screen is another tool devel-

oped by the Babraham Institute’s bioinformatics

group, which can be used to screen for cross-species

contamination using FASTQ files.

The most important parameters to check for raw

sequencing data quality are the base quality, the

nucleotide distribution, GC content distribution

and the duplication rate. A common way to visualize

base quality is to draw a base Q-score versus cycle

plot. Sequencing data generated on Illumina plat-

forms tend to observe a median base quality score

between 35 and 40 [5] in the Phred scale [6, 7]. The

older Illumina pipeline (Before Casava 1.3) used

Phred þ64 (ASCII 59–126) instead of the standard

Phred þ33 (ASCII 0–62). Investigators need to be

aware of the exact scale of the Phred score used

when choosing a quality control tool. For example,

the FASTX-Toolkit will give an error if Phred þ64

FASTQ data are input to that tool. Although the

Phred scale maybe different, the shape of the figure

(Base Quality (BQ) versus Cycle) should remain

exactly the same. Outliers in the data can be identi-

fied graphically, regardless of the scale.

For the older Illumina sequencing platform GA II,

the base quality usually starts out high then grad-

ually drops as the cycle increases (Supplementary

Figure S1a). This is due to factors that impact the

accuracy of the base-calling algorithm on the cluster

over time, such as phasing/pre-phasing, decreased

signal to noise ratio and template damage over

many cycles of laser imaging. For the newer HiSeq

2000 and 2500 systems, a similar pattern of decreas-

ing base quality at the end of reads can be observed.

However, owing to changes in Illumina’s quality

score algorithm, the base quality for the first

10–15 cycles are relatively lower compared with

the middle section of the read (Supplementary

Figure S1b). The common way of dealing with the

low-quality bases at the end of the read is by trim-

ming [8], i.e. removing bases within a certain dis-

tance from the read ends. For all Illumina sequencing

platforms, the median base quality score should stay

>30 across the length of the reads. Large variations

in base quality scores (Supplementary Figure S1c)

usually indicate that many low-quality reads were

sequenced from low-quality DNA samples, and a

sudden drop in quality (Supplementary Figure S1d)

can indicate adaptor contamination or fluidics prob-

lems during the run. Early HiSeq 2000 instruments

often had solenoid clogs that impacted one or more

cycles during a run. For paired-end reads, it is

common to observe higher quality in the first end

of the read than the second end owing to the

amount of time the template was on the instrument

and increasing laser exposure over time.

The nucleotide distribution across cycles is

another useful quality control parameter for whole

genomes and exomes but not amplicons or RNA-

seq samples. For a perfect sequencing run, the distri-

bution of the four nucleotides (A T C G) across all

reads should remain relatively stable (Supplementary

Figure S2a), except for minor fluctuations at the end

of the read. The HiSeq 2000 also shows some fluc-

tuation for the beginning 10–15 cycles where cluster

identification and assignment is being performed by

the RTA software (Supplementary Figure S2b).

The nucleotide distribution is closely associated

with base quality, and they can both be used to

measure the quality of the raw data. Data with bad

base quality are usually also reflected in the nucleo-

tide distribution plot. Using the same data from
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Supplementary Figure S1a–d, an example of nucleo-

tide distribution from a bad quality DNA sample can

be seen in Supplementary Figure S2c, and an exam-

ple of contamination can be seen in Supplementary

Figure S2d.

The total percentage of GC content sequenced

can also be used as a quality control parameter.

The percentage of GC in the genome varies across

species and across the regions of each genome. For

exome regions, the GC content is about 49–51%,

while for whole-genome sequencing, the GC con-

tent is around 38–39%, and for Saccharomyces cerevisiae
and Mycobacterium tuberculosis, the GC content is

around 38–42%. Abnormal GC content percentage,

say, more than 10% deviation from normal range,

can indicate contamination.

There are many sources that could introduce errors

during the sequencing process. One of the most

common sources for quality concern is the DNA li-

brary quality, which can also be directly reflected by

the number of reads sequenced. For exome sequen-

cing, the most popular platform is Illumina’s HiSeq

2000, which is capable of generating 37.5 Gb of data

(�375 M reads) per lane. A common way to conduct

exome sequencing cost efficiently is to multiplex and

pool three to four samples on one HiSeq 2000 lane.

