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Abstract

Organic N-containing compounds, including amines, are essential components of many
biologically and pharmaceutically important molecules. One strategy for introducing nitrogen into
substrates with multiple reactive bonds is to insert a monovalent N fragment (nitrene or nitrenoid)
into a C—H bond or add it directly to a C=C bond. However, it has been challenging to develop
well-defined catalysts capable of promoting predictable and chemoselective aminations solely
through reagent control. Herein, we report remarkable chemoselective aminations that employ a
single metal (Ag) and a single ligand (phenanthroline) to promote either aziridination or C-H
insertion by manipulating the coordination geometry of the active catalysts.

Amines are present in a multitude of pharmaceuticals and natural products with useful
biological activities. As a result, the development of synthetic methodologies for the
chemo-, regio-, and stereoselective introduction of C-N bonds has been vigorously
pursued.12-¢ One attractive approach is the direct insertion of a nitrene or nitrenoid species
into a C—H or C=C bond of an unsaturated substrate, and many catalysts based on Rh, Ru,
Fe, Co, Cu, Mn, Au, and Ag have been exploited in this context.22-™ However,
chemoselective C—N bond formation in substrates bearing both reactive C—H and C=C
bonds is a particularly challenging task, as these compounds (Figure 1) often give rise to
multiple products or exhibit substratecontrolled selectivity.329

One strategy employed to overcome the problem of substrate control in metal-catalyzed
amination is to change the identity of the transition metal. For example, Ru- and Fe-based
catalysts favor C-H amination over the aziridination pathway that is preferred using Rh(ll)
carboxylates.4aP A second tactic is to utilize different supporting ligands with a single
metal, but this has been only marginally successful for chemoselective amination.3a-d
Finally, the nature of the nitrene precursor can influence the reaction outcome.53¢ We refer
to strategies employing a single, well-defined complex to control a specific amination event
as ‘static’ approaches to catalysis (Figure 1, top).
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Our previous studies on the chemoselective aziridination of homoallenic carbamates to
bicyclic methylene aziridines (Table 1) showed that Ag complexes supported by bidentate N
ligands provided superior chemoselectivity for aziridination compared to Rhy(esp)o,
irrespective of the substrate identity (compare entry 1 vs 27 and 9 vs 10-15).6.7a-f
However, a tridentate ligand reversed this selectivity (entries 8 and 16). This result
stimulated our curiosity, and a further perusal of the literature showed that Ag has the
unique ability to change coordination geometry in response to changes in the Ag
counteranion, the ligand identity, or the metal/ligand ratio.8 If these changes in the
coordination geometries of the Ag catalysts were indeed responsible for inducing divergent
chemoselectivity, a ‘dynamic approach’ to catalytic amination could be envisioned (Figure
1, bottom). In this scenario, treatment of a single Ag salt with a single ligand would yield a
mixture of several potential catalytic species. Simple perturbation of the equilibrium of this
mixture could give different catalytic species capable of promoting divergent amination
using reagent control.

In order to test the potential for developing a dynamic catalyst system, the metal:ligand
stoichiometry of a AgOTf:phen catalyst system was varied to determine the effect on
chemoselectivity.82-9 Phenanthroline was chosen for its high yield in the amination and its
relatively low cost. To our delight, a clear impact on the amination of 3b was observed
(Table 2). AgOTf:phen ratios close to 1:1 (entries 1-4) promoted aziridination to 4b as the
major reaction pathway, while increasing the amount of phen gave C—H insertion to 5b as
the dominant mode of reactivity (entries 5, 6). The dramatic reversal in the reaction outcome
suggests that an equilibrium between Ag(phen)OTf and Ag(phen),OTf exists and that each
complex favors a different mode of reactivity.

The scope of the ‘dynamic’ amination was explored using homoallenic carbamates (Table
3). In all cases, a 1:1.25 ratio of AgOTf:phen favored aziridination,8 while a 1:3 ratio of
AgOTf:phen yielded mainly C-H insertion. Trisubstituted allenes (entries 1, 6-7) exhibited
good selectivity under both conditions, while less substituted allenes (entries 2-5, 8) usually
gave better selectivity in C—H insertion. Interestingly, the addition of 10 mol % of 2,6-
bis(1,1-dimethylethyl)-4-methylphenol (BHT) appeared to improve the conversion of the C-
H insertion (entries 4, 8-10).7f

Simple changes in the AgOTf:phen stoichiometry also provided good chemoselectivity in
the amination of homoallylic carbamates (Table 4). The cis-disubstituted 6a showed
increased selectivity for aziridination in switching from Rhy(OAC)4 to 1:1.25 AgOTf:phen
(entry 1), while changing the AgOTf:phen ratio to 1:3 promoted exclusive insertion. This
trend held for both the cis-disubstituted 6b (entry 2) containing substitution in the tether and
the trans-disubstituted 6c (entry 3). The stereochemistry of the olefin was transferred to the
resulting aziridines and allylic amines with no detectable isomerization. The 1,1’-
disubstituted 6d gave better selectivity and yield for aziridination compared to Rhy(OAC)4,
although the C-H insertion was moderate. Substrate 6e gave poor results using
Ag(phen)OTTf, but good selectivity for insertion.

