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Abstract

Significance: Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cuta-
neous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other
hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective
clinical use, and broadening their clinical potential. Recent Advances: HDACi induce extensive transcriptional
changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes
mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight
two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor
acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within
and across tumor types. Critical Issues: The mechanistic basis for how HDACi activate, and in particular
repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated
by these agents both within and across tumor types has not been systematically addressed. A detailed under-
standing of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for
these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor
types. Future Directions: Understanding the mechanisms by which HDACi regulate gene expression and an
appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging
therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving
HDACi, and facilitate the identification of mechanism-based biomarkers of response. Antioxid. Redox Signal.
23, 66–84.

Introduction

H istone deacetylase inhibitors (HDACis) were ap-
proved for the treatment of cutaneous T-cell lymphoma

(CTCL) in 2006 (141). These agents have also demonstrated
activity, either alone or in combination, in multiple myeloma
(80), acute myelogenous leukemia, and myelodysplastic syn-
drome (55). Clinical activity in solid tumors has been limited,
although activity was recently reported in non-small cell lung
cancer when combined with a second epigenetic therapy,
Azacitidine (78), and in estrogen receptor-positive advanced
breast cancer, when combined with the aromatase inhibitor
exemestane (176).

HDACi induce a number of direct anti-tumor effects, in-
cluding growth arrest, differentiation, autophagy, and apo-
ptosis (106, 108, 139). These effects are mediated through a

number of mechanisms, including transcriptional changes,
increased production of reactive oxygen species, altered
signaling, and aberrant mitosis (15, 22, 76, 106). Among
these, the most actively investigated is the alteration of gene
expression (77). In this review, we will assess our current
understanding of the key mechanisms by which HDACi
regulate gene expression, and examine the spectrum and
commonalities of HDACi-mediated transcriptional re-
sponses, both within and between tumor types.

Overview of HDACi-regulated gene expression

A number of microarray studies have established that
HDACi treatment of tumor cell lines alters the expression of
*0.5–20% of genes (25, 58, 107, 123, 135). Likely expla-
nations for this disparity include the thresholds used to
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determine altered expression, drug concentrations used, and
the time point of assessment, which would have an impact on
the contribution of primary and secondary response genes. For
example, a time course of HDACi treatment of acute T-cell
leukemia cells demonstrated a 20-fold increase in the number
of genes changed at 16 h compared with at 1 h post HDACi-
treatment (123). In this review, we will focus, wherever pos-
sible, on the direct targets of HDACi, defined as those regu-
lated rapidly and independently of new protein synthesis.

A consistent finding revealed by these studies is that ap-
proximately equal numbers of genes are up- and down-
regulated after HDACi treatment (16, 107, 123). Notably, this
ratio remains relatively constant at both early and late time
points, indicating that direct and indirect HDACi-targets are
similarly subjected to activation and repression.

Mechanisms of HDACi-mediated
transcriptional regulation

Two major mechanisms by which HDACi modify gene
expression have been investigated: the induction of histone
acetylation and the induction of transcription factor acetyla-
tion (Fig. 1). We will focus on these mechanisms by high-
lighting evidence generated from gene-specific and whole
transcriptome analyses. The ability of these mechanisms to
explain HDACi-mediated transcriptional activation and re-
pression will also be discussed.

Histone hyperacetylation

The hyperacetylation of lysine residues in core histone
proteins is a consistent feature of HDACi treatment, first
described in the late 1970s by Riggs et al. and Vidali et al.
(130, 154). Histone acetylation is regulated by two opposing
sets of enzymes: histone acetyltransferases (HATs), which
add acetyl groups to lysine residues, and HDACs, which re-
move them. The eighteen HDACs that have been described in
humans are classified into four classes based on their ho-
mology to the yeast HDACs Rpd3 (class 1), Hda1 (class II),
or SIR2 (class 3). The fourth class comprises HDAC11,
which has homology to both class I and II HDACs. The
HDACi that will be discussed here (hydroxamic acids, car-
boxylic acids, benzamides, and cyclic tetrapeptides) are those
which exclusively inhibit the zinc-dependent Class I
(HDAC1, 2, 3, and 8) and class II HDACs (HDAC4, 5, 6, 7, 9,
and 10), by binding the critical Zn2 + ion required for their
enzymatic activity (14).

HDACs typically exist within large multi-subunit co-
repressor complexes such as Sin3, NuRD, CoREST (HDACs
1 and 2), and NCoR/SMRT (HDAC3, 4, 5, and 7) (40, 76).
These HDAC-containing complexes, along with HATs, are
recruited to gene promoters via interactions with sequence-
specific transcription factors, where they collectively estab-
lish the desired level of gene expression by regulating the
acetylation status of lysine residues on surrounding histones.
By inhibiting the activity of HDACs, HDACi shift the local
equilibrium in favor of histone acetylation. Two general
mechanisms by which histone lysine acetylation alters
transcription can be envisioned: neutralization of the pos-
itive charge of lysines and subsequent establishment of a
more permissive chromatin state, and enhanced recognition
and binding by bromodomain (BRD)-containing epigenetic
reader proteins.

Histone lysine acetylation and establishment
of a permissive chromatin state

An association between histone acetylation and increased
gene expression was first suggested by Allfrey almost 50
years ago (2, 3), and has since been validated in a number of
studies using multiple approaches (60). Acetylation of lysine
residues on histones has been suggested to induce a more
permissive chromatin state (94). This likely facilitates the
access of additional sequence-specific transcription factors to
promoter regions, including transcriptional activators and
repressors, as well as components of the basal transcriptional
machinery. Consistent with a model in which a more open
chromatin state facilitates the binding of both transcriptional
activators and repressors, genome-wide ChIP-seq studies
indicate that both HDACi-activated and repressed genes
display increased promoter histone acetylation (68, 79).

Two ways in which histone acetylation induces a more
open or permissive chromatin conformation have been pro-
posed (Fig. 2). First, the acetylation of lysine neutralizes its
positive charge. Acetylation of lysines on the N-terminal tails
of core histones may, therefore, decrease their electrostatic
interaction with negatively charged phosphate groups on the
DNA backbone in adjacent nucleosomes, resulting in a more
open higher-order chromatin structure (60, 155) (Fig. 2A).
This charge neutralization model has been confirmed in vitro,
where tetra-acetylation of the histone H4 tail significantly

FIG. 1. HDACi regulate gene expression through his-
tone and transcription factor hyperacetylation. HDACi,
histone deacetylase inhibitor. To see this illustration in
color, the reader is referred to the web version of this article
at www.liebertpub.com/ars
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decreased its affinity for DNA (70). Second, a structural
analysis of the nucleosome demonstrates that the positively
charged histone H4 tail interacts with a highly negatively
charged region on the H2A-H2B surface (101) (Fig. 2B).
Acetylation of these lysines is likely to alleviate this inter-
action and facilitate the establishment of a more open chro-
matin state.