Even though the pool is constructed with a target of

uniform molarity, each sample’s DNA contribution

to the pool is never equal. The number of reads

sequenced per sample is highly dependent on the

quality of a sample’s DNA quantitation or DNA li-

brary quality. It has been reported that the difference

in the number of reads between multiplexed samples

on a single lane can be as large as 2- to 4-fold [5, 9].

Variability in the DNA library amount in a pool is

owing to quantitation and mixing, not quality of the

input DNA to the library prep. The yield per sample

is the amount of sequencing data generated per

sample. The yield per sample for multiplexed samples

is most often reported as the pass filter yield after

demultiplexing. A high variation in the yield per

sample can indicate either improper pooling or prob-

lems with the sequencing of the pooled samples. For

example, during a breast cancer exome sequencing

study, 24 samples were sequenced. By drawing the

read count by lane (Supplementary Figure S3), it is

clear that one sample had a much lower read count

than the others did.

Quality control on the raw sequencing data pro-

vides a quick insight into the sample quality and can

save a significant amount of time in later analysis by

allowing early identification of bad samples.

However, passing quality control at the raw data

level does not necessarily mean that a sample will

pass alignment quality control checks. On the

other hand, a sample with some raw data quality

control problems might still be salvageable for later

analysis. Sometimes, a portion of reads in a sample

can be bad, which will cause it to fail the raw data

quality control checks, but after removing those bad

reads, a sufficient number of good-quality reads may

still be present to allow further analysis to be carried

out. Raw data quality control is necessary and

informative, but one cannot determine the sample

quality purely based on the raw data quality control

results.

ALIGNMENTQUALITYCONTROL
Alignment is a non-optional step for any re-sequen-

cing analysis. It provides additional insights into

sample quality and can help identify bad samples

that pass the raw data quality control checks.

However, alignment for quality control is not per-

formed on a regular basis. Different alignment qual-

ity control parameters should be collected for exome

sequencing and whole-genome sequencing. For

exome sequencing, there are three major exome

sequencing capture kits in the market: Illumina

TrueSeq, Agilent SureSelect and NimbleGen

SeqCap EZ. The capture regions for the exome cap-

ture kits range from 37.6 to 62.1 million base pairs.

Other capture techniques including array based and

selector-probe based methods are also available. The

capture efficiency varies by capture method. Capture

efficiency is the most important quality control par-

ameter for exome sequencing or other targeted

sequencing. Previous studies have shown that cap-

ture efficiencies between 40 and 70% are typical for

exome sequencing [5, 10–12]. To further investigate

this, we performed a capture efficiency analysis on

>600 breast cancer samples (with the majority from

TCGA breast cancer cohort [13] and a few from a

previous study [5]). Figure 1 shows the distribution

of the source of the captured DNA for three popular

exome-sequencing platforms: Agilent SureSelect,

Illumina TrueSeq and NimbleGen SeqCap EZ cap-

ture kits. After filtering out low-quality reads, only

50–75% of the captured reads were from the target

regions. Based on RefSeq release 57, �2% of the

reads mapped to untargeted exon regions while

12–20% mapped to introns and 10–25% mapped to

intergenic regions. A small sliver of the reads, 0.004–
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0.015%, mapped to the mitochondrial genome.

Finally, an appreciable portion of the reads (1–10%)

did not map to the human reference genome at all.

Lower capture efficiencies indicate low complexity

in the target library, suboptimal probe hybridization

conditions or low stringency washes after capture.

Currently, there are two tools available to perform

alignment quality control: Picard and QPLOT

(Table S1).

Additional quality control parameters to check for

exome sequencing alignment are the median depth,

mapping quality (the 5th field of a BAM file), insert

size (the 9th field of a BAM file) and the number of

discordantly mapped pairs.

The most important quality control parameter for

whole-genome sequencing is the average or median

depth and the percentage of the genome covered by

the sequencing at that depth. For example, the

Illumina service lab promises whole-genome sequen-

cing with an average depth of 30 across 98% of the

genome. However, average depth is a misleading

term because it can be skewed easily by the high-

depth regions. During exome sequencing, there is a

phenomenon called unspecific binding where certain

regions of the genome have much higher than usual

depth. A previous study has shown that exome

sequencing data from multiple capture technologies

produced an implausible 500�–1000� depth in such

regions compared with an average of 30� depth in

most of the capture regions [5]. Such regions can skew

the average depth statistic. The commonly used

Genome Analysis Tool Kit (GATK) [14] developed

by Broad Institute also suggests excluding such

regions for variant calling. Median depth would be a

more robust statistic, though this is rarely used in prac-

tice owing to the long computation time required.