Attempts to isolate the proposed 1:1 and 1:2 AgOTf:phen complexes in the solid state
(Table 2) resulted in the recovery of only Ag(phen),OTf.? Nonetheless, Ag(phen),OTf was
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capable of dissociating and reassembling into two distinct catalytic species capable of
divergent amination (Scheme 1). Reaction of 3a with the preformed Ag(phen),OTf gave a
90:8 mixture of products in favor of the C-H insertion, consistent with the results described
in Table 2. Addition of 10 mol % AgOTf to the initial Ag(phen),OTf complex completely
reversed the chemoselectivity to provide 4a in 92% yield, while an extra 10 mol % of phen
shut down the competing aziridination pathway, giving 5a in 90% yield.

Attempts to corroborate the proposed solution state geometries for the two Ag catalysts
illustrated in Table 2 were carried out using NMR titration experiments with 4,4’-di-tert-
butyl-2,2’-bipyridine (‘Bu-bipy, substituted for phen to improve solubility) and AgOTf.
Unfortunately, rapid dynamic exchange, even at temperatures as low as -85 °C, prevented
direct observation of the individual species present in solution (see Supporting Information
(SI) for details). However, the averaged 1H, 13C chemical shifts indicated that the major
species in the mixture changed as the ratio of ligand: AgOTf was increased. A combination
of pulse gradient spin echo (PGSE) and MALDI MS experiments showed that a monomeric
Ag(L)OTTf complex was the major species in solution when a 1:1 AgOTf:ligand ratio was
used, while a monomeric Ag(L),OTf complex predominated when a 1:2 AgOTf:ligand ratio
was used (details in SI). The additional equivalent of ligand serves to perturb the equilibrium
of the Ag(L)OTf:Ag(L),OTf mixture to favor the latter.

With information about the nature of the two catalytic species in hand, we wanted to
understand the factors responsible for our unexpected and tunable chemoselectivity. The
exact mechanisms of metal-catalyzed aminations have been notoriously difficult to unravel
and often involve multiple reaction pathways.2 T Yet, we felt even preliminary insights into
the mechanism could help extend our dynamic catalysis beyond the scope here.

Experiments to determine whether Ag-catalyzed amination proceeds through a stepwise or
concerted mechanism were carried out using the stereochemical probes (+)-9 and (+)-12
(Scheme 2). Only (%)-10 and (+)-14 were observed and no isomerization was detected,
suggesting a concerted event. A substrate 15 containing a radical trap yielded only 16 and no
ring-opened product, arguing against long-lived radical intermediates. A Kinetic isotope
effect (KIE) experiment yielded a 3.4 + 0.1 mixture of isotopomers (+)-18-D and (+)-18-H
(eq 1). KIEsin

H

H O 10 mol % AgOTf How uy
—{ 0—{  30mol%phen H. = N\/zo Hez N\f_.;o
HaCy Me NH; 3 5 equiv PhIO HyCq 0 * HCy 0
CH,Cly, t Me Me™ o

o HMe 03% Me ™
(4}17D 34 (#}18D @ 1 (+}18H

@

the range of 1-3 are believed to correspond to a concerted pathway, while KIEs in the range
of 6-12 usually signal a stepwise process involving potential radical intermediates.3¢:11a-¢
This suggests that C—H insertion favors a singlet nitrene pathway over hydrogen atom
abstraction.
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To shed light on the differences between Ag-catalyzed pathways promoting aziridination vs
insertion, initial rates were measured for four homoallenic carbamates 3a, 3d, 19, and 21
(Table 5). As expected, the initial rate of aziridination was faster than C—H insertion for both
tri- and disubstituted allenes (compare entries 4 and 6, as well as 11 and 13). When sites for
potential C—H insertion were blocked in substrates 19 and 21, the Ag(phen)OTf catalyst still
gave aziridination (entries 1 and 8), but the Ag(phen),OTf complex gave either no reaction
(entry 2) or significantly decreased reactivity (entry 9). This suggests that the steric
congestion around the Ag center plays an important role in dictating the chemoselectivity,
with a more hindered Ag center promoting insertion over the aziridination which is favored
by a less sterically congested Ag center. This is likely due to the difficulty of overcoming
steric clashing with the ligands when the substrate attempts to adopt the appropriate
orientation of the olefin for reaction with the nitrene (see 26 in Figure 2, vide infra). When
two ligands are coordinated to the Ag center, insertion into the C—H bond of 26 presents a
more favorable pathway, in contrast to the aziridination that occurs through the proposed 1:1
Ag:L complex 24.