However, while the charge neutralization model has been
widely implicated in the establishment of a more open
chromatin conformation, there is limited direct in vivo evi-
dence in support of this. One study suggesting this possibility
was performed by Dion et al. in yeast (42). Here, the mutation
of histone H4 lysine K5, K8, or K12 to arginine, which
mimics the positively charged unacetylated lysine state, each
induced a similar change in gene expression, which increased
monotonically with the number of lysines mutated. However,
while these findings are consistent with a model in which
acetylation of these lysines incrementally increases the extent
of chromatin relaxation due to progressive charge neutrali-
zation (42, 182), they are also consistent with a number of
‘‘reading mechanisms.’’ Specifically, decreasing the number
of acetylated lysine residues on the histone tail may also
progressively reduce the direct binding of BRD-containing
proteins that regulate transcription (42). This alternative
mechanism is discussed next.

Histone acetylation and recognition
by BRD-containing proteins

Histone tail lysine acetylation serves as a key mark for the
recognition and binding of BRD-containing proteins (12,

133). In humans, 42 BRD-containing proteins have been de-
scribed. Several of these can impact transcription through
mechanisms including modulation of chromatin-remodeling
(BRM, BRG1) (50) and maintenance of higher-order chro-
matin structure (BRD4) (50, 164), provision of a scaffold for
the recruitment of transcription factors (BRD1), transcriptional
activation (BRPF1) and co-activation (P300, PCAF), tran-
scriptional repression (BAZ2A, TIF1c/TRIM33) (1, 187),
initiation (TAF1), elongation (BRD4, TRIM33) (12, 41, 51,
133), gene bookmarking (BRD4, BRDT) (56, 185), and
chromatin compaction (BRD4, BRDT) (52). Histone lysine
hyperacetylation after HDACi treatment may alter the binding
of BRD-containing proteins, which could either activate or
repress transcription through these mechanisms (Fig. 3).

For example, with regard to transcriptional activation,
BRD4 recognizes and binds to acetylated H4K5/8/12, which
initiates transcriptional elongation (65, 142). BRD4 recog-
nition and binding to acetylated H4K5 is also a key mecha-
nism of gene bookmarking, by which the binding of BRD4 to
gene promoters during interphase facilitates their rapid re-
expression post mitosis (185). HDACi-induced histone hy-
peracetylation may, therefore, increase transcription through
either of these mechanisms.

Conversely, histone acetylation may also facilitate tran-
scriptional repression though enhanced binding of BRD-
containing proteins. Specifically, the transcriptional repressor
of TGFb signaling, TIF1c, binds sequentially acetylated ly-
sines on the histone H3 tail (1). Binding to acetylated lysines
increases the E3 ubiquitin ligase activity of TIF1c and its
ability to ubiquitinate its substrate SMAD4. This results in the
disruption of SMAD4-containing transcriptional complexes

FIG. 2. Mechanisms by which HDACi-induced histone acetylation may alter higher-order chromatin structure. (A,
B) Charge neutralization. Acetylation of positively charged lysine residues on histone tails (black circles) reduces affinity
for (A) negatively charged phosphate groups (PO4

- ) on DNA in adjacent histones, or (B) the negatively charged region on
the surface of H2A-H2B (dark blue oval), causing histones to become less compacted. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/ars
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and the repression of SMAD4 target genes (1). HDACi-
induced histone hyperacetylation may, therefore, cause
transcriptional repression by facilitating the recruitment of
repressors such as TIF1c. Furthermore, a paradoxical role for
the B isoform of BRD4 in chromatin compaction after
binding to acetylated histones has also recently been de-
scribed (52). While the impact on transcription was not ex-
amined, increasing chromatin compaction would be expected
to repress transcription.

Specific histone lysine residues acetylated by HDACi

Given the range of mechanisms by which histone hyper-
acetylation may modulate transcription, appreciation of the
specific lysine residues that are acetylated by HDACi could
provide insights into the corresponding alterations in gene
expression.

Histone tail modifications. The nucleosome is composed
of *147 bp of DNA wrapped around a histone octamer com-
prising two molecules each of histone H2A, H2B, H3, and H4.
The four core histones contain numerous lysine residues that
are amenable to acetylation, although acetylation events in the
unstructured N-terminal histone tail domains have, by far,
been the most extensively studied. Specificity among class I
HDACs (HDACs 1, 2, 3, and 8) for deacetylating individual
histone tail lysines has been investigated (75). For example,
Johnson et al. reported that HDACs 1, 2, and 3 induced at least
partial deacetylation of all lysines tested, including H2BK12,
H2BK15, H2AK5, H3K14, H3K9/K18, H4K5, H4K8, and
H4K12, although with varying efficiency. Furthermore,
HDAC3 more robustly induced deacetylation of H2AK5 and
H4K5 compared with HDAC1 (75).

Consistent with their ability to simultaneously inhibit
multiple class I HDACs (15), HDACi induce hyperacetyla-
tion of each of the four core histones (24, 177). Furthermore,
these effects are evident within 30 min of HDACi treatment,
consistent with the dynamic nature of histone acetylation
changes, which typically have a half life of only a few min-
utes (182). An examination of acetylation changes induced
by HDACi at each core histone using acid-urea gels indicates
that all histones are hyperacetylated, with the most robust
changes occurring on histone H4 (27, 39). This is consistent
with recent proteomic profiling studies in which the most
robust changes in acetylation after suberanilohydroxamic
acid (SAHA) treatment occurred on histone H4 N-terminal
lysines (33).