Figure 1: The percentages of reads assigned to different categories for (A) SureSelect (v2), (B) TrueSeq and (C) the
SeqCap EZ methods of exome sequencing. In all cases, the largest category of reads consists of the targeted gen-
omic regions, but a large fraction of the reads are off target. The categories shown are the reads that map to
exons that were not part of the target set, intergenic regions, mtDNA, introns and finally reads that do not map
to any part of the human reference sequence. (D) The total number of bases covered at >10 depth that map to
exons (both targeted and non-targeted exons), introns and intergenic regions for three methods of exome sequen-
cing.These numbers should be compared with the full human genome size of approximately 3 billion base pairs.
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QUALITYCONTROLON VARIANT
CALLING
For the majority of exome sequencing studies,

detecting Single Nucleotide Polymorphisms (SNP)

is one of the pivotal steps leading towards the final

conclusion of the study. Quality control on SNP

calls will not only help identify bad samples that

have slipped through raw data and alignment quality

control checks but will also minimize the rate of

false-positive SNP calls. There are several situations

such as cross-contamination and mislabelling where a

bad sample can pass through the raw data and align-

ment quality control checks. Cross-contamination

happens when the DNA of different samples are ac-

cidentally mixed. Mislabelling happens when sam-

ples are switched owing to human error. Both

scenarios produce DNA that do not represent the

original intended sample and can produce high-qual-

ity raw data and alignment. Identities by Descent or

simple genotype consistency are useful statistics to

detect bad samples caused by cross-contamination.

Mislabelling is impossible to catch, unless additional

samples from the same pedigree are sequenced.

The transition/transversion (Ti/Tv) ratio

(Figure 2) has been used by multiple studies [5, 15,

16] as a quality control parameter for checking the

overall SNP quality. The Ti/Tv ratio is computed

as the number of transition SNPs divided by the

number of transversion SNPs. Transitions involve

interchanges of nucleotides of similar shapes: two-

ring purines (A !G) or one-ring pyrimidines

(C !T). Transversions involve interchanges of

one-ring and two-ring structures (A !C,

A !T, G !T, G !C). Even though the

number of possible transversions is twice as many as

the number of possible transitions, leading to a Ti/Tv

ratio of 0.5 if mutations occurred at equal rates, the

actual Ti/Tv ratio differs by genomic regions. For

human genome data, the Ti/Tv ratio is around 3.0

for SNPs inside exons and about 2.0 elsewhere [17],

and the ratio also differs between synonymous and

non-synonymous SNPs [18]. Because the target

regions of exome capture kits often cover more

than just exons, the Ti/Tv ratio for SNPs inside

these target regions is expected to lie between 2.0

and 3.0 with the value depending on the fraction of

exons inside target regions. Ti/Tv ratios in exome

sequencing below the two to three range may be

cause for concern. When computing the Ti/Tv

ratio it is important to be aware of the plausible Ti/

Tv ratio range and any potential bias that might skew

it. For example, mitochondrial DNA (mtDNA) has

been reported to have a much stronger bias towards

transitions over transversions compared with nuclear

genes [19, 20]. Thus, it is a good practice to exclude

mtDNA when computing the Ti/Tv ratio. Also,

when sequencing non-human samples such as plants

and bacteria, an investigator should look up any pre-

vious specific knowledge of the Ti/Tv ratio for that

species. For example, it has been reported that the Ti/

Tv ratio is 0.62 for yeast [21], and 1.5 for maize [22].

If a lower than expected Ti/Tv ratio is observed, we

suggest that the investigator apply more stringent cri-

teria on filters such as depth and genotype quality and

then compute the Ti/Tv ratio again to see if these

increased quality control (QC) criteria have caused

any improvement in this ratio.

The number of novel non-synonymous SNPs can

also be a good indicator of the false-positive rate.