BHT was initially employed to ascertain the impact of a radical inhibitor on the amination
(Table 3), where the presence of this additive appeared to improve the conversion of
disubstituted homoallenic carbamates to allenic amines. Closer examination of the role of
BHT (Table 5) showed that the initial rates in the aziridination of 19 and 21 were decreased
in the presence of the radical inhibitor (compare entries 1 and 3, and entries 8 and 10).
However, the effect of BHT on the rate of C—H insertion was variable (compare entries 67
and 13-14) and did result in an increase in the rate of insertion when a disubstituted allene
was employed (entries 13 vs 14). Interestingly, the addition of BHT to 3d in the presence of
1:1.25 AgOTf:phen (entry 12) gave a 1:1 ratio of aziridine 4d to allenic amine 5d. This
suggests BHT may also play a role in altering the Ag(L)OTf:Ag(L),OTf equilibrium by
shifting it toward Ag(L),OTf, but further study will be needed to completely understand its
impact on the reaction.

The retention of stereochemistry at a chiral center, the low KIE value, the lack of
isomerization in the reactions of homoallylic carbamates (Table 4), and the absence of ring
opening in the cyclopropane 15 all support a concerted pathway involving a singlet nitrene
for the C-H insertion (Figure 2, Path B).30.¢.7&.f However, the aziridination Path A could
involve either singlet or triplet nitrene intermediates, or perhaps both. The differences in
energies between these two states can be very small; Pérez and co-workers have recently
reported that Ag-catalyzed olefin aziridination may involve both paths.”"122-¢ The decrease
in the rates of aziridination in the presence of BHT implies there may a triplet nitrene
involved, but the lack of isomerization in the aziridination of homallylic carbamates (Table
4) argues against this and further mechanistic studies will need to be carried out to clarify
this issue. Irrespective of the exact reaction pathways, the best explanation for Ag-catalyzed
chemoselectivity resides in the dramatic steric differences in the coordination geometries
adopted by Ag(phen)OTf and Ag(phen),OTT, respectively.

In conclusion, we have developed a simple Ag-based catalyst system that represents the only
method to date capable of employing the same metal and the same ligand to accomplish
either aziridination or C—H insertion in good yields. The ability for Ag to readily adopt
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multiple coordination geometries provides a new approach to identify catalysts that can
promote other types of chemoselective aminations, including choosing between two
different C—H bonds. In addition, the ease with which this methodology can be implemented
and hopefully extended to other chemoselective C—heteroatom and C-C bond formations
opens a potential gateway in reaction discovery. Computational and further mechanistic
studies are currently underway to unveil the electronic and steric nature of the reactive
species in these Ag-catalyzed chemoselective aminations.
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Figure 1.
“Static” vs “dynamic” chemoselective amination.
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Table 5
Relative Rates of Aziridination and C-H Insertion
H (,1) RZ H
R2 0 R2
\ o catalyst :.N o 4 e
RY o8 ;\—/ _/<NH2 PhIO R1>= % RY ~NH
3 CH,Cly when R¥=H S ~q
R'sa, 3d, 19,21 4a, 4d, 20, 22 R® R? 5a5d °
entry RLR3 catalyst (AgOTf, phen) product(s) init rate (mmol/min*mL )2

1 Me, Me, Me 20 mol%, 25 mol% 20 1.8x1073 (98% yield)

19
2 10 mol%, 30 mol% 20 no reaction
3 20 mol%, 25 mol%, 20 mol% BHT 20 1.4x1073 (48% yield)
4 Me, Me, H 20 mol%, 25 mol% 4a 1.3x1073

3a
5 20 mol%, 25 mol%, 20 mol% BHT 5a 9.6x1074
6 20 mol%, 60 mol% 5a 2.8x1074
7 20 mol%, 60 mol%, 20 mol% BHT  5a 2.1x107
8 CsHyq, H, Me 20 mol%, 25 mol% 22 9.85x107* (88% vyield)

21
9 20 mol%, 60 mol% 22 36% yieldb
10 20 mol%, 25 mol%, 20 mol% BHT 22 6.15x1074
11 CsHy, H,H 20 mol%, 25 mol% 4d 5.73x1074

3d
12 20 mol%, 25 mol%, 20 mol% BHTC  4d (26%) 3.31x107

5d (34%) 2.31x1074

13 20 mol%, 60 mol% 5d 1.58x1074
14 20 mol%, 60 mol%, 20 mol% BHT 5d 2.94x1074

aThe rate of product formation was monitored by 14 NMR using mesitylene as the internal standards. The indicated initial rates are the average of
the three runs, and the standard deviations are included in the SI.

ineId after 21 h, 73% conversion.

CThe ratio of 4d:5d was 1:1.
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