Several studies have used specific antibodies to examine
HDACi-induced acetylation of specific histone tail lysines.
For example, on histone H2B, H2BK5 acetylation was ob-
served in colon cancer cells treated with the HDAC1-specific
inhibitor, MLRB-38489 (96), and neuroblastoma cells trea-
ted with a range of HDACi (95). For histone H3, HDACi
induced hyperacetylation of H3K9 and H3K14 in porcine
oocytes (48, 49, 148, 175, 188), and hyperacetylation of
H3K18, H3K23, and H3K27 in colon cancer and neuro-
blastoma cells (95, 96). For histone H4, hyperacetylation of
H4K5 and H4K16 has been observed in multiple cell lines
(27, 46, 175, 188). In contrast, hyperacetylation of H4K8 and
K4K12 was observed in some (19, 27, 47, 49, 95), but not in
other studies (46, 188). These differences were not related to
the HDACi used, and, instead, may be due to differences in
the relative abundance of specific HATs and HDACs among
cell types. It should also be noted that a limitation of some of
these analyses is that they are an interrogation of histone
acetylation changes on a genome-wide level. There is the
possibility, therefore, that HDACi induce more subtle locus
specific histone acetylation changes which are below the
threshold of detection of these methods.

Histone core domain modifications. The histone modifi-
cations described earlier have focused on acetylation changes
in the N-terminal histone tail. This has largely been due to
methodological limitations favoring the analysis of the first
20–30 amino acids (111), and the subsequent development of
antibodies that target these residues. Acetylation of lysine
residues within the central portions of each histone, including
the globular core domain required for histone–histone inter-
actions (111), have also now been shown to have important
functional consequences (72, 105, 150). For example, acet-
ylation of H3K115 and H3K122, which are located in the
DNA-histone interface of the nucleosome, reduces DNA–
histone interactions and facilitates nucleosome repositioning,
assembly, and disassembly (72, 105). Furthermore, a recent
study generated a specific antibody to AcH3K122, and
demonstrated a key role for this modification in transcrip-
tional activation (150). Nucleosomes with AcH3K122 were
globally enriched for other active histone marks, including
H3K4me1 and H3K4me3 that are enriched at distal en-
hancers and active promoters, respectively. The authors
further demonstrated that acetylation of H3K122 is medi-
ated by p300/CBP and, importantly, observed increased
acetylation of this mark in HDACi-treated MCF7 breast
cancer cells (150).

FIG. 3. HDACi-induced histone hyper-acetylation may impact transcription through altered binding of bromodomain-
containing proteins. To see this illustration in color, the reader is referred to the web version of this article at www
.liebertpub.com/ars
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Proteomic profiling of histone lysine acetylation. The
advent of mass spectrometry is now enabling the investiga-
tion of all histone lysine modifications in an unbiased manner
(111). Drogaris et al. used quantitative mass spectrometry to
investigate the effect of HDACi on acetylation of lysine
residues in the core histones in leukemia cells (43). Con-
sistent with previous studies, the most significant changes
observed were in histones H3 and H4, where acetylation was
exclusively observed in the N-terminal tails (histone H3 K9,
K14, K18, and K23 and histone H4 K5, K8, K12, and K16).

In a separate study, Choudhary et al. used mass spec-
trometry to comprehensively screen the acetylome of three
cancer cell lines (MV4-11, Jurkat, and A431) and investi-
gated the changes induced by the HDACi SAHA and MS-275
(33). These HDACi increased acetylation of *10% of all
detectable acetylation sites in these cell lines, of which 28%
were on histone proteins establishing histones as the primary
targets of HDACi. This analysis confirmed the acetylation of
several of the specific lysine tail modifications previously
described, as well as highlighted some novel acetylation
events in the tail regions of histone H2B (H2BK12 and
H2BK20) and histone H4 (H4K31). Notably, this analysis
also identified novel hyperacetylation events of lysine resi-
dues outside the histone tails of H2A and H2B (H2AK95,
H2AK118, and H2BK108) (Fig. 4). Investigation of the
functional significance of these modifications could provide
novel insights into the mechanisms of HDACi-induced
transcriptional changes.

HDACi-induced histone acetylation and corresponding
changes in gene expression

While several locus-specific studies have linked HDACi-
induced gene expression changes with corresponding in-
creases in promoter histone acetylation (64, 129, 160),
ChIP-seq studies suggest that the majority of promoters hy-
per-acetylated by HDACi do not undergo corresponding gene
expression changes. These findings indicate that promoter
acetylation alone is not sufficient to alter transcription (46).
For example, Hezroni et al. investigated the genome-wide
effect of low-dose valproic acid (VPA) treatment on H3K9ac
in mouse embryonic stem cells (68). While VPA increased
H3K9ac at > 10,000 loci, the expression of only *100 of

these genes was altered (68). Similarly, Wang et al. reported
that HDACi induced H3K9 and H4K16 hyperacetylation at
> 1000 gene promoters; however, < 2% of these genes were
altered in expression (165). This discrepancy was also ob-
served in genome-wide ChIP-seq studies performed in the
adult mouse hippocampus in vivo (99), and neonatal rat
cardiomyocytes (79).

Several explanations for this disparity can be envisioned.
First, while histone acetylation is expected to modulate tran-
scription by facilitating transcription factor access to DNA, or
by providing recognition sites for epigenetic reader proteins, if
the abundance of these factors is limiting, histone acetylation
alone is unlikely to be sufficient to modulate gene expression.
Second, it is possible that specific combinations of histone
modifications (e.g., H3K9Ac and H3K4me3) are required for
efficient recognition and binding by epigenetic reader proteins,
in order to affect transcriptional change (128). For instance, the
transcriptional repressor TIF1c, preferentially binds to histone
H3 that is unmodified at H3K4 and sequentially acetylated at
H3K18 and H3K23 (1). Histone hyperacetylation of specific
residues alone, therefore, may not be sufficient to induce
corresponding transcriptional changes.

Nevertheless, these findings also illustrate that acetylation
of histones only partially explains the gene expression
changes induced by HDACi, and indicates that other mech-
anisms also likely play a role. One such mechanism is the
acetylation of non-histone proteins, particularly transcription
factors.

Hyperacetylation of transcription factors

A second mechanism by which HDACi regulate gene
expression is through the direct acetylation of transcription
factors. Several transcription factors that are modified by
acetylation have been described, including p53 (61), multiple
STAT (189), and specificity protein (Sp) (157) family
members, GATA1 (18), E2F1 (110), HMG (116), ERa (83),
MYC (122), MYB (149), TCF (161), NF-jB p65 (26), and
components of the basal transcriptional machinery (TFIIEb
and TFIIF) (74). Depending on the transcription factor, and in
some cases the specific lysine residue modified, acetylation
can modulate transcription factor binding to DNA (61), rec-
ognition by BRD-containing epigenetic readers (190), homo

FIG. 4. Specific histone lysine residues
acetylated by HDACi. To see this illustra-
tion in color, the reader is referred to the web
version of this article at www.liebertpub
.com/ars
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and heterodimerization (89, 179), and subcellular localiza-
tion (62). Acetylation can also impact other post-translational
modifications of the same residue, such as ubiquitination, and
potentially methylation and sumoylation. For instance,
acetylation of c-myc (153) and SMAD7 (59) can protect them
from ubiquitination and proteasomal degradation. These
pleiotropic effects of acetylation on transcription factor
function may contribute, at least in part, to the bidirectional
changes in gene expression induced by HDACi. Next, we
review several of the major transcription factors regulated via
HDACi-induced acetylation.