Bamshad et al. [23] (in 2009) showed that about

200 novel non-synonymous SNPs should be

expected per person through exome sequencing

and that a higher number would likely indicate a

high false-positive rate. The novel SNPs identified

Figure 2: The Ti/Tv ratio is computed as the number
of transition SNPs divided by the number of transver-
sion SNPs. Transitions involve interchanges of nucleo-
tides of similar shapes: two-ring purines (A !G) or
one-ring pyrimidines (C !T). Transversions involve
interchanges of one-ring and two-ring structures
(A !C, A !T, G !T, G !C). Even though
the number of possible transversions is twice as many
as the number of possible transitions, leading to aTi/Tv
ratio of 0.5 if mutations occurred at equal rates, the
actual Ti/Tv ratio differs by genomic regions.
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by Bamshad et al. were identified against Single

Nucleotide Polymorphism database (dbSNP) 131.

Currently, dbSNP has been updated to version

137, with 72 952 578 more SNPs compared with

version 131 (a 63% increase since 2009). Thus, the

number of novel non-synonymous SNPs should be

less than what Bamshad et al. reported in 2009. This

variability in the definition of ‘novel’ over time is a

problem with using this measure as a quality control

check. However, a significantly large number (>200)

of novel non-synonymous SNPs would indicate a

high false-positive rate. A good practice is to anno-

tate called SNPs using tools such as ANNOVAR

[24] and then determine if there are too many

novel non-synonymous SNPs against the latest

version of dbSNP.

Genotype consistency between SNP chip data and

exome sequencing data has been used by multiple

studies as a quality control parameter when genotyp-

ing data from both SNP chips and exome sequen-

cing are available [5, 15]. The most popular DNA

sequencing processing pipeline, GATK [14], imple-

mented variant quality score recalibration based on

SNP chip data to improve SNP quality called from

exome sequencing. The overall consistency is com-

puted as the number of discordant SNPs between the

SNP chip and exome sequencing divided by the

total overlapping SNPs between the SNP chip and

exome sequencing. Overall consistency is misleading

because it is easily inflated by the high number of

homozygous loci in the human genome. In compari-

son, the heterozygous consistency rate is more

informative and should be used instead of an overall

consistency rate. The heterozygous consistency rate

is computed as the number of heterozygous discord-

ant SNPs between an SNP chip and exome sequen-

cing divided by the total number of heterozygous

SNPs overlapped between the SNP chip and

exome sequencing. An example of the heterozygous

consistency rate computation at different depths and

genotype quality cut-offs is given in Supplementary

Table S2.

A potential problem associated with using SNP

chip consistency as a quality control parameter is the

selection bias for the SNPs contained on the SNP

chip. Guo etal. [16] pointed out that the SNPs present

in both the SNP chip and the exome sequencing data

are only a small fraction of the SNPs identified by

exome sequencing, and the SNP chip’s selection cri-

teria selected SNPs that are more easily sequenced by

exome sequencing technology. The overlapping

subset of SNPs will therefore have better quality

than the rest of the SNPs identified by exome sequen-

cing, and thus the consistency rate for this special

subset of SNPs might not represent the overall quality

of SNPs identified by exome sequencing.

The heterozygosity to non-reference homozygos-

ity ratio is another good quality control parameter

Figure 3: Proof of the principle that the heterozygosity to non-reference homozygosity ratio equals 2 for
whole-genome sequencing data.
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for DNA sequencing data. For whole-genome

sequencing data, this ratio is 2.0 for variants in

Hardy–Weinberg equilibrium. We provide a deriv-

ation for this value in Figure 3.

The aforementioned quality control parameters

such as the Ti/Tv ratio, SNP chip consistency,

heterozygosity rate and novel SNP number evaluate

overall the SNP quality at a per sample level.

There are numerous quality parameters that can

evaluate SNP quality at a per SNP level. The most

obvious parameter to use is the depth because higher

depth gives more statistical confidence to the SNP

call. Base quality and mapping quality filters can also

be used to prevent bad reads from contributing to

SNP calls. Base quality scores are computed by

Illumina’s sequencing platform, as aligners do not

change the base quality scores. However, mapping

quality scores are computed differently by each

aligner. For example, BWA [25] computes mapping

quality (range: 0 to 70), which is intended to reflect

the actual quality of the alignment. On the other

hand, Bowtie 2 [26] uses mapping quality (range: 1–

255) to denote the uniqueness of the alignment,

where 1 means the largest number of possible loca-

tions for alignments reported, and 255 means only 1

possible location for the alignment reported. Bowtie 2

reports the real mapping quality in the optional

Alignment Score field in the BAM file. It is important

to understand the actual implementation of mapping

quality used by each aligner. The commonly used

base quality score threshold for BWA is 20, while

the mapping quality score threshold varies by aligner.

It is recommended to draw the distribution of map-

ping quality scores and examine this distribution for

outliers in cases where no previously suggested cut-off

value for the mapping quality score is available.

Based on the Hidden Markov Model, the author

of BWA and Samtools, Heng Li, introduced the Base

Alignment Quality (BAQ) score [27], which reduces

the false-positive SNP calls by decreasing the base

quality scores for bases around insertion and deletion

events in the sequence because indels often lead to

alignment artefacts. This BAQ scoring system has

been applied by the 1000 Genomes Project and im-

plemented into Samtools as a default parameter. In a

separate study, Guo et al. have shown that if BAQ

and GATK’s local realignment are used consecu-

tively, instead of reducing the false-positive SNP

calls additional false-positive SNPs can be introduced

[16]. This is because both BAQ and GATK’s local

realignment aim to correct false SNPs caused by

insertions and deletions, and so applying both at

the same time will cause an over-correction. In

many cases, people unknowingly apply both BAQ

and GATK’s local realignment because Samtools’

BAQ option is turned on by default.

Once the variants are called, GATK recommends

a set of filters in their best practice protocol. Based on

the latest version of the protocols, the filters for SNPs

include Quality by Depth (QD) <2.0, RMS

Mapping Quality <40.0, HaplotypeScore >13.0,

MQRankSum <�12.5 and ReadPosRankSum

<�8.0. The filters for indels include QD < 2.0,

ReadPosRankSum <�20.0, InbreedingCoeff

<�0.8 and Fisher Score >200.0. These filters have

been used in many research studies [28–30]. The

detailed description of each filter is given in Table

S3. All of these filters are limited to GATK’s variant

caller result and are not applicable to results gener-

ated by other variant callers.

There are also other lesser known quality control

parameters for checking SNP quality such as strand

bias, allele balance and cycle bias. Strand bias is the

phenomenon when the genotype inferred from the

positive strand and negative strand are significantly

different, with one homozygous and the other het-

erozygous. In a study by Guo et al. [16], the authors

showed that extreme strand bias creates false-positive

SNPs and compared several different ways to com-

pute strand bias. Strand bias has been used as a filter

in a study related to mitochondria mutation and

radiation [19], and a strand bias score is now com-

puted in several variant callers such as Samtools [1],

VarScan [31], SomaticSniper [32], MitoSeek [33]

and MuTect [34].

For sequencing data, the reads at heterozygous

SNPs should have an allele balance of 50%, meaning

that 50% of the reads should support the reference

allele while the other 50% of the reads should sup-

port the alternative allele. The percentage of alter-

native alleles observed is an important factor for all

SNP callers, and it is often affected by reference allele

preferential bias. Reference allele preferential bias is a

phenomenon during alignment where there is pref-

erence towards the reference allele caused by align-

ment algorithms that penalize a mismatch from the

reference. Degner et al. described such a bias in

RNAseq data [35], and Guo et al. also described

this in exome sequencing data [36]. The bias is any-

where from 1 to 5%. It is good practice to account

for this bias when calling SNPs based on alternative

allele percentage by adjusting the SNP detection
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threshold slightly in favour of the non-reference

allele.

SNP density is also an informative parameter. The

frequency of observed SNPs within a fixed range of

genomic regions should be reasonable. A high SNP

frequency in a short region is an indication of false

positives, perhaps caused by small insertions or dele-

tions. GATK’s protocols suggest that if we observe

two SNPs within 10 bp, the likelihood of a false posi-

tive is high. A good common reference for compari-

son is the 1000 Genomes Project data. The

Kolmogorov–Smirnov test can be used to compare

the SNP density difference between an observed data

set versus the 1000 Genomes Project data.

Cycle bias happens in a heterozygous position

when one of two alleles in the supporting reads lies

heavily at the beginning or end of the reads. As we

already described during the section on raw data qual-

ity control, the beginning and ending parts of

Illumina’s read are more prone to lower quality,

thus giving them a higher chance of containing a

false-positive SNP. GATK’s local realignment pro-

cedure can theoretically eliminate some of those

false-positive SNPs if insertions or deletions are

involved at the beginning or the end of the reads.