P53. P53 was the first non-histone protein shown to be
post-translationally modified by acetylation (61). Several p53
lysine residues subject to acetylation have now been identi-
fied and include residues within the DNA binding domain
(K120, K164, and K292), tetramerization domain (K305,
K320), and C-terminal domain (K351, K357, K370, K373,
K381, K382, and K386) (21). While studies in mouse models
have demonstrated that modifications of these lysines are not
essential for p53-induced cell cycle arrest and apoptosis (90),
several in vitro studies have linked p53 acetylation with in-
creased DNA binding and target gene expression (21, 61),
and induction of apoptosis. For example, acetylation of p53
K120 mediated by the MYST family HAT TIP60/MOF is
required for p53-dependent expression of the pro-apoptotic
genes BAX and PUMA, and mutation of this residue to argi-
nine abrogates p53-induced apoptosis (146).

Two models have been proposed for how acetylation of
p53 may enhance its DNA binding and transcriptional acti-
vation of target genes. The first allosteric model suggests that
the C-terminus of p53 negatively regulates the DNA binding
domain of the molecule, which is relieved upon acetylation-
mediated neutralization of the positive charge on C-terminal
lysines (61). Second, the acetylation of p53 has been proposed
to facilitate the recruitment of transcriptional co-activators
such as HATs, which enhance transcription by inducing local
histone hyperacetylation (10, 186).

The mechanism of p53 deacetylation has also been in-
vestigated, with both class I (HDAC1/NuRD complex) (103)
and class III HDACs (SIRT1) (102) shown to play a role. The
role of HDAC1 in p53 deacetylation suggested that p53 may
be subjected to hyperacetylation after HDACi treatment,
which was subsequently demonstrated in several studies (24,
186). These include hepatoma cells where SAHA induced
acetylation of p53 on lysines K320, K373, and K382 (24),
and lung cancer cells where the HDACi depsipeptide also
induced acetylation of K373 and K382 (186). In a subsequent
study, Zhao et al. demonstrated that depsipeptide-mediated
induction of p21 was dependent on Sp1/Sp3 binding sites
within the p21 promoter as well as p53 binding sites. Notably,
using ChIP analysis, the authors demonstrated that p53 Ac-
K373/382 bound preferentially to the p21 promoter after
depsipeptide treatment. Furthermore, overexpression of WT
p53 in the p53 null H1299 cell line enhanced depsipeptide
induction of p21, whereas p53 with lysine to arginine muta-
tions at these two acetylation sites did not (186). Finally,
Terui et al. demonstrated that re-expression of p53 in p53-
mutant gastric cancer cells enhanced HDACi-induced apo-
ptosis, which correlated with hyperacetylation of p53 on
known deacetylation sites for HDAC1, K320, K373, and
K382 (147). Among these, acetylation of K320 and K373

appeared most important, as cells overexpressing p53 with
lysine to arginine mutations at these sites were not sensitized
to HDACi induction of the pro-apoptotic p53 target genes
PIG3 and NOXA, or apoptosis (147).

Sp1. The Sp family of transcription factors comprises
eight members (Sp1–8), with each located in close proximity
of an HOX gene cluster (157). Extensive post-translational
modifications, including phosphorylation, acetylation, gly-
cosylation, and sumoylation of several Sp family members,
have been reported (157). Sp1 can be acetylated at a single
lysine residue (K703), which is likely mediated by the HAT
p300 (144, 157). When acetylated, Sp1 has been suggested to
act as a transcriptional repressor as a mutation of K703 to
alanine, increased the ability of Sp1 to induce promoter ac-
tivity of its target gene, 12(S)-lipoxygenase (157). Sp1 also
interacts with HDACs 1 and 2, suggesting that these HDACs
may potentially function in Sp1 deacetylation (143).

Indeed, Sp1 has been shown to become hyperacetylated
after HDACi treatment. Huang et al. demonstrated hyper-
acetylation of Sp1 by the HDACi trichostatin A (TSA) in
pancreatic cancer cells (71), while Waby et al. used a novel
anti acetyl-Sp1 antibody to demonstrate robust Sp1 acetyla-
tion in the nucleus of HCT116 cells treated with multiple
HDACi (158). Waby et al. also demonstrated that acetylated
Sp1 had reduced binding affinity for the p21 and Bax pro-
moters, which were subsequently induced in expression
(158). Swingler et al. also demonstrated Sp1 acetylation after
HDACi treatment of HeLa cells. This was correlated with
transcriptional activation of its target gene, MMP28 (145);
however, whether this was mediated by increased or de-
creased Sp1 binding to the MMP28 promoter was not in-
vestigated. Additional studies across multiple loci are,
therefore, required to determine the consequence of Sp1
acetylation on its transcriptional activity.

Sp3. The Suske lab was the first to demonstrate acety-
lation of Sp3 and identified lysine 551, located within the Sp3
inhibitory domain, as the residue modified (20). Sp3 was
subsequently shown to associate with class I HDACs in T5
breast cancer cells (143), suggesting that they may play a role
in its deacetylation. Similar to Sp1, Sp3 acetylation was
suggested to reduce Sp3 transcriptional activity, as a muta-
tion of K551 enhanced Sp1/Sp3 reporter activity (20). No-
tably, however, this same residue was subsequently shown to
be subject to sumoylation, complicating the interpretation of
whether this lysine confers loss of Sp3 transcriptional activity
due to acetylation or sumoylation (134).

Several studies have demonstrated Sp3 hyperacetylation in
response to HDACi treatment (5, 167). In contrast to the
original studies (20), Ammanamanchi et al. suggested that
HDACi-induced acetylation of Sp3 converts it from a repres-
sor into an activator (5). This was based on the finding that
overexpression of unmodified Sp3 repressed the expression of
its target gene, TGFbRII; whereas co-transfection with p300 or
co-treatment with an HDACi, both of which induced Sp3
acetylation, induced TGFbRII expression (5). However, these
studies did not eliminate the possibility that p300 or HDACi
treatment may induce TGFbRII expression through an Sp3-
indpendent mechanism. Therefore, as for Sp1, additional
studies are required to establish the consequences of Sp3
acetylation on its transcriptional activity.
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STAT1. Acetylation of several members of the STAT
family (STAT1, STAT2, STAT3, STAT5b, and STAT6) has
been described (189), of which STAT1, STAT3, and
STAT5b are hyperacetylated in response to HDACi (89,
163). In melanoma cell lines, HDACi selectively increased
total STAT1 levels in HDACi sensitive lines. STAT1 also
became hyperacetylated after HDACi treatment, due to the
dissociation of HDAC1 and HDAC3, and increased interac-
tions with CBP. Hyperacetylated STAT1 bound more
strongly to NF-jB p65, inducing its cytoplasmic sequestra-
tion. This resulted in decreased expression of the pro-survival
NF-jB target genes Bcl-XL and survivin, and the induction of
apoptosis (89).

STAT3. Two groups identified lysine 685 in the C-
terminus of STAT3 to be subject to p300-mediated acetyla-
tion after cytokine treatment in prostate and hepatoma cell
lines (163, 179). Yuan et al. demonstrated that STAT3
acetylation could be reversed by overexpression of class I
HDACs, particularly HDAC3, and enhanced by TSA treat-
ment (179). Acetylation of STAT3 promoted its dimeriza-
tion, cytokine-induced DNA binding, and transcription of its
target genes in prostate cancer cells (179). Conversely, in
diffuse large B-cell lymphoma, the HDACi panobinostat
induced STAT3 acetylation at K685. This induced a parallel
decrease in STAT3 phosphorylation, its cytoplasmic accu-
mulation, and decreased expression of its pro-survival target
gene, MCL1 (62). STAT3 acetylation, therefore, has differing
transcriptional outcomes depending on the cell type.

E2F-1. The E2F family of transcription factors (E2F1–7)
plays a central role in cell cycle progression by coordinating
the expression of multiple genes required for S-phase entry.
However, E2F1, in particular, plays a dual role, also being
required for DNA damage-induced apoptosis through tran-
scriptional activation of p73, APAF1, caspase 7, and p14ARF,
which stabilizes p53 (124). The Kouzarides lab first dem-
onstrated that E2F1 is acetylated by PCAF and p300, at ly-
sines 117, 120, and 125. These residues lie adjacent to the
DNA binding domain, and are deacetylated by HDAC1
(109). Acetylation of E2F1 increased its DNA binding ca-
pacity and ability to activate transcription through stabiliza-
tion of this inherently unstable protein. Acetylation of E2F1
was subsequently shown to be increased after DNA damage,
and to be recruited to the P73 promoter (73, 124). With regard
to HDACi treatment, Ozaki et al. demonstrated increased
E2F1 acetylation after TSA treatment of HeLa cells by im-
munoprecipitating E2F1 and immunoblotting for acetylated
lysine, and demonstrated that E2F1 acetylation correlated
with increased expression of p73 (120).

NF-jB p65. NF-jB plays a key role in regulating in-
flammatory and anti-apoptotic responses. The most abundant
NF-jB complex, which comprises the p50 and p65 (RelA)
subunits, is typically sequestered in the cytoplasm by the
inhibitory protein, IjB. In response to stimuli such as TNF,
IjB becomes phosphorylated and targeted for proteasomal
degradation. This liberates NF-jB to translocate to the nu-
cleus and drives gene expression by binding to NF-jB reg-
ulatory elements. In 2001, Warner Greene’s lab demonstrated
that p65/RelA is acetylated by p300 and deacetylated by
HDAC3 on lysine residues K218, K221, and K310 (26).

Consistent with the role of HDAC3 in deacetylation, the
treatment of 293T cells with TSA induced hyperacetylation
of p65. Importantly, p65 acetylation inhibited its interaction
with IjB, and was proposed to serve as a switch that controls
the duration of NF-jB transcriptional responses (26).

A number of other studies have also demonstrated the
acetylation of NF-jB by HDACi, and linked this to increased
transcriptional activity. For example, Dai et al. reported that
the treatment of leukemia cells with SAHA and MS-275 in-
duced hyperacetylation of p65, its accumulation in the nucleus,
and NF-jB transcriptional activation (36). Activation of NF-jB
also elicited a cytoprotective effect on HDACi-induced ap-
optosis, as its inhibition enhanced HDACi-induced apopto-
sis. However, a direct role for NF-jB acetylation in this
process was not demonstrated (36). Likewise, Liu et al. dem-
onstrated acetylation of NF-jB in response to SAHA treat-
ment in non small cell lung cancer cell lines and identified
K310 as the key residue involved. Utilizing an acetyl-p65-
K310 antibody, they further demonstrated that SAHA treat-
ment increased the recruitment of acetylated p65 to the pro-
moter of the pro-survival gene cIAP2, which corresponded
with increased promoter activity (98).

Conversely, Kiernan et al. identified K122 and K123 to be
acetylated on p65. Furthermore, they demonstrated that
acetylation of these lysines facilitated its removal from DNA
by IjB, and subsequent export into the cytoplasm, thus
serving as a mechanism of inactivating NF-jB-mediated
transcription (82). Notably, however, the authors did not
demonstrate that TSA treatment alone was able to induce
hyperacetylation of these residues. Nevertheless, NF-jB
likely represents a factor whose transcriptional activity may
be enhanced or reduced depending on the specific lysine
subjected to acetylation.

Other acetylated transcription factors

As described earlier, to address the effect of HDACi
treatment on protein lysine acetylation on a global scale,
Matthias Mann’s lab used quantitative mass spectrometry to
assess acetylation changes in response to HDACi treatment in
three cancer cell lines (33). A number of novel acetylated
proteins were identified, including SMARCC1, a component
of the SWI/SNF chromatin remodeling complex; HMGA1,
which plays a role in nucleosome phasing; HMGB1, which is
involved in DNA bending; and NONO, which plays a role in
DNA unwinding and DNA repair. Perhaps most notable was
the acetylation of MED6, a component of the mediator co-
activator complex that plays a central role in RNA pol II-
dependent transcription (6). The functional consequences of
acetylation of these proteins warrant detailed investigation
and could provide new perspectives into the mechanisms of
HDACi-regulated gene expression.