The average cycle of an SNP is defined as (
P

i¼1
N

Ci)/N, where N is the total number of reads that sup-

port the alternative allele of this SNP, and Ci denotes

the cycle of the SNP on the read. For example, if an

SNP is supported by three reads of length 50 bp, and if

the SNP happens at the first, first and second cycle on

each of these reads, respectively, the average cycle

would be (1þ 1þ 2)/3¼ 1.3, which is close to the

beginning of the reads, indicating that this SNP may

be an artefact. Some aligners such as BWA and Bowtie

2 have soft clip abilities, which can significantly

reduce the effect of cycle bias. An alternative

method to avoid cycle bias is to perform manual trim-

ming based on read quality before alignment. One

artefact of exome capturing is strand imbalance,

which is sometimes considered a quality concern.

Strand imbalance is the distribution of forward and

reverse strands, which can be heavily uneven at

many positions, especially those close to the bound-

aries of target regions. This phenomenon exists for

positions both inside and outside target regions,

although it is more extreme outside the target regions.

In extreme situations, all reads can be on the same

strand. It has been shown that strand imbalance has

no effect on SNP calling quality [5], so we do not

suggest that it be used as a quality control check.

Somatic mutation is harder to detect than SNPs,

owing to the involvement of two samples rather

than just one. The quality control for somatic mutation

is also considerably harder than for SNPs. The

common method of identifying somatic mutations in

cancer is to compare sequences between paired normal

control and tumour samples. If we observe alternative

alleles at a genomic position in the tumour but not in

the matched normal control at the same position, we

assume that this is an acquired somatic mutation in the

tumour. If we observe an alternative allele at a genomic

position in the normal control but not in the tumour,

we call it loss of heterozygosity, again assuming that the

somatic variation has formed in the tumour sample,

not the normal control. One common strategy used

[37–39] to identify somatic mutations is to use the SNP

caller to first determine the genotypes of the tumour

and control pairs and to then compare the two. Such

an approach has certain limitations. First of all, the

threshold of mutation for a somatic mutation may be

significantly different from that of an SNP. For exam-

ple, for SNPs, approximately 50% of the reads should

support the alternative allele. However, for a somatic

mutation, depending on the type of normal control

samples used, the expected percentage of mutated

reads might differ significantly from 50%. If a blood

sample is used as a control, we expect to observe germ

line mutations only, whereas if normal tissue adjacent

to the tumour is used as a control, the reads observed

might represent a mixture of tumour and normal tis-

sues owing to tumour contamination, which can cause

the SNP callers to make a false heterozygous inference.

Conversely, it is possible that the tumour sample is

contaminated by the normal tissue. Programs such as

MuTect [34] can adjust for tumour percentage within

the sample. However, even after purification proced-

ures such as microdissection, the tumour percentage

cannot be estimated accurately. Lower tumour con-

centration in the sample might cause the sequencer to

sequence an insufficient number of reads to support a

heterozygous call by current SNP callers. Thus detec-

tion of somatic mutations from SNP callers is not rec-

ommended. Variant callers based on empirical allele

count are more suitable for somatic mutation detec-

tion. By bypassing the step of inferring a genotype, we

can effectively detect a small percentage of mutations

that might not be detectable by an SNP caller and filter

out potentially wrong heterozygous inferences from

normal controls. The majority of the quality control

measures we have described for SNPs also work for

somatic mutations. For example, because it is highly
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unlikely to observe two non-synonymous mutations

in one coding gene, multiple non-synonymous som-

atic mutations within a single gene raise quality

concerns.

There are currently few dedicated analysis tools

focusing on variant calling quality control. QC3

(Table S3) is a newly developed quality control tool

that targets all three stages of NGS data processing. For

a variant call format, QC3 computes the Ti/Tv ratio,

the non-reference homozygosity ratio and checks for

the possibility of cross-sample contamination.

CONCLUSION
In this review, we have discussed quality control

procedures and parameters in extensive detail at

each of the three stages of NGS data processing:

raw data, alignment and variant calling. We empha-

sized the importance of conducting quality control

checks at all three stages rather than just partially at

one or two stages. The overall work flow of our

suggested quality control procedures can be seen in

Figure 4. The quality control procedures and param-

eters outlined in Figure 4 can serve as a road map for

analysing NGS data thoroughly.

Another quality control method closely related to

those discussed in this review is the quality control

of library preparation. There are multiple quality

control steps during a standard exome sample prep-

aration. The pre-capture DNA libraries undergo a

confirmation of size by running an aliquot of the

library on the Agilent Bioanalyzer 2100 High

Sensitivity Chip, Agilent TapeStation or a 2% gel.

The concentration of a pre-capture library is deter-

mined using fluorometry such as Picogreen or

Qubit for higher accuracy than using a spectropho-

tometer. After the exome capture hybridizations,

the quality control steps are repeated with the add-

ition of using quantitative polymerase chain reac-

tion for accurate molarity. Accurate molarity of

each library is essential for balanced read counts in

a pool as well as the proper target cluster densities.

Figure 4: Overall workflow of quality control in DNA sequencing data.
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The above mentioned exome library quality con-

trol steps are limited because they only address the

physical features of the library, the size range and

the quantity, but do not measure important features

of the library composition. These can only be mea-

sured with sequencing and often the true quality of an

exome library is not known until the sequencing of

the library is complete. With the advent of smaller

benchtop sequencers like the Illumina MiSeq or Ion

Torrent PGM, preliminary sequencing can be done

to gain further information on the quality of a sequen-

cing library or a sequencing library pool. A recent

publication also addressed this issue and introduced

an empirical Bayesian method to estimate the diver-

sity of a sample and to give information on the

amount of data needed for a target coverage level

[40]. One of the supported applications of

the Illumina MiSeq is sequencing library QC, and

features such as the cluster density, library complexity,

percent duplication, GC bias and index representation

are determined before sequencing the samples at

greater depth on an Illumina HiSeq.

Quality control at one stage can have some effects

on the choice of the data processing parameters at the

next stage. For example, if the quality control on the

raw data shows a more-than-usual base quality deteri-

oration, choosing a higher-quality threshold for read

trimming (aln–q) in BWA may be recommended.

Another example would be if the capture efficiency

is low, then limiting the variant calling region to only

the capture regions can significantly shorten the call-

ing time. However, in general the results of quality

control on one stage will not dramatically affect the

best choice of the processing parameters of next stage.

There are many error correction tools for raw data

such as Musket [41], HiTEC [42] and SHREC [43].

These tools aim to correct sequencing errors in the

raw data. However, they are most useful for de novo
assembly rather than for alignment against a known

reference, the topic of this review. The goals of most

re-sequencing studies are to identify variants (SNPs),

and performing correction at the raw data level will

remove many true SNPs because it is not practical to

distinguish between true SNPs and the sequencing

errors that these tools are designed to correct. On the

other hand, the de novo assembly process will benefit

by removing both the SNPs and sequencing errors

because the goal of de novo assembly is to create a

consensus sequence.

There are many different alignment tools, and

each aligner has its own set of parameters. There

should not be a significant influence of the alignment

parameters (within reasonable bounds) on how an

investigator conducts quality control based on the

different parameters chosen. There may be a small

difference in the results obtained. For example,

allowing more mismatches in the alignment will

increase the number of aligned reads in both the

capture and non-capture regions. On the other

hand, if fairly unreasonable parameters are chosen,

such as no mismatch allowed, then there will be

no SNPs identified and fewer reads aligned.

Quality control can be a double-edged sword.

A good balance between sensitivity and specificity

is hard to reach. Depending on the goal of the

study, the threshold of the quality control parameters

needs to be adjusted accordingly.

Furthermore, there are certain false-positive

results that can still evade our quality control efforts

even if we do perform the most thorough quality

control protocol. Thus, for high-impact studies,

the use of additional methods such as Real time,

polymerase chain reaction, Sequenom and Sanger

sequencing to validate the most important findings

independently from the high-throughput sequencing

methods is highly recommended.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Quality control is an important component of NGS sequencing
analysis.

� There is heavy focus on quality control on rawNGS data.
� Performing quality control only on raw data can result incorrect

conclusion.
� Quality control should be performed for NGSDNA sequencing

data at three different stages: Raw data, alignment and variant
calling.
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