Collectively, these findings illustrate that a number of
transcription factors are hyperacetylated after HDACi treat-
ment. Depending on the transcription factor, this can result in
increased or reduced transcriptional activity, although in
some cases the same transcription factor may be differen-
tially activated by acetylation depending on the cell type or
the specific lysine residue that is modified. Furthermore,
acetylation can modulate the subcellular localization, di-
merization capability, and ability to interact with other
transcription factors, which could collectively explain the
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myriad transcriptional changes induced by HDACi (Fig. 5).
Finally, the spectrum of acetylation-regulated transcription
factors that are similarly or differentially expressed between
tumor and normal cells, and between different cell types,
could provide insights into the cell-type-specific changes in
gene expression induced by these agents.

Examination of HDACi-induced gene expression
changes across cell types

Having discussed the primary mechanisms by which
HDACi regulate gene expression, it is of interest to examine
how this impacts HDACi-mediated gene expression changes
in tumor and normal cells, as well as both within and between
different tumor types.

Comparison of HDACi-induced gene expression
changes in normal and tumor cells

HDACi preferentially inhibit proliferation and induce ap-
optosis in tumor cells. This has been demonstrated in multiple
cell culture studies where HDACi induce apoptosis in tumor
cell lines at concentrations that do not affect normal cell
viability (8, 126, 151). HDACi also inhibit the growth of
xenografts with no discernable toxicity to animals (121).

Finally, the clinical use of HDACi is now well established
and these drugs are generally well tolerated (45, 81). How-
ever, the mechanistic basis for the tumor selectivity of these
agents is not well understood, and the extent to which this is
due to the differential regulation of gene expression has not
been extensively examined.

As in tumor cells, HDACi induces histone hyperacetyla-
tion in several normal cell types, including peripheral blood
mononuclear cells (63), fibroblasts (58), neuronal cells (17),
and hepatocytes (121), suggesting that these agents are likely
to also impact gene expression in normal cells. Demonstrat-
ing this is indeed the case, Chiba et al. identified 143 up-
regulated and 155 repressed genes in primary hepatocytes
treated with TSA (29). However, in contrast, the corre-
sponding transcriptional response induced in hepatoma cells
was vastly different with only one gene (PRDX1) similarly
altered in expression. The basis for this difference remains
unknown but may provide an explanation for the resistance of
normal hepatocytes to HDACi-induced apoptosis (121).

HDACi-regulated genes were also recently compared in
normal and transformed human foreskin fibroblasts (16).
Remarkably, and in contrast to the findings of Chiba et al.,
89% of the genes altered by SAHA in transformed fibroblasts
were similarly altered in normal fibroblasts. However, it

FIG. 5. Transcription factors acetylated by HDACi. To see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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should be taken into consideration that these cell lines were
derived from the same origin, and both cell types are rapidly
proliferating. Notably, despite the overall similarity, a sub-set
of genes selectively regulated by SAHA in transformed cells
were identified, which were enriched for transcripts involved
in the regulation of apoptosis. This finding provides a pos-
sible explanation for the selectivity of HDACi to induce
apoptosis in transformed cells (16).

In summary, these studies suggest that the differential re-
sponse of tumor and normal cells to HDACi may be linked to
the differential transcriptional responses induced; however,
this needs to be directly validated and the mechanistic basis
should be further investigated.

HDACi-induced gene expression changes
within a tumor type

The overlap in HDACi-regulated genes in a specific tumor
cell type was compared using two colon cancer cell lines by
LaBonte et al. (92). Of the 2448 genes altered in expression
by SAHA in HT29 cells, 860 (35%) were also changed in
HCT116 cells (92). To expand on these findings using our
own microarray data, we examined the overlap in gene ex-
pression changes in SW403 and HCT116 colon cancer cells
treated with sodium-butyrate for 24 h. Of the 155 genes in-
duced or repressed two-fold or greater in SW403 cells, 99
(64%) were similarly changed in HCT116 (Fig. 6). In con-
trast, < 1% of probes were changed in the opposite orienta-
tion (not shown). Similarly, Chiba et al. used microarrays to
compare HDACi-regulated genes across six hepatoma cell
lines. While the overall extent of overlap was not reported,
consistent induction and repression of 57 and 119 genes were
observed, respectively (29). Finally, our own laboratory
performed a microarray study to compare the gene expression
changes induced by HDACi in five sensitive and five resistant
colon cancer cell lines (171). This analysis identified 48

genes that were preferentially induced and 44 genes which
were preferentially repressed in sensitive cell lines. Among
the selectively induced subset were seven immediate-early
response genes, FOS, JUN, ATF3, EGR1, EGR3, ARC, and
NR4A1. This study, therefore, identified a transcriptional
signature that was consistently induced by HDACi in mul-
tiple colon cancer cell lines (171), and furthermore a repro-
ducible transcriptional response associated with HDACi-
induced apoptosis. Collectively, these studies demonstrate
that there is a considerable overlap in the transcriptional re-
sponse induced by HDACi within a tumor type.

Comparison of HDACi-induced gene expression
changes between tumor types

With regard to the similarity in HDACi-regulated genes
between tumor types, Monks et al. identified a core subset of
HDACi regulated genes commonly regulated across hetero-
geneous cancer cell lines. The authors initially identified 238
genes altered by HDACi in colon cancer cells (113). When 25
of these genes, including several involved in cell cycle pro-
gression (CCNA2, CCNB1, and TYMS), were examined for
altered expression in seven additional cell lines derived from
various other tumor types, the majority were similarly regu-
lated (113).

Likewise, Glaser et al. used microarray profiling to com-
pare HDACi-induced gene expression changes in breast and
bladder carcinoma cell lines, and identified 13 commonly
regulated genes (58). These included p21, Hep27, histone 2B,
and metallothionein 1X, which were commonly up-regulated,
and TYMS and CTP synthase, which were commonly re-
pressed. However, this represented only 1–2% of the total
genes regulated by HDACi in these cell lines, indicating that
the vast majority of HDACi-induced changes are cell-type
specific. These findings indicate that although there is ex-
tensive variability in the transcriptional changes induced by
HDACi between different cancer cell lines, there are a core
subset of HDACi target genes which are commonly regulated
across cell types. A partial list of these genes that are likely
directly regulated by HDACi (altered in expression within
6–12 h), in at least two distinct cell types, is provided in Table 1.

Commonly regulated HDACi-target genes

The strongest evidence that HDACi induce at least some
similarities in gene expression, irrespective of cell type,

FIG. 6. Extent of overlap in gene expression change
mediated by HDACi in two colon cancer cell lines. Genes
induced or repressed by twofold or greater were included in the
analysis. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars

Table 1. Genes Induced or Repressed

by Histone Deacetylase Inhibitor

Within 6–12 H in at Least Two Cell Types

Induced genes Repressed genes

P21 (58, 158) TYMS (58, 113)
CTGF (29, 113) CTPS (58, 113)
H1F0 (29, 114) MCM3 (113, 123)
IGFBP3 (31, 171) MCM7 (113, 123)
GADD45 (28, 69) Cyclin D1 (93, 104)
BMF (16, 168) CCNA2 (113, 115)
Gelsolin (58, 131) Myc (13, 35)
BAK (123, 158) Survivin (118, 184)
APAF1 (123, 160) FLIP (117, 166)
ATF3 (37, 140) TRX (23, 162)
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comes from studies of the CDKN1A gene. CDKN1A
(p21WAF1/CIP1) is a cyclin-dependent kinase inhibitor that is
induced by HDACi in a protein synthesis-independent man-
ner, establishing it as a direct transcriptional target (7).
Consistent with regulation by HDACs, siRNA-mediated
knockdown of individual class I and II HDACs increases p21
expression in multiple cell types (137). CDKN1A induction in
response to HDACi treatment has been observed in mouse
(152) and human cells, as well as in cell lines derived from
multiple tumor types, including colorectal (7), breast (66),
prostate (91), lung (125), melanoma (85), CTCL (183),
multiple myeloma (112), and a range of leukemia cell lines
(132, 156), establishing it as a universally induced HDACi
target gene.

In addition to being a p53 target gene, the proximal p21
promoter is GC rich and contains 6 Sp1/Sp3 binding sites.
Promoter deletion studies identified these sites as essential for
HDACi-mediated induction (138), and a model has emerged
in which Sp1 or Sp3, or both, recruit HATs and HDACs to the
p21 promoter, which compete to establish a dynamically
regulated basal level of p21 expression (9, 39, 173). Treat-
ment with HDACi alters this equilibrium in favor of HATs,
leading to local histone hyperacetylation and p21 transcrip-
tional activation (39).

Several pieces of evidence support this model. First, both
Sp1 and Sp3 have been shown to interact with class I HDACs
as well as the class II HDAC, HDAC4, and re-ChIP experi-
ments have demonstrated that the recruitment of HDACs to
the p21 promoter is Sp1/Sp3-dependent (170). Second, a
p300 dominant negative mutant was able to attenuate both
TSA and Sp1-induced p21 expression (173). Finally, the
pharmacological inhibitor of Sp1/Sp3, mithramycin, and
siRNA-mediated knockdown of Sp1 attenuated HDACi-
mediated p21 induction (170).

Sp1/Sp3 transcription factors in HDACi-regulated
gene expression

In addition to CDKN1A, Sp1 and or Sp3 have been re-
ported to be critical for HDACi-mediated regulation of a
number of other targets. These include genes involved in cell
cycle arrest such as p57 (34) and INK4D (178), apoptosis
induction such as Bak (30), DR5 (86) and TRAIL (174), and a
range of other genes involved in a variety of cellular pro-
cesses—NHE3 (4), Galectin 1 (100), IGFBP3 (159),
MMP11(11), 5-LO (136), CYP46A1 (119), ENaC (180),
eNOS (53), DLC-1 (84), NECL1 (54), ADAMTS1 (32), and
EC-SOD (181).

In our own study in which we identified 48 genes consis-
tently induced by HDACi in sensitive colon cancer cell lines,
we demonstrated a key role for Sp1 and Sp3 in inducing
expression of the majority of these targets. First, the pro-
moters of these genes were found to have a significantly
higher GC content and to be enriched for Sp1/Sp3 binding
sites when compared with a control set of un-induced genes.
This finding is similar to that reported by Moore et al., who
also observed an enrichment of Sp1 binding sites in genes
induced by TSA in pancreatic cancer cells (115). Further-
more, we observed that co-treatment with the Sp1/Sp3 in-
hibitor mithramycin, or dual knockdown of Sp1 and Sp3,
markedly attenuated induction of many of these genes, which
notably also attenuated HDACi-induced apoptosis (171).

Interestingly, although less extensively investigated,
HDACi also mediates transcriptional repression of specific
genes in an Sp1/Sp3-dependent manner. This was clearly
illustrated for the anti-apoptotic gene bcl-2, which is directly
repressed by HDACi in lymphoma cell lines (44). In this
study, Duan et al. (44) demonstrated that bcl-2 repression by
TSA was accompanied by dissociation of Sp1 from the bcl-2
promoter, and that deletion of the Sp1 binding site attenuated
HDACi-mediated repression. Similarly, sodium-butyrate
treatment caused direct repression of the c-Src oncogene in
hepatocellular carcinoma cells, most likely in an Sp1/Sp3-
dependent manner (88). This was suggested by the finding that
the magnitude of repression of c-Src promoter activity was
similar to that mediated by the deletion of two Sp1/Sp3 sites
(88). On a broader scale, our microarray analysis of genes
altered by HDACi in colon cancer cell lines demonstrated that
as observed for induced genes (171), the promoters of HDACi-
repressed genes also had an overrepresentation of Sp1/Sp3
binding sites compared with the control gene set (Mariadason
et al., unpublished).

Sp1 and Sp3 are abundantly and ubiquitously expressed
transcription factors (97, 169). HDACi-mediated induction
of Sp1/Sp3-regulated genes such as p21 across multiple cell
types is, therefore, consistent with the expression profile of
these transcription factors. However, GC-rich Sp1/Sp3-
regulated genes are also among the most robustly regulated
by HDACi (29, 57, 171), indicating that these promoters are
exquisitely sensitive to HDACi. The mechanistic basis for
this intriguing observation has not been clearly elucidated,
although a number of possible reasons can be envisioned.

One possibility is that these promoters comprise a specific
chromatin architecture which predisposes them to HDACi-
mediated regulation. In this regard, ChIP-seq studies have
now defined a major class of primary response genes char-
acterized by GC-rich Sp1-bound promoters which are asso-
ciated with highly inducible genes, including FOS, NR4A1,
EGR1, and EGR3 (65, 127). In the basal state, these pro-
moters comprise a unique chromatin conformation that in-
cludes high levels of the positive histone modifications
H3K9/K14ac and H3K4me3, unstable nucleosome occu-
pancy, and a lack of SWI/SNF nucleosome remodeling
complexes. These promoters also harbor preassembled
RNA Pol-II, which is paused at the proximal promoter (65,
127), indicating their existence in a poised state. Im-
portantly, Sp1 is critical for the maintenance of this poised
state, as its knockdown results in a loss of RNA-Pol-II from
these promoters (65). These genes are particularly sensitive
to induction by stimuli such as serum, which induces their
expression through facilitating transcriptional elongation.
This process is triggered by acetylation of K5, K8, and K12
on histone H4, which are marks recognized by the epige-
netic reader, BRD4. BRD4, in turn, recruits pTEFb, which
induces transcriptional elongation by phosphorylating RNA
Pol-II (65) and by antagonizing the negative elongation
factors NELF and DSIF.

Several lines of evidence suggest that these same pro-
moters are also amenable to regulation by HDACi. First, a
number of the genes that harbor these promoters, including
FOS, EGR1, EGR3, and NR4A1, are rapidly and highly in-
duced by HDACi in colon cancer cells in an Sp1/Sp3-
dependent manner (171). Second, independent ChIP-Seq
analyses have demonstrated that promoters with similar
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features are the most prone to hyper-acetylation after HDACi
treatment (68). Finally, HDACi treatment can induce the
specific histone modifications (H4K5/8/12Ac) that attract
BRD4 to mediate transcriptional elongation. Collectively, a
model can be envisioned by which the inhibition of Sp1 or
Sp3-associated HDACs at these promoters induces specific
histone acetylation marks that are recognized by epigenetic
readers such as BRD4. This, in turn, recruits factors such as
pTEFb, which activate Pol-II to drive expression through
transcriptional elongation (Fig. 7).

However, the proposed model also needs to accommodate
the finding that GC rich promoters are also capable of being
repressed by HDACi. Interestingly, while we propose that
increased transcriptional elongation may play a role in
HDACi-mediated up-regulation of gene expression, there is
also evidence that HDACi conversely represses genes by
attenuating this process. This was first described by Heruth
et al., who reported that HDACi-mediated repression of c-
Myc in colon cancer cells was mediated by a block in c-Myc
transcriptional elongation (67). This finding was confirmed
by Wilson et al., who utilized FISH probes targeting the 5¢-
and 3¢-ends of the c-Myc transcript to demonstrate that
HDACi treatment induced an increase in transcription initi-
ation but a concomitant decrease in transcriptional elongation
(172). Using a similar approach, the Augenlicht group also
subsequently demonstrated that the inhibition of transcrip-
tional elongation is a key mechanism by which HDACi in-
hibits cyclin D1 expression (104).

Two studies have examined the frequency of HDACi-
mediated blockade of transcriptional elongation on a genome-
wide scale. Most recently, Kim et al. used global run-on
sequencing (Gro-seq) to identify genes repressed by HDACi in

this manner in breast cancer cells. This revealed that highly
expressed and high copy number loci, such as Erbb2, were
particularly prone to inhibition of transcriptional elongation
by HDACi (87). Second, Daroqui and Augenlicht designed
microarrays that enabled interrogation of the relative level of
expression of the 5¢ and 3¢ ends of mRNA transcripts. Using
these arrays, they identified 367 genes (2% of analysed loci)
with transcripts that were preferentially down-regulated at
the 3¢ relative to the 5¢ end in colon cancer cells treated with
HDACi, including c-Myc and cyclin D1 (38). A further
analysis of these 367 transcripts using a custom-designed
microarray with probes which tiled across these genes con-
firmed that 42 of these genes displayed significantly lower
expression at the 3¢ compared with the 5¢ end, and were, thus,
potentially paused on HDACi treatment (38). Analysis of
these 42 gene promoters reveals that 68% harbor CpG is-
lands, indicating that GC-rich promoters are particularly
prone to pausing in response to HDACi treatment.

These findings suggest that the HDACi-mediated induc-
tion and repression of genes harboring GC-rich promoters
may be due to enhanced and attenuated transcriptional
elongation, respectively. One possibility is that these con-
trasting outcomes are related to the relative contributions
made by the highly related Sp1 and Sp3 transcription factors,
which bind Sp1/Sp3 binding sites with an equal affinity.
Furthermore, as discussed earlier, both of these factors are
themselves subject to HDACi-mediated acetylation, which
may selectively occur at some promoters depending on the
specific HATs and HDACs with which they are locally asso-
ciated. Notably, acetylation of Sp1 in response to HDACi
treatment was associated with its dissociation from the bcl-2
promoter and bcl-2 repression (44). One possibility, therefore,

FIG. 7. Model of HDACi-
mediated transcriptional
activation at GC rich, Sp1/
Sp3-regulated promoters.
Sp, specificity protein. To see
this illustration in color, the
reader is referred to the web
version of this article at
www.liebertpub.com/ars
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is that by dissociating from promoter regions after its
acetylation, Sp1 is no longer able to mediate transcrip-
tional elongation, which, consequently, results in repression
through transcriptional pausing (Fig. 8). Sp1 and Sp3 may
also work in combination or in competition at specific loci to
elicit a net effect. For example, in colon cancer cells, at-
tenuation of HDACi-mediated induction of EGR1, EGR3,
and GADD45 expression was best achieved by combina-
torial knockdown of Sp1 and Sp3, demonstrating that both
transcription factors are required for the induction of these
genes (171).

Detailed genome-wide studies of promoter occupancy of
these factors in the basal and acetylated state, and the impact
of HDACi treatment on their binding profiles will be required
to address these mechanisms. Furthermore, these findings
would need to be integrated with corresponding gene ex-
pression changes, histone modifications, and patterns of
BRD4 and Pol-II binding to establish a comprehensive model
with the scope to understand both the induction and repres-
sion of gene expression induced by HDACi.

Summary and Conclusions

HDACis are an emerging class of anti-cancer therapeutics
with activity in several hematological cancers and potential
activity in some solid tumors when used in combination.
These drugs elicit extensive transcriptional changes in tumor
cells, with a subset of genes, particularly those regulated in an
Sp1/Sp3-dependent manner, reproducibly regulated across a
broad range of cell types. HDACi also induce and repress

an approximately similar number of genes. Here, two models
of HDACi-regulated gene expression are reviewed—histone
acetylation and transcription factor acetylation—with con-
sideration given to how these events may explain both tran-
scriptional induction and repression. How these mechanisms
may intersect at GC-rich promoters is also considered.

It is hoped that through a detailed understanding of the
specific mechanisms by which HDACi modulates gene ex-
pression, the clinical development of these agents as anti-
cancer therapeutics can be further enhanced. In particular,
this information may facilitate the identification of tumors
that are likely amenable to treatment with HDACi and enable
the design of rational drug combinations, which can further
enhance the clinical utility of these agents.